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Abstract
The theory of quasi-determinism introduced by Boccotti gives necessary and sufficient

conditions for the occurrence in a gaussian sea state of a wave of very large given height.
As a corollary, Boccotti derives that the probability of exceedance of the wave height
follows asymptotically a Weibull distribution which depends upon the narrow bandedness
parameter ψ∗defined as the absolute value of the quotient between the first absolute
minimum and the absolute maximum of the autocovariance function ψ(T ). In this paper,
the necessary and sufficient conditions for the occurrence, in gaussian sea states, of two
successive wave crests of large heights are given. As a corollary it is proven that the tail
probability of the joint distribution of two successive wave crests is given by a bivariate
Weibull law, which depends upon the parameter ψ∗2 = ψ(T ∗2 )/ψ(0) with T ∗2 the abscissa
of the second absolute maximum of ψ(T ). The analytical results are in agreement with
Monte Carlo simulations.
Key words: Successive wave crests; gaussian sea; quasi-determinism; bivariate Weibull;

conditional probability.

1 Introduction

The theory of quasi-determinism for the mechanics of linear wave groups was derived by Boc-
cotti in the eighties, with two formulations. The first one ([1],[2]) enables us to predict what
happens when a very high crest occurs in a fixed time and location (see also [3]); the second one

([4],[5]) gives the mechanics of the wave group when a very large crest-to-trough height occurs.
The theory, which is exact to the first order in a Stokes expansion (Gaussian sea), is valid for
any boundary condition (for example either for waves in an undisturbed field or in reflection).
The theory was then verified in the nineties with some small-scale field experiments ([6],[7]).
Following Boccotti ([5]), the necessary and sufficient condition for the occurrence of two

successive wave crests of very large given height is provided and as a corollary, it is proven
that the tail probability of the joint distribution of two successive wave crests is given by a
bivariate Weibull distribution. The analytical prediction are in good agreement with Monte
Carlo simulations.

2 The theory of quasi-determinism

2.1 Gaussian sea states

According to the theory of sea states, to the first order in a Stokes’ expansion, a time series
of surface displacements η (t) recorded at a fixed point at sea is a realization of a stationary
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ergodic stochastic gaussian process defined as

η (t) =
NX
i=1

ai cos (ωit+ εi) (1)

where it is assumed that frequencies ωi are different from each other, the number N is infinitely
large, phase angles εi are uniformly distributed on [0, 2π] and are stochastically independent of
each other, and all the amplitudes ai satisfy the frequency spectrum S(ω) defined as

S(ω)dω =
X

ωi∈[ω,ω+dω]

a2i
2
. (2)

The jth order moment of the spectrum is mj =
R∞
0

Sj(ω)dω. In particular m0 = σ2, where
σ is the standard deviation of η (t) . The autocovariance function ψ(T ) can be evaluated as
ψ(T ) =

R∞
0

S(ω) cos (ωT ) dω.

2.2 The occurrence of a wave of large height

Let us consider the surface displacement η (t) at any fixed point (x0, y0) in a random wave field.
Setting t0 as an arbitrary time instant, H the wave height and T ∗ the abscissa of the absolute
minimum of the autocovariance function, Boccotti showed that the condition

η (t0) =
H

2
η (t0 + T ∗) = −H

2
(3)

becomes necessary and sufficient for the occurrence of a wave of height H as α = H/σ →∞.
The condition (3) is sufficient because as α→∞ the conditional probability

Pr

·
η (t0 + T ) = u

Á
η (t0) =

H

2
, η (t0 + T ∗) = −H

2

¸
(4)

tends to a delta function δ [u− η̄ (t0 + T )] centered at

η̄ (t0 + T ) =
H

2

ψ(T )− ψ(T − T ∗)
ψ(0)− ψ(T ∗)

(5)

Implying that as α → ∞, given condition (3), with probability approaching one, the surface
displacement η (t0 + T ) tends to the deterministic form η̄ (t0 + T ). This is a wave profile with
wave height H, having a crest of amplitude H/2 at T = 0 and a trough of amplitude H/2 at
T = T ∗.
In order to show that Eq. (3) is also a necessary condition, Boccotti derived the analytical

expression for the expected number per unit time EX(α, τ, ξ) of local maxima of the surface
displacement η (t) with amplitude ξα which are followed by a local minimum with amplitude
(ξ − 1)α after a time lag τ . He showed that as α → ∞ in the domain (τ, ξ) there exists an
O(α−1) infinitesimal neighborhood of (T ∗, 1/2) such that

EXs.w. (α, τ , ξ) =

 EX (α, τ, ξ) τ = T ∗ + δτ, ξ = 1
2
+ δξ (δτ, δξ) ∼ O(α−1)

0 elsewhere
(6)

where EXs.w.(α, τ, ξ) is the expected number per unit time of local maxima of the surface
displacement η (t) with amplitude ξα which are followed by a local minimum with amplitude
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(ξ − 1)α after a time lag between τ,where the local maximum and the local minimum must
be, respectively the crest and the trough of the same wave (the subscript s.w. stands for same
wave). Hence condition (3) is also necessary in the limit α→∞.
As a corollary Boccotti derived the tail probability of the wave height distribution p(α),

which has the following expression

p(α) = 2π

Z ∞

0

Z 1

0

EXs.w. (α, τ , ξ) dτdξ → α

2(1 + ψ∗)
exp

·
− α2

4(1 + ψ∗)

¸
as α→∞

where the narrow-bandedness parameter ψ∗ is defined as the absolute value of the quotient
between the first absolute minimum and the absolute maximum of the autocovariance function.

3 The occurrence of two successive wave crests of very

large given heights

3.1 Sufficient condition

In the following the theory of quasi-determinism of Boccotti is extended to study the occurrence
of two very large successive wave crests. Let us consider the surface displacement η (t) at any
fixed point (x0, y0) in a random wave field defined as in Eq. (1). Let us analyze the probability
density function of the surface displacement at any fixed time, given the condition

η (t0) = h1 and η (t0 + T ∗2 ) = h2 (7)

where t0 is an arbitrary time instant, h1 and h2 are crest amplitudes and T ∗2 is the abscissa of
the second absolute maximum of the autocovariance function ψ(T ). The p.d.f. of η (t) at time
t0 + T , given condition (7) is gaussian, i.e.

Pr [η (t0 + T ) = u /η (t0) = h1, η (t0 + T ∗2 ) = h2 ] =
1p
2πσ2c

exp

½
− [u− ηc (t0 + T )]2

2σ2c

¾
Where the conditional mean ηc (t0 + T ) is given by

ηc (t0 + T ) =
h1ψ(0)− h2ψ(T

∗
2 )

ψ2(0)− ψ2(T ∗2 )
ψ(T ) +

h2ψ(0)− h1ψ(T
∗
2 )

ψ2(0)− ψ2(T ∗2 )
ψ(T − T ∗2 ) (8)

And the conditional variance σ2c has the following expression

σ2c = σ2

1− ψ2(T ∗2 ) + ψ2(T − T ∗2 )− 2ψ(T )ψ(T − T ∗2 )
ψ(T∗2 )
ψ(0)

ψ2(0)− ψ2(T ∗2 )

 .
Since

ψ(T∗2 )
ψ(0)

is smaller than unity, the conditional variance is always bounded by the uncondi-

tional variance σ2. Therefore as h1
σ
→∞ and h2

σ
→∞ the ratio σc

ηc(t0+T )
approaches zero (since

ηc (t0 + T )→∞ and σc is bounded by the unconditional standard deviation σ) implying that
all the realizations of the random wave field which satisfy condition (7), with probability ap-
proaching one, tend to the deterministic profile ηc (t0 + T ). The conditional mean ηc (t0 + T ),
[see Eq. (8)] represents a wave structure of two successive wave crests lagged in time by T ∗2 , if
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ηc (t0 + T ) attains two local maxima at T = 0, T ∗2 , i.e. if the second order derivatives at those
abscissas are always less than zero

η̈c (0) < 0 and η̈c (T
∗
2 ) < 0 (9)

Some algebra yields η̈c (0) = a(−β0 + s β1), η̈c (T
∗
2 ) = a(−β1 + s β0) with β0 =

h1
σ
and β1 =

h2
σ
and

a =
1 + ψ(T ∗2 )ψ̈(T

∗
2 )

1− ψ2(T ∗2 )
s =

ψ(T ∗2 ) + ψ̈(T ∗2 )

1 + ψ(T ∗2 )ψ̈(T
∗
2 )

where dot denotes derivative. Since a is always greater or equal to zero, condition (9) is fulfilled
if  β0, β1 ∈ R2

+ if s ≤ 0

β0, β1 ∈ Ω(s) if s > 0
(10)

where

Ω(s) =

½
(β0, β1) ∈ R2

+ : β0 ≥ 0, β1 ≥ 0 s <
β1
β0

<
1

s

¾
is an open sectorial region of R2

+ with aperture angle θ = π/2 − 2 tan−1(s). Furthermore
because it is assumed that the autocovariance function ψ(T ) attains only one minimum in the
open interval (0, T ∗2 ) at T = T ∗, the two local maxima of the wave profile ηc (t0 + T ) are also
two consecutive wave crests. Hence as β0 →∞ and β1 →∞, condition (7) is sufficient for the
occurrence of two successive wave crests of given very large height under the constraint (10).
Typical JONSWAP spectra satisfy the condition s > 0 with s ∈ [0.14, 0.16]. As the spectra

gets narrow the sector Ω(s) tends to cover all R2
+, i.e. θ → π/2, because s approaches zero in

the narrow-band limit.

3.2 The condition (7) is necessary for the occurrence of two large
successive wave crests

3.2.1 The definition of the general form of EXc (β0, β1, τ)

In the following, the notations ψT , ηT are adopted to indicate respectively the autocovariance
ψ(T ) and the surface displacement η(T ). Without loosing generality, the time scale 1√

m2
and

the length scale σ =
√
m0 are used to non-dimensionalize Eq. (1) such that the zeroth and

second order moment of the spectrum are unitary, i.e. m0 = 1, m2 = 1. It follows that
ψ0 = 1, ψ̈0 = −1. Let us consider the expected number per unit time

EXc (β0, β1, τ) dβ0dβ1 (11)

of local maxima of the surface displacement η (t) ( at a fixed location in space) whose elevation
is between β0 and β0 + dβ0, and which are followed by a local maximum with an elevation
between β1 and β1+dβ1 after a time lag between τ and τ +dτ . Following the general approach
introduced by Rice (see [5], pp. 159-162), EXc (β0, β1, τ) can be expressed as

EXc (β0, β1, τ) =

Z ∞

0

Z ∞

0

|z1z2| p [η0 = β0, η̇0 = 0, η̈0 = z1, ητ = β1, η̇τ = 0, η̈τ = z2] dz1dz2

(12)
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where p [η0, η̇0, η̈0, ητ , η̇τ , η̈τ ] is a gaussian joint probability density function. Eq. (12) is rewrit-
ten in the form

EXc (β0, β1, τ ) = p [η0 = β0, η̇0 = 0, η̇τ = 0, ητ = β1] · (13)

·
Z ∞

0

Z ∞

0

|z1z2| p [ η̈0 = z1, η̈τ = z2/ η0 = β0, η̇0 = 0, η̇τ = 0, ητ = β1] dz1dz2

In the limit of β0 →∞ and β1 →∞
p [η̈0 = z1, η̈τ = z2 /η0 = β0, η̇0 = 0, η̇τ = 0, ητ = β1 ]→ δ [z1 − η̈c (0) , z1 − η̈c (T

∗
2 )]

yielding the simplification

EXc (β0, β1, τ) = p [η0 = β0, η̇0 = 0, η̇τ = 0, ητ = β1] η̈c (0) η̈c (T
∗
2 ) (14)

The joint probability p [η0 = β0, η̇0 = 0, η̇τ = 0, ητ = β1] in Eq. (14) can be Taylor expanded
with respect to the variable τ around τ = T ∗2 yielding

EXc (β0, β1, τ) =
1

(2π)2
q
1− ψ2T∗2

exp

−β20 + β21 − 2ψT∗2
β0β1

2
³
1− ψ2T∗2

´ +
1

2
K∗δτ 2

+ o(δτ 2) (15)

where K∗ = − ψ̈T∗2
1−ψ̈2T∗2

η̈c (0) η̈c (T
∗
2 ) can be proven to be greater than zero. Hence as β0 →∞ and

β1 →∞ there exists an infinitesimal neighborhood δΓ of order O(K−1/2
∗ ) such that

EXc (β0, β1, τ) =

 EXc (β0, β1, T
∗
2 ) τ = T ∗2 + δτ δτ ∈ δΓ

0 elsewhere
as β0 →∞ and β1 →∞.

(16)
This means that a local maxima of a very large amplitude β0 followed by a local maxima of
a very large amplitude β1 after a time lag T ∗2 + δτ with δτ ∈ δΓ have the same expectation
as two local maxima with amplitudes respectively equal to β0 and β1, lagged in time by T ∗2 .
But two local maxima of large amplitude lagged in time by T ∗2 are also two successive crests
because the condition (7) is sufficient. Hence the latter condition (7) is also necessary in the
limit β0 →∞ and β1 →∞.

3.2.2 The tail probabilities of two successive wave crest eights

Let us define
EXs.c. (β0, β1, τ) dβ0dβ1 (17)

The expected number per unit time of local maxima of the surface displacement η (t) ( at a
fixed location in space) whose elevation falls between β0 and β0 + dβ0 and are followed by a
local maxima of elevation between β1 and β1 + dβ1 after a time lag between τ and τ + dτ ,
where the two local maxima must be two successive wave crests (the subscript s.c. stands for
successive crests). As β0 and β1 →∞, from Eq. (16) two successive wave crests lagged in time
by T ∗2 + δτ with δτ ∈ δΓ are, with probability approaching one, two local maxima lagged in
time by T ∗2 + δτ yielding

EXs.c. (β0, β1, τ ) =

 EXc (β0, β1, τ) τ = T ∗2 + δτ δτ ∈ δΓ

0 elsewhere
. (18)

5



Figure 1: The probabilities of exceedance for β0 = 2.79.

The exact expression for the joint probability density function of two successive wave crests is

p(β0, β1) =
1

EX+

R∞
0

EXs.c. (β0, β1, τ ) dτ where EX+ =
1
2π

q
m2

m0
= 1

2π
is the expected number

per unit time of zero up-crossing of the surface displacement. If β0 and β1 → ∞, since Eq.
(18) holds, we have the following

p(β0, β1) '
1

2π

η̈c (0) η̈c (T
∗
2 )

1− ψ2T∗2
exp

−β20 + β21 − 2ψT∗2
β0β1

2
³
1− ψ2T∗2

´
Z

δτ∈δΓ
exp

µ
−1
2
K∗δτ 2

¶
d(δτ); (19)

The integral that appears in Eq. (19) can bounded by
R∞
−∞ exp

¡−1
2
K∗δτ 2

¢
d(δτ) =

√
2π√
K∗ ob-

taining the p.d.f.

pa(β0, β1) =
1 + ψ∗2ψ̈

∗
2q

−2πψ̈∗2(1− ψ∗22 )3
exp

·
−β

2
0 + β21 − 2ψ∗2β0β1
2(1− ψ∗22 )

¸p
(−β0 + s β1)(−β1 + s β0)

(20)
where ψ∗2 ≡ ψT∗2

, ψ̈
∗
2 ≡ ψ̈T∗2

. From Eq. (20) the following upper bound for pa(β0, β1) is readily
derived

pW (β0, β1) =
β0β1
(1− k2)

exp

·
− β20 + β21
2(1− k2)

¸
I0

µ
k β0β1
1− k2

¶
(21)

where here k = ψ∗2 and I0(x) is the modified Bessel function; Eq. (21) is a bivariate Weibull
distribution, used by many authors to model the distribution of successive wave heights in
narrow-band gaussian seas ([8],[9]).

4 Validation

In this section the probability laws pa(β0, β1) and pW (β0, β1), i.e. Eqs. (20) and (21), are
validated by performing Monte Carlo simulations with rectangular spectrum. By assuming
ωmax = 1.5, ωmin = 0.5, by means of Eq. (1), realizations of a Gaussian sea state have been
generated, with roughly 90000 waves. In figures 1, the theoretical probabilities of exceedance
Pr [β0 > x0, β1 > x1] of the asymptotic p.d.f. (20) and the Weibull p.d.f. (21) are compared to
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the probabilities of exceedance derived from the Monte Carlo simulations. As one can see from
the plots, the asymptotic pa(β0, β1) and the Weibull pW (β0, β1) are respectively a lower bound
and an upper bound of the exact p.d.f. p(β0, β1). The distribution pa(β0, β1) converges to the
exact distribution p(β0, β1) for β0 > 2 and β1 > 2, whereas the convergence of pW (β0, β1) is
attained for β0 > 2.5 and β1 > 2.5.

5 Conclusions

Based on the theory of quasi-determinism of Boccotti, the necessary and sufficient conditions
for the occurrence of two very large successive wave crests are given. As a corollary it is proven
that the tail probability of the joint distribution of two successive wave crests is given by a
bivariate Weibull law, where the Weibull parameter is equal to ψ∗2 = ψ(T ∗2 )/ψ(0) with T ∗2 the
abscissa of the second absolute maximum of the autocovariance function ψ(T ). The theoretical
results agree well with the Monte Carlo simulations.
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