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1 ABSTRACT 

The statistical properties of some narrow-band second-order processes in the mechan-
ics of sea waves in front of a vertical wall are investigated. Arena & Fedele (2002) have 
shown that the asymmetry between the crest and the trough distributions on a vertical 
wall is markedly greater than the asymmetry crest-trough in an undisturbed field, either 
for the free surface displacement or for the fluctuating wave pressure at a fixed depth. 
In this paper the narrow-band second-order wave force and overturning moment on the 
vertical wall are derived by analytical integration of the wave pressure. It is obtained 
that for a fixed threshold of the probability of exceedance, if kd is smaller than 1.38 (be-
ing k the wave number and d the bottom depth), positive peaks of the wave force proc-
ess (that occur with the wave crests of free surface displacement on the wall) are 
greater than absolute value of negative peaks (that occur with the wave trough). 
The wave force is a quasi-symmetric process for kd=1.38: the non-linearities are weak 
and both the positive peak distribution and the negative peak (in absolute value) distri-
bution are given by the Rayleigh law with good approximation.  
Finally it is noteworthy that for kd>1.38 we find that the wave troughs of surface dis-
placement at wall produce negative peaks of the wave force that are (in absolute value) 
greater than positive peaks produced by wave crests. The predictions are in good 
agreement with the data of a small-scale field experiment (Arena, 1995; Boccotti, 
2000). 

2 INTRODUCTION 

According to the linear theory of wind-generated waves (Longuet-Higgins, 1963; 
Phillips, 1967) both the free surface displacement and the fluctuating wave pressure in 
front of a vertical wall represent a random Gaussian process of time. As consequence 
the wave crest and wave trough have a Rayleigh distribution for an infinitely narrow 
spectrum (Longuet-Higgins, 1952), either for the linear free surface displacement or for 
the linear fluctuating wave pressure.  

In this paper the statistical properties of some narrow-band second-order processes 
in the mechanics of sea waves in front of a vertical wall are investigated. For this pur-
pose we consider a family ψ   of stochastic processes, which both the second-order free 

mailto:ffedele@emba.uvm.edu
mailto:arena@unirc.it


F. Fedele, F. Arena  2

surface displacement and fluctuating wave pressure on a vertical wall belong to. The 
probability density function and the probabilities of exceedance of both the absolute 
maximum and the absolute minimum of this stochastic family were obtained by the au-
thors (Arena & Fedele, 2002). It is shown that some non-linear effects for sea waves on 
a vertical wall are greater than the non-linear effects in an undisturbed wave field: the 
asymmetry between the crest and the trough distributions on a vertical wall is markedly 
greater than the asymmetry crest-trough in an undisturbed field, either for the free sur-
face displacement or for the fluctuating wave pressure at a fixed depth. These results 
well agree with the data of a small-scale field experiment (Boccotti, 2000).  

Finally the second-order random wave force F and overturning moment M on the 
vertical wall are derived by analytical integration of the fluctuating wave pressure. It is 
obtained that both these two processes, for an infinitely narrow spectrum, belong to the 
stochastic family ψ too. The statistical properties of second-order F and M processes are 
then investigated. 

3 A NEW APPROACH FOR STUDYING THE STATISTICS OF MANY PROCESSES IN THE 
MECHANICS OF THE SEA WAVES  

A new approach to investigate the statistical properties of many second-order nar-
row-band processes in the mechanics of the sea waves was given by Arena & Fedele 
(2002). They defined the family ψ  of stochastic processes, with (x,y) parameters: 

  (1) ,)]([sin),(])([cos),()](cos[),(),,( 2222 tayxhtayxgtayxftyx χχχψ ++=

where a is a stochastic variable with Rayleigh distribution and where 

 ϑωχ += tt 0)( , (2) 

being 0ω  the angular frequency, t the time and ϑ  a stochastic variable uniformly dis-
tributed in ( )2,0 π . By defining the two independent stochastic Gaussian processes  

 σχσχ /sin      ,/cos 21 aZaZ == , (3) 

where  is the variance of both the linear processes 2σ χcosa  and χsina , the Eq. (1) 
may be rewritten as 

 ( ) ( ) ( ) ( )[ ]2
2

2
1121 ,,,, ZyxhZyxgZyxfZZ σσσψ ++= . (4) 

Arena & Fedele (2002) obtained that the statistical properties of the stochastic fam-
ily (1) (or (4)) depend upon the deterministic parameters 21,αα , which are defined as: 

 fhfg /,/ 21 σασα == . (5) 

In order to determine the distributions of the absolute maximum and of the absolute 
minimum, let us rewrite Eq. (1) in the form:  

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] .
2
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Supposing that , from Eq. (6) we obtain the amplitudes of the absolute maxi-
mum and of the absolute minimum (in absolute value), which are given respectively by: 

0>f

 ,   ( ) ( ) 2,, ayxgayxfhigh +=Ψ ( ) ( ) 2,, ayxgayxflow −=Ψ . (7) 

Arena and Fedele (2002) showed that if the condition  

 ( ) ( ) ( ){ } 42,,, >− ayxhyxgyxf  (8) 

is satisfied, the probabilities of exceedance  of the absolute maximum and 
 of the absolute minimum of the dimensionless variables  
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where the random variable u has Rayleigh distribution, are given by: 
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where  
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Condition (8) is satisfied for ≤− 21 αα .135, with probability failure smaller than 
1/1000; as consequence the probabilities of exceedance (10) are good approximations of 
the exact probabilities of exceedance of the non-linear process (1) (Arena & Fedele, 
2002). 

4 THE RANDOM WAVE FIELD IN FRONT OF A VERTICAL WALL 

Let us assume Rectangular Cartesian co-ordinates having the x-axis horizontal and 
the vertical y-axis with origin at the mean water level. A vertical wall is located at the 
abscissa . The incident waves move along the x-axis. 0=x

To the second-order in a Stokes expansion the narrow-band free surface displace-
ment in front of a vertical wall is given by  
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where 
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and the narrow-band second-order wave pressure p∆  (being p∆  the difference be-
tween the actual pressure p and the pressure at rest) is given by 
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e have that both the free surface displacement [Eq. (12)] and the fluctuating wave 
sure [Eq. (14)] belong to the stochastic family (1). The parameters  and  [see 
(5)] of either the free surface displacement or the fluctuating wave pressure on the 
ical wall are markedly greater than the corresponding parameters obtained in an un-
rbed wave field, as was pointed out by the authors (Arena & Fedele, 2002). As a 
equence the effects of non-linearity of both the free surface displacement and of the 

tuating wave pressure on a vertical wall are stronger than in the undisturbed field. 

1α 2α

The narrow-band second-order wave force on the vertical wall  

he wave force on the vertical wall is given by 
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re  is the hydrostatic pressure. For hp ),0( tη >0 Eq. (16) may be rewritten as  
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where in the first integral  gives the difference between actual pressure p and . 
The last integral, by assuming that the wave pressure has linear variation between y=0 
and 

p∆ hp

),0( tη , is evaluated as 2),0(),0,0( ttp η∆ =  (let us note that pressure at 
rest is zero for 

2
1

22 Zgσρ
0>η ). For ), t0(η <0 Eq. (16) may be rewritten as  
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where p, that gives the actual pressure under the mean water level ( 0≤η ), is given by 
. The last integral in Eq. (18) retaining the second order term only, gives the 

value . As a consequence the wave force (16) at any instant t (and therefore 
for any 

hpp +∆

2− 2
1

2 Zgσρ
η ) may be rewritten as: 
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where includes all the higher order terms neglected. By considering the wave 
pressure given by Eq. (14) and solving the integral we obtain the narrow-band second-
order random force on the vertical wall, that is given by 
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being ε  the wave steepness (characteristic values of the wave steepness are over the 
range 0 06.005. << ε ) and  
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Let us note that underlined term [that is ], gives a positive contribution to 
the wave force, at any instant t. The integral of Eq. (13) has a positive value for the 
wave crest (positive peak of the wave force) and a negative value for the wave trough 
(negative peak of the wave force). Therefore the second-order force  [Eq. (20)] be-
longs to the non-linear stochastic family (1) with parameters:  

)/(2 2
1 kdZε

)(tF

 .022011 ffff εαεα ==  (22) 

Fig. 1 shows the parameters 1α  and 2α  of the random force process F(t), as a func-
tion of the bottom depth kd . The probabilities of exceedance of positive peaks and of 
negative peaks are therefore given by Eq. (10): they well approximate the exact prob-
abilities of exceedance of the non-linear stochastic family (1) when 21 αα − <0.135. It 
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is easy to verify that for the non-linear F(t) [Eq. (20)], assuming ε=0.055, this inequality 
is satisfied if 0.8<kd<2.0 (see Fig. 1). We have 1α <0 for kd>1.38: the wave force has 
positive peaks smaller than negative peaks. Let us note that the wave force peaks are 
positive (negative) when a wave crest (wave trough) of the free surface displacement on 
the wall occurs. For kd=1.38 the force is a quasi-symmetric processes ( 01 =α ) and 
therefore the nonlinearities are weak: both the positive peak distribution and the nega-
tive peak distribution of the wave force are given by the Rayleigh law with good ap-
proximation. For kd<1.38 we have 1α >0; in this case we have positive peaks greater 
than negative peaks. 

maxF

minF
minF

0

d

+ ∫
−

d)y

2
1 ε+10 Z

This asymmetry of the wave force process is important for some applications in ocean 
engineering. For example by calculating the wave force on a vertical breakwater, ac-
cording to the first order in a Stokes expansion we obtain that the maximum force [pro-
duced by a wave crest of the ),0( tη  process, see Eq. (12)] is equal to the absolute value 
of the minimum force [produced by a wave trough of the ),0( tη  process].  

The narrow-band second-order wave force process (20) gives a more accurate model 
for the wave force on a vertical wall: while the linear wave force presents always posi-
tive peaks equal to the absolute value of negative peaks, the second-order wave force 
has a characteristic asymmetry between positive and negative peaks depending upon the 
bottom depth (see Fig. 1); in particular we found that for kd>1.38 (kd<1.38) the absolute 
value of the negative peaks of the wave force are greater (less) than the positive peaks. 
Condition of quasi-symmetry is realized for kd close to 1.38. 

These analytical results are in good agreement with experimental evidence by Arena 
(1995) who analyzed the force of sea waves on a vertical wall during a small-scale field 
experiment (see Boccotti, 2000). The bottom depth at the wall was 1.45m, with kd val-
ues between 1.23 and 1.65. In particular he compared the maximum force  and the 
minimum force (in absolute value)  during 51 records, each of which composed by 
250-300 waves. Fig. 3 shows the experimental values of the ratio  during 
each record, which agree with our analytical predictions. 

maxF /

4.2 The narrow-band second-order overturning moment on the vertical wall  

The overturning moment (with respect to the bottom depth), by retaining terms up to 
the second order, is given by  

 , (23) )(,,0()()( 2aoytypdtFtM +∆=

where includes all the higher order terms neglected. By considering the fluctuat-
ing wave pressure given by Eq. (14) the narrow-band second-order overturning moment 
is given by: 
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Figure 1. The non-linearity parameters 1α  and 2α  of the narrow-band second-order wave force 
(left panel) and overturning moment (right panel) on a vertical wall, as a function of the bottom 

depth . Dashed lines give the kd εαα /21 −  values. 
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Figure 2. The experimental  and  values during records with 
250-300 waves of a small-scale field experiment (Boccotti, 2000). Data from Arena (1995). 
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Therefore the second-order M  given by Eq. (24), belongs to the non-linear sto-
chastic family (1) with parameters:  

)(t ,

 022011 mmmm εαεα == . (26) 

Fig. 1 shows the parameters  and  of M(t) process [Eq. (26)] as a function of 
the bottom depth . Assuming 

1α 2α
055kd .0=ε , the inequality 21 αα − <0.135 is satisfied 

if kd>0.98. 
As we can see  has positive values for kd<2.13 and negative values for kd>2.13. 

Let us note that the threshold kd=2.13 for which M(t) is a quasi-symmetric process is 
greater than the corresponding threshold of the wave force F(t) (that is kd=1.38). This is 
congruent from a physical point of view: for kd=1.38 the wave force is quasi-symmetric 
and has positive peaks F

1α

max very close to negative peaks Fmin (in absolute value). Be-
cause Fmax is produced by a crest of process ),0( tη  [see Eq. (12)] and Fmin is produced 
by a trough of ), t0(η , for kd=1.38 the moment of the wave force Fmax has to be greater 
than the moment of the wave force Fmin. That is for kd=1.38 (see right panel in Fig. 1) 
we have >0 for the overturning moment (24), which implies positive M(t) peaks 
greater than negative M(t) peaks. This is in agreement with the experimental values of 
M

1α

max/ Mmin showed in Fig. 3 (data by Arena, 1995). 
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