"The burning candle"

A candle in the shape of a truncated right circular cone 45 cm high burns to extinction in nine hours. The bottom 3 cm takes 20 minutes longer to burn than the top 3 cm . How many minutes will it take the top 3 cm to burn? Assume that the volume of the candle decreases at a constant rate as it burns.

Be the first to solve the Riemann challenge problem correctly, and email your solution to Dr. Fedele (ffedele3@gtsav.gatech.edu) by Friday, March 6 2009. Good Luck!

Rules and more:
http://www.gtsav.gatech.edu/people/ffedele/Research/riemann challenge/index.html
Sincerely, the Riemannians

SOLUTION

Let r_{t} and r_{b} be the top and bottom radii of the candle in cm . Then, the radius at any distance from the top is given by $r=r_{\mathrm{t}}+a y$, where $a=\left(r_{\mathrm{b}}-r_{\mathrm{t}}\right) / 45$, and y is the distance from the top in cm . The equation for the volume of the frustum of a right circular cone is $V=\pi(h / 3)\left(r^{2}+r R+R^{2}\right)$, where r and R are the radii of the top and bottom and h is the altitude. Thus, we have
$V_{c}=15 \pi\left[r_{t}^{2}+r_{t}\left(r_{t}+45 a\right)+\left(r_{t}+45 a\right)^{2}\right]=15 \pi\left(3 r_{t}^{2}+135 a r_{t}+2,025 a^{2}\right)$,
$V t=\pi\left[r_{t}^{2}+r_{t}\left(r_{t}+3 a\right)+\left(r_{t}+3 a\right)^{2}\right]=\pi\left(3 r_{t}^{2}+9 a r_{t}+9 a^{2}\right)$,
and
$V_{b}=\pi\left[\left(r_{t}+42 a\right)^{2}+\left(r_{t}+42 a\right)\left(r_{t}+45 a\right)+\left(r_{t}+45 a\right)^{2}\right]=\pi\left(3 r_{t}^{2}+261 a r_{t}+5,679 a^{2}\right)$.
Since burning time is proportional to volume, $\left(t_{b}-t_{t}\right) / t_{c}=\left(V_{b}-V_{t}\right) / V_{c}$. Using $t_{b}-t_{t}=20$ \min., $t_{c}=540 \mathrm{~min}$., and the values for V_{c}, V_{b}, and V_{t} and making the substitution $z=r t / a$, we get $5 z^{2}-531 z-13,635=0$, which can be solved by the quadratic formula to give $z=127.576$, which allows the calculation of V_{t} / a^{2} and V_{d} / a^{2}. Then, from the relationship t_{t} $=t_{c}\left(V_{t} / V_{c}\right)$ we can calculate $t_{t}=26.433 \mathrm{~min}$, the time for the top 3 cm to burn.

The Burning Candle

The top 3 cm of the candle will burn in $\mathbf{2 6 . 4 3 3}$ minutes.
Here's how:
The volume of a right circular cone of height h is $\frac{1}{3} \pi r^{2} h$ where r is the radius of the base. Since it is a right circular cone the ratio of the radius to height is a constant for any truncated parts of the cone. Let us define a "burn rate" constant a that relates the height of a full right circular cone to the number of minutes it burns.

$$
h^{3}=m a
$$

where m is the number of minutes the candle of height h burns, and a is a lumped constant that accounts for the volume, burn rate and the ratio of the base radius to height.

Now, let h be height of the untruncated cone. $h-45$ is the height of the part that is cut off from the given candle. So the remaining volume burns in 540 minutes. This gives us

$$
\begin{equation*}
h^{3}-(h-45)^{3}=540 a \tag{1}
\end{equation*}
$$

Next, the bottom 3 cm of the candle takes 20 minutes longer than the top 3 cm . Volume of the top 3 cm is $(h-42)^{3}-$ $(h-45)^{3}$, and volume of the bottom 3 cm is $h^{3}-(h-3)^{3}$. From this we get

$$
\begin{equation*}
h^{3}-(h-3)^{3}-(h-42)^{3}+(h-45)^{3}=20 a \tag{2}
\end{equation*}
$$

Dividing eqns (2) by (1), expanding and simplifying we get

$$
\begin{gathered}
\frac{84 h-1890}{h^{2}-45 h+675}=\frac{5}{9} \\
5 h^{2}-2313 h+51705=0 \\
h=172.5756 \mathrm{~cm} .
\end{gathered}
$$

and from eqn. (1)

$$
a=\frac{h^{3}-(h-45)^{3}}{540}=5672.85
$$

Time it takes for the top 3 cm of the candle to burn is

$$
\frac{(h-42)^{3}-(h-45)^{3}}{a}=26.433 \text { minutes }
$$

