NOVEL NUMERICAL TECHNIQUES FOR PROBLEMS IN ENGINEERING SCIENCE

Francesco Fedele

(to the memory of my father 1942-2002)

PHYLOSOPHY OF THINKING

PUSH ANALYTICS AS MUCH AS YOU CAN AND THEN USE NUMERICS

$$\Phi_{m}(r,\theta,\phi) = \sum \exp(im\theta) P_{n}^{m}(\phi) \left(\frac{\partial f}{\partial r} \right)^{I_{n+1/2}(\sqrt{-k_{m}/D_{m}}r)} - \frac{\beta/D_{m}}{k_{x}/D_{x}-k_{m}/D_{m}} \left(\frac{\partial f}{\partial \phi} \right)^{I_{n+1/2}(\sqrt{-k_{x}/D_{x}}r)} \sqrt{r} \right)$$
$$\left(\frac{\partial f}{\partial r} \right)_{i-1} \cong \frac{-3u_{i-1} + 4u_{i} - u_{i+1}}{2\Delta r} \qquad \left(\frac{\partial f}{\partial \phi} \right)_{i} \cong \frac{u_{i+1} - u_{i-1}}{2\Delta \phi}$$

COLLOCATION METHODS diffusion-advection problems

diffusion-advection problems

ADJOINT METHODS

Optical tomography

GALERKIN METHODS

Hydrodynamics stability of pipe flows

BOUNDARY ELEMENT METHODS

Photon migration equations

A SINGLE-DEGREE-OF -FREEDOM COLLOCATION SOLUTION TO THE TRANSPORT EQUATION

(LOCOM LOcalized COllocation Method)

1D ADVECTION-DIFFUSION EQUATION

$$\begin{cases} \mathcal{L}(u) = 0 & u_0(x) \in L_2[0, l] \\ u(x, t = 0) = u_0(x) & u_0(x) \in L_2[0, l] \\ u(0, t) = 0 & u(l, t) = 0 \end{cases}$$

$$\mathcal{L} = \frac{\partial}{\partial t} + c \frac{\partial}{\partial x} - D \frac{\partial^2}{\partial x^2}$$

Advective-diffusive operator

- u(x,t) concentration at location x at the time t
- -*c* velocity field
- -D diffusion coefficient

HERMITE COLLOCATION

Collocation points

 $\hat{u}(x) \cong \mathcal{H}_{0,i-1}(x)u_{i-1} + \mathcal{H}_{1,i}(x)u_i +$ $\hat{u}(x) \cong \mathcal{H}_{0i}(x)u_i + \mathcal{H}_{1i+1}(x)u_{i+1} +$ $+\frac{\Delta x}{2}\overline{\mathcal{H}}_{0,i-1}(x)\left(\frac{\partial u}{\partial x}\right)_{i-1} + \frac{\Delta x}{2}\overline{\mathcal{H}}_{1,i}(x)\left(\frac{\partial u}{\partial x}\right)_{i-1} + \frac{\Delta x}{2}\overline{\mathcal{H}}_{0,i}(x)\left(\frac{\partial u}{\partial x}\right)_{i} + \frac{\Delta x}{2}\overline{\mathcal{H}}_{1,i+1}(x)\left(\frac{\partial u}{\partial x}\right)_{i+1}$ $u_{i-1}, \left(\frac{\partial u}{\partial x}\right)_i$ $u_i, \left(\frac{\partial u}{\partial x}\right)_i$ $u_{i+1}, \ \left(\frac{\partial u}{\partial x}\right)_{i+1}$ \bar{x}_1 \bar{x}_2 $\overline{x_4}$ $\overline{x_3}$ X_i X_{i+1} X_{i-1} $\left(\frac{\partial u}{\partial x}\right)_{i=1} \cong \frac{-3u_{i-1} + 4u_i - u_{i+1}}{2\Lambda x} \qquad \left(\frac{\partial u}{\partial x}\right) \cong \frac{u_{i+1} - u_{i-1}}{2\Lambda x}$ $\left(\frac{\partial u}{\partial x}\right)_{i=1} \cong \frac{u_{i-1} - 4u_i + 3u_{i+1}}{2\Lambda x}$

WEIGHTED STRATEGY

Definition of the semi-discrete operator at the generic node

 $[\]beta$ up-wind parameter

SEMI-DISCRETE SPATIAL APPROXIMATION

By imposing the vanishing of the discrete operator at each node the following ODE system is achieved

$$a_{1}\frac{du_{i-1}}{dt} + a_{2}\frac{du_{i}}{dt} + a_{3}\frac{du_{i+1}}{dt} + b_{1}u_{i-1} + b_{2}u_{i} + b_{3}u_{i+1} = 0 \quad \forall i = 1, 2, ..., N_{X}$$

1D SIMULATIONS

LOCOM from the left side CN in time, full implicit in time, with up-winding

FEM from the left side CN in time, full implicit in time, with up-winding

Finite-difference No Upstream Weighting

Translating Tower Finite-difference Method

Translating Tower LOCOM

Rotating Gauss Hill

ACCURACY OF A NUMERICAL SCHEME

Order of convergence in sup-norm

Valid for initial smooth conditions

for sharp front initial condition

higher order schemes give "oscillatory behavior"

lower order schemes (up-wind) "may work better"

WHY ???

IMPULSE RESPONSE - SOLUTION

Analytical solution for initial condition $u_n(t=0) = \delta_{0,n} \quad \forall n \in \mathbb{Z}$

$$a_{1}\frac{du_{i-1}}{dt} + a_{2}\frac{du_{i}}{dt} + a_{3}\frac{du_{i+1}}{dt} + b_{1}u_{i-1} + b_{2}u_{i} + b_{3}u_{i+1} = 0 \quad \forall i = 1, 2, \dots, N_{X}$$

If G analytic
$$\square \longrightarrow u_n(t) = \frac{1}{2\pi i} \oint_{\Gamma} G(z,t) z^{-n} dz$$

$$G(z,t) = \exp\left[-\frac{b_1 z^2 + b_2 z + b_3}{a_1 z^2 + a_2 z + a_3}t\right]$$

IMPULSE RESPONSE - GROUP VELOCITY

$$u_n(t) = \frac{1}{\pi} \int_0^{\pi} e^{-R(\omega)t} \cos[P(\omega)t - n\omega] d\omega$$

IMPULSE RESPONSE - FEM

Partial up-wind

IMPULSE RESPONSE - LOCOM

ADJOINT METHODS

FOR FLUORESCENCE TOMOGRAPHY

$$\frac{d^2u}{dx^2} + k(x)u = f(x) \qquad u(0) = 0, \quad u(1) = 0$$

$$k(x) = \sum_{n=1}^{N} K_{n} \psi_{n}(x) \qquad \{K_{n}\}_{n=1,\dots,N}$$

$$u(x_j) = \hat{u}_j, \quad j = 1,...J$$
 J Measurements

find
$$\{\hat{K}_n\}$$
 such that $\min_{\{K_n\}} \sum_{j=1}^J [u(x_j) - \hat{u}_j]^2$

$$2\sum_{j=1}^{J} \left[u(x_j) - \hat{u}_j \right] \frac{\delta u(x_j)}{\delta K_n} = 0$$

$$\underbrace{\frac{\delta u(x_j)}{\delta K_n}}_{k_n} \underbrace{\frac{d^2 u}{dx^2} + ku = f(x)}_{k_n} u(0) = 0, \quad u(1) = 0$$

 $k \to k + \delta k$ $u \to u + \delta u$ $\delta k = \delta K_n \psi_n(x)$

$$\frac{d^{2}u}{dx^{2}} + \frac{d^{2}\delta u}{dx^{2}} + (k + \delta k)(u + \delta u) = f(x) \qquad u(0) + \delta u(0) = 0, \quad u(1) + \delta u(1) = 0$$

Perturbation equation

$$\frac{d^2 \delta u}{dx^2} + k \delta u = -\delta k u(x) \qquad \delta u(0) = 0, \ \delta u(1) = 0$$

Perturbation equation

$$\frac{d^2 \delta u}{dx^2} + k \delta u = -\delta K_n \psi_n(x) u(x) \qquad \delta u(0) = 0, \ \delta u(1) = 0$$
Green's function
$$\frac{d^2 G}{dx^2} + k G = \delta(x - x_j) \qquad G(0) = 0, \ G(1) = 0$$

$$\int_0^1 G \left(\frac{d^2 \delta u}{dx^2} + k \delta u \right) dx = -\delta K_n \int_0^1 G \psi_n(x) u(x) dx$$

$$\int_0^1 \left(\frac{d^2 G}{dx^2} + k G \right) \delta u + \left[\frac{d \delta u}{dx} G - \frac{d G}{dx} \delta u \right]_0^1 = -\delta K_n \int_0^1 G \psi_n(x) u(x) dx$$

$$\delta u(x_j) = -\delta K_n \int_0^1 G(x - x_j) \psi_n(x) u(x) dx$$

Direct approach : N computations

Adjoint method: J computations

FREQUENCY-DOMAIN PHOTON MIGRATION PDE's

THE GREEN MATRIX

$$\underline{\partial \Phi}(\underline{\mathbf{x}}_{det}) = \int_{\Omega} \underline{\underline{\Psi}}^{t}(\underline{\mathbf{x}}; \underline{\mathbf{x}}_{det}) \left(\underbrace{\underline{\nabla}}^{t} \left(\frac{\partial \underline{\mathbf{d}}}{\partial p} \partial p \underbrace{\underline{\nabla}} \underline{\Phi} \right) - \frac{\partial \underline{\mathbf{k}}}{\partial p} \partial p \underbrace{\underline{\Phi}} \right) d\Omega + \int_{\partial\Omega} \underline{\underline{\Psi}}^{t}(\underline{\mathbf{x}}; \underline{\mathbf{x}}_{det}) \left(-\frac{\partial \underline{\underline{\mathbf{D}}}}{\partial p} \partial p \frac{\partial \underline{\Phi}}{\partial n} - \frac{\partial \underline{\underline{\mathbf{r}}}}{\partial p} \partial p \underbrace{\underline{\Phi}} \right) dS$$

Sample Results: small homogeneous domain (405 nodes, 1536 elements, 1 source, 50 detectors)

Sample Results: large (breast-shaped) homogeneous domain (12657 nodes, 65509 elements, 1 source, 129 detectors)

REVISITING THE STABILITY OF

PULSATILE PIPE FLOW

Womersley* solution for pulsatile pipe flow

- The flow is linearly stable for axisymmetric perturbations (Tozzi & von Kerczek, 1986)
- Slightly more stable than Poiseiulle flow
- Presence of inflection rings occur during an oscillation cycle for "sufficiently strong" flow pulsation in relation to the mean flow

* Womersley J.R., Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known. J. Physiol., 127 (1955), pp. 553-563.

Reynolds pipe flow experiment

The Orr-Sommerfeld Equation

Linear stability analysis; axisymmetric perturbations

$$u_r = u \qquad u_{\theta} = 0 \qquad u_z = W + w$$

 $u = -\frac{\psi}{r}i\alpha \exp(i\alpha z) \qquad w = \frac{1}{r}\frac{\partial\psi}{\partial r}\exp(i\alpha z) \qquad \overset{\mathbf{u}_{\mathbf{r}}}{\checkmark} \underbrace{\mathbf{u}_{\mathbf{\theta}}}{\checkmark}$

Stokes Stream function

Result: Orr-Sommerfeld Equation...

$$\frac{\partial (L\psi)}{\partial t} - Wi\alpha^{3}\psi + i\alpha(-\psi LW + WL\psi) = \operatorname{Re}^{-1}L^{2}\psi$$

$$\frac{\psi}{r} < \infty \qquad \frac{1}{r} \frac{\partial \psi}{\partial r} < \infty \qquad as \qquad r \to 0^+$$

Long-wave Orr-Sommerfeld basis

0.3

Longwave limit of the Orr Sommerfeld equation:

$$\frac{\partial \left(\widetilde{L}\psi\right)}{\partial t} = \operatorname{Re}^{-1}\widetilde{L}^{2}\psi$$

$$\widetilde{\mathbf{L}}\boldsymbol{\psi} = \frac{\partial^2 \boldsymbol{\psi}}{\partial r^2} - \frac{1}{r} \frac{\partial \boldsymbol{\psi}}{\partial r}$$

Analytical solution in longwave limit

0.9

1

0.25 Orthogonal with respect to the Scalar product φ, 0.2 $\langle f,g \rangle = \int_{0}^{1} \frac{\partial f}{\partial r} \frac{\partial g}{\partial r} \frac{dr}{r}$ ϕ_2 0.15 φ₂ -dr-0.1 0.05 Non orthogonal with respect to $\langle f,g\rangle = \int_{\hat{n}}^{1} fg \, dr$ -0.05 -0.1└─ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Convergence and accuracy

 $s_n(r) = r^2 (1-r^2)^2 T_{2n-2}(r)$

Transient energy growth

Initial conditions
Set of non orthogonal eigenmodes
$$\langle \phi_n, \phi_m \rangle = \int_0^1 \phi_n \phi_m \, dr \neq \delta_{nm}$$

 $E(r,t) = \int_0^1 u^* u \, dr = \sum_n^\infty a_n^* a_m^* \langle \phi_n(r) \phi_m(r) \rangle e^{-(\lambda_n + \lambda_m)t} \neq \sum_{n,m}^\infty |a_n|^2 e^{-2\lambda_n t}$

Optimal Perturbations : Maximum Energy Growth

Wo=10 Re=3500 G_{max} =1.2

Wo=30 Re=3500 G_{max}=2.6

Time evolution optimal perturbation

FREE-STREAM TURBULENCE AND STREAK BREAKDOWN

A BOUNDARY ELEMENT METHOD

FOR FLUORESCENCE TOMOGRAPHY

FREQUENCY-DOMAIN PHOTON MIGRATION PDE's

$$-\nabla \bullet (D_x \nabla \Phi_x) + k_x \Phi_x = S_x$$

$$-\nabla \bullet (D_m \nabla \Phi_m) + k_m \Phi_m = \beta \Phi_x$$

$$\begin{cases} D_x \frac{\partial \Phi_x}{\partial n} + r_x \Phi_x = 0 \\ & on \quad \partial \Omega \\ D_m \frac{\partial \Phi_m}{\partial n} + r_m \Phi_m = 0 \end{cases}$$

GENERALIZED FOURIER EXPANSION IN SPHERICAL COORDINATES

$$-\nabla \bullet (D_x \nabla \Phi_x) + k_x \Phi_x = S_x$$
$$-\nabla \bullet (D_m \nabla \Phi_m) + k_m \Phi_m = \beta \Phi_x$$

$$\Phi_{x}(r,\theta,\phi) = \sum A_{nm} \exp(im\theta) P_{n}^{m}(\phi) \frac{J_{n+1/2}(\sqrt{-k_{x}}/D_{x}r)}{\sqrt{r}}$$

$$\Phi_m(r,\theta,\phi) = \sum \exp(im\theta) P_n^m(\phi) \left[B_{nm} \frac{J_{n+1/2}(\sqrt{-k_m/D_m}r)}{\sqrt{r}} - \frac{\beta/D_m}{k_x/D_x - k_m/D_m} A_{nm} \frac{J_{n+1/2}(\sqrt{-k_x/D_x}r)}{\sqrt{r}} \right]$$

GREEN'S FUNCTION AND THE FUNDAMENTAL SOLUTION FOR SELF-ADJOINT OPERATORS

High diffusion

High convection

GOVERNING EQUATIONS matrix formulation of coupled complex equations

$$\begin{aligned}
\begin{bmatrix}
-\underline{\nabla}^{t} \left(\underline{\mathbf{d}} \, \underline{\nabla} \, \underline{\mathbf{\Phi}}\right) + \underline{\mathbf{k}} \, \underline{\mathbf{\Phi}} = \underline{\mathbf{S}} \, \mathbf{on} \quad \Omega \\
\underline{\mathbf{D}} = \frac{\partial \underline{\mathbf{\Phi}}}{\partial n} + \underline{\mathbf{r}} \, \underline{\mathbf{\Phi}} = \underline{\mathbf{0}} \, \mathbf{on} \quad \partial \Omega \\
\underline{\mathbf{D}} = \frac{\partial \underline{\mathbf{\Phi}}}{\partial n} + \underline{\mathbf{r}} \, \underline{\mathbf{\Phi}} = \underline{\mathbf{0}} \, \mathbf{on} \quad \partial \Omega \\
\end{bmatrix} \\
\underbrace{\mathbf{\nabla}}_{z} = \begin{bmatrix} \nabla & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \nabla \end{bmatrix} \quad \underline{\mathbf{d}} = \begin{bmatrix} D_{x} \underline{\mathbf{I}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & D_{m} \underline{\mathbf{I}} \end{bmatrix}; \quad \underline{\mathbf{D}} = \begin{bmatrix} D_{x} & 0 \\ 0 & D_{m} \end{bmatrix}; \quad \underline{\mathbf{k}} = \begin{bmatrix} k_{x} & 0 \\ -\beta & k_{m} \end{bmatrix}; \quad \underline{\mathbf{r}} = \begin{bmatrix} r_{x} & 0 \\ 0 & r_{m} \end{bmatrix}; \\
\underbrace{\mathbf{\Phi}} = \begin{bmatrix} \Phi_{x} \\ \Phi_{m} \end{bmatrix}; \quad \underline{\mathbf{S}} = \begin{bmatrix} S_{x} \\ 0 \end{bmatrix}
\end{aligned}$$

BOUNDARY ELEMENT METHOD FOR DIFFUSION-REACTION SYSTEMS

Multiply by an arbitrary matrix $\underline{\Psi}^{t}$

$$\left| \int_{\Omega} \underline{\underline{\Psi}}^{t} \left(-\underline{\underline{\nabla}}^{t} \left(\underline{\underline{\nabla}} \underline{\underline{\Phi}} \right) + \underline{\underline{d}}^{-1} \underline{\underline{k}} \underline{\underline{\Phi}} \right) d\Omega = \int_{\Omega} \underline{\underline{\Psi}}^{t} \underline{\underline{d}}^{-1} \underline{\underline{S}} d\Omega \right|$$

Term involving volume integral of the unknown $\underline{\Phi}$

"Green matrix"

$$-\underline{\nabla}^{t}\left(\underline{\nabla}\underline{\Psi}\right) + \left(\underline{\mathbf{d}}^{-1}\underline{\mathbf{k}}\right)^{t}\underline{\Psi} + \underline{\mathbf{\delta}} = 0$$

THE GREEN MATRIX

Choose $\underline{\Psi}$ to be the "*Green matrix*" by putting a Dirac source $\underline{\mathbf{x}}_0$ at the boundary points

$$\frac{1}{2}\underline{\Phi}(\underline{x}_0) + \int_{\partial\Omega} \left(-\underline{\Psi}^t \frac{\partial \underline{\Phi}}{\partial n} + \frac{\partial \underline{\Psi}}{\partial n} \underline{\Phi} \right) dS = \int_{\Omega} \underline{\Psi}^t \underline{\mathbf{d}}^{-1} \underline{S} \, d\Omega$$

$$\underline{\Psi}(\underline{x},\underline{x}_{0}) = \begin{bmatrix} \frac{\exp(-i\lambda_{1}|\underline{x}-\underline{x}_{0}|)}{4\pi|\underline{x}-\underline{x}_{0}|} & 0\\ \alpha \left(\frac{\exp(-i\lambda_{2}|\underline{x}-\underline{x}_{0}|)}{4\pi|\underline{x}-\underline{x}_{0}|} - \frac{\exp(-i\lambda_{1}|\underline{x}-\underline{x}_{0}|)}{4\pi|\underline{x}-\underline{x}_{0}|} \right) & \frac{\exp(-i\lambda_{2}|\underline{x}-\underline{x}_{0}|)}{4\pi|\underline{x}-\underline{x}_{0}|} \end{bmatrix}$$

BOUNDARY ELEMENT MESH

SOME APPLICATIONS

BEM PHIX on outer surface

Cut Away Outer Mesh and Internal Sphere

Acknowledgments

Jeffrey Laible, doc. Pinder, Maggie Eppstein Darren Hitt, R.D. Prabhu Igor Najfeld, Jianke Yang, Richard Foote Metin, Edward Gail Hania, Laurel, Vannette

My family