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Introduction The Theory of Quasi-Determinism for a Linear High

The theory of quasi-determinism for the mechanics of linedrrest
random waves was obtained by Boccotti in the eighties. The firstThe theory of quasi-determinism by Boccofft6]), for linear
formulation of the theory(Boccotti [1,2]) gives necessary and three-dimensional wave groufssither for high wave height or for
sufficient conditions for the occurrence of a large wave crest atigh wave crestmay be used in place of the periodic waves: It
certain location in space and in time. Boccotti then extended trf8ables us to predict, in space—time domain, the free surface dis-
first formulation [3-5] to deal with the highest crest-to-troughp acement and the velocity potential when a very high wave oc-

wave height. He showed that both the highest wave height and u?gsédngldthoerofrgr :/nv:\);ets)ein?gg::eti?]gel\}\?tehr Sf?r[]g\t/j:/eess in an undis-

highest wave crest are different occurrences of the space—timg, this paper we shall consider only the first formulation, par-
evolution of a well defined wave group. Thus the two formulagcularized for long-crested random waves. In detail we have that,
tions are congruent to each otHé. if a local wave maximum of given elevatidd¢ occurs at a time
The theory was verified in the nineties, both for waves in any at a fixed pointx,, and if H./oc—~ (o being the standard
undisturbed field and for waves interacting with structures, beviation of the free surface displacementith probability ap-
means of some small-scale field experiméBisccotti[7,8], Boc-  Proaching 1 the surface displacement at poipt X at time t,

cotti et al.,[9,10]). +T is asymptotically equal to the deterministic form
The quasi-determinism was obtained with a different procedure - W(X,TiX,) .
by Phillips et al.[11,17], which obtained also a field verification m(Xo+ Xt +T)= He if Holo—o (1)

v (0,0:x
off the Atlantic coast of the USA. ( o)

A rigorous analysis of the statistical properties of a Gaussiat Us note that the theory is exact td¢ /o — o, that is when the
field in the neighborhood of a local maximum was given in th&est height is very large with respect to the mean crest height.
early seventies by Lindgreii3,14 The space—time covariande(X,T;X,) is defined as

The first formulation of the theory was also given by Tromans W (X, T Xo) =(7(Xo , 1) (X + X,t+T)) (2
et al. ([15]), which renamed the theory as “New wave.”

In this paper we consider unidirectional random watesg-
crested wavesn deep water. The results given here can be easily 1 f

where the time average operato) is defined as

ot ©)

extended to consider three-dimensional waves on finite depth, but (f(t))=lim — .

this will not be discussed here. Following the first formulation of —
the theory of quasi-determinism we derive the analytical expreBecause the absolute maximum of the autocovariance function
sions of the nonlinear free surface displacemeptnd velocity ¥(T) is atT=0, the local wave maximum of given elevatibiy

potential ¢, when a very high crest occurs at a fixed time antf tk;_tla hti)gr:ﬁs_t ntw_aximdum ofr(i;s w)?!eo. We Eavetﬁlso a syrrémetrip
location. In particular, the nonlinear surface displacemgren- profile both in time domairffor X=0) and in the space domain

ables us to represents, in space—time domain, the evolution O(ffcéir'r:;e_v()e)lbcity potential of the deterministic wave gro(, at
nonlinear wave group. The nonlinear dynamics of this group b?)int X+ X, at depthz, is given by '
then investigated.

Finally, the second-order probability of exceeding the largest E(x X2t +T)= D(X,2,T;X,) )
crest height is obtained. For the case of JONSWAP spectra, it is o7 /o v(0,0%,) ©
shown that the new theoretical crest height distribution agregs . - o space—time covariandéX,z T:x,) is defined as
very well with the numerical distribution from Monte Carlo simu- e
lations of second-order random waves. D(X,2,T;%) =(1(Xo , 1) p(Xo+ X, 2,1 +T)) 5)
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when an exceptional crest height of given elevatibthoccurs at A local maximum is attained at time=t,, (that isT=0) and at
time t, at fixed pointx,, may be rewritten as a function of thepointx=x, (that isX=0) if the following conditions are satisfied
frequency spectruri(w):

H ﬂx:o::o:h
—_ _He [~ 7(X,T) such that (97/3X)|x=07=0=0 . (12)
Yo+ X,to+T)= — | E(w)cogkX—wT)d 6 (X, " :
7(Xo ot T)=—2 fo (w)cog oT)do  (6) (%7 IX3)|x=07-0<0
where By applying a perturbation approach we expand the assigned
. heighth as
o’= JO E(w)dw ) h=ho+h;+h,+ ... (13)

herehg, hy, h,,... areunknown parameters to be determined.
e assume thatyx o, hyxo?,..., hyco" L, From the general
solution given by Eq(9), conditions(12) give three equations as

As function of the frequency spectrum, the velocity potential at
fixed point ,+ X,z), when a very large crest occurs at poigt

is given by: follows:
DX+ X, 2,0+ T) = gH == (w)w-lexp(kz)sir(kx N
o Jo E a, cosd,+ — 2 E anan (ky+km)cog 9+ 9p)
n 1m=1

—oT)do (8)
. . 2 _|kn_km|cos('an_19m)]

where the wave numbés, in deep water, is equal t©“/g. From

Eq. (8) one can derive the linear wave kinematics of wave group =hg+h;+hy+ ... (14)

as well as the first Stokes order pressure fluctuatipp(which is
defined asAp,= —pd ¢, /dt).

N

N N
1
=2, ankysindnt 7 3, X acan] — (Kot k) Sin( O+ O
n= =1 m=1

Nonlinear Space-Time Evolution of a High Wave Crest + K= K| (K= Ky) SIN( 9 — 917) ] =0 (15)
According to the theory of wind-generated waves, the free sur- y NN

face displacement to the first-order in a Stokes expansion is_: )

random Gaussian process. The water surface is then modeled asza} ankn CosTy + 7 nEl mEl An@nl — (Ko +km) - cOL D+ D)

sum of a very large number of periodic components, with phase

angles randomly and uniformly distributed between 0 andThe  + |Kn— Kp| (Ky—km)? cog 9, — 9,,,) ]<0 (16)

wave amplitudes follow the Rayleigh distribution.

To the second-order in a Stokes expansion, the free surf
displacement and the velocity potential, for long-crested rando
deep-water waves, are respectively, given(Bparma and Dean |
[16], Tayfun[17]):

where 9,=k.Xo— w,tg+e,. Because we assunsgxo, a hier-
8acr%hy of perturbatlon equations to the first and to the second-order

a Stokes expansion may be obtained. All the terms intthe
expansion higher than the second-order vanish.

N i) Pertu_rbation Equ_ations to Q). To the first-order, Egs.
20 = 71+ 7= 2 a, cosy, + 2 2 a,a.(k (14—(16) give, respectl\r/ely,
N
K COS i+ )~ k= KOS U= Y] (9) 2, 2 cos9,=hg
N N
B(X,2,0)= 1+ $=9 >, ayw, ' expkqz)siny, O(0){ 2 ankysind,=0 (17)
=1 n=1
N N n N
. ak? cosd,>0
=2, 2 ananon et (kn—ky)Z]Sin Y= ) kn; R
n=1 m=n
(10) Note that the second and third Equations(it¥) are satisfied
whatever are the values of the coefficiefds} .« if one imposes
where that all the harmonic components are in phase, i.e.,
Pa=KeX—wpt+e, (11) Y,=0Vn. (18)
and{a,}ncn, {entney coefficients to be specified. The first equation ir(17) then gives
In the following we shall derive sufficient and necessary con-
ditions such thaty(x,t) [see Eq.(9)] attains a local maximum at _2
point X=X, at time t=t,. By means of the theory of quasi- ho= &n (19)

determinism this maximum is the crest of its own wdsee also
Lindgren[13,14]). Thus the deterministic wave group solution tdther solutions could exist with some coefficierts# 0. In the
the second-order is derived. following we shall prove that conditio(L8) is necessary and suf-

The Deterministic Wave Group to the Second-Order in a ficient so that an absolute maximum is attainedkatx, andt
Stokes Expansion: The Free Surface DisplacementLet us — to- Moreover this is also a local maximum. _
assume that the free surface displacement has a local maximum From the quasi-determinism theory we know that if a very large
at pointx=x, and that this maximum occurs at tintet, . In crest heightH-=h, occurs at a fixed poimt=x, at time instant

order to obtain the deterministic free surface dlsplacemeﬁ 0 ;he free surface displacemeiitq. (6)] in discrete form is
7(X,T) at pointx,+X at time instant,+ T, we shall follow the 9/V€N BY

approach proposed by Fedele and Ar{ar@. Here,h is the crest N
amplitude ando the standard deviation of the free surface dis- ;l(x,-r)zz B, COSY, (20)
placement. n=1
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where Note that in the linear cadeg, is the highest amplitude that can be
attained for the assigned spectriiffw) or equivalently for the

3 :@E(w )dw (21) assigned harmonic componefgs. Thus atX=0, T=0 the local
N2 N maximum is also an absolute maximum. Equati@®—(25) are

and identical to the system of Eq§l7) if
Tn=KX—w,T. 22) 9= ,(X=0,T=0)=0 (26)

Note that the high wave group defined by Eg0) at (X=0,T and
=0) attains a local maximum since the first derivative in space

a,=a 27
vanishes and the second derivative is negative at that location, i.e., oo i )
N whered, is given by Eq.(21). Thus, the linear wave groug, is
_ ~ .~ identical to the first-order part of the nonlinear groypif the
(f777|/f7x)x:o,T:o=*nZ1 anky Sin g, =0 (23)  conditions (26) and (27) hold. Then the conditiony,=0Vn is
necessary and sufficient for the existence of an absolute maximum
N _ at X=0, T=0 which is also a local maximum. Equatid27)
(3% 19X%)x—g1-0=— z Ank? cosy, <0 (24) gives the amplitude of the harmonic coefficieasas a function
n=1 of the assigned frequency spectrum, that is
Moreover, since aX=0, T=0 we havey;,,=0Vn, this yields the ho
wave amplitude at that location, that is anng(wn)dwn. (28)
N
gl(xzo‘-r:o)zz 3,=hg. (25) i) The Second-Order Problem.To the second-order, Egs.
n=1 (14)—(16) give

~

IS N

[ (Ky+Kp)cog 0+ 9y) — | Kn— km|005( D= Om)1=hy

3
3

0(0'2) anam[_(kn'i'km)zsm(ﬁn'i'am)+|kn_km|(kn_km)5in(ﬁn_ﬁm)]ZO (29)

3
3

N
anam[_(kn+ km)3 COE{ ﬂn"— 1‘}m)"' |kn_ km| . (kn_ km)2 COS( ﬁn_ ﬂm)]<z ankﬁ COSﬁn
n=1

I
j=}
3

From the first-order problerfEgs. (17)], it has been shown that . _ Hc (" _
9;=0Vi, which implies that the last two conditions in EQ9) n(X,T)=n+mn, =7f E(w)cos/dw
are satisfied, while the first condition becomes the following form 7 Jo

HZ (= (~ -~ -
* 7ot f f E(w1)E(w2)[ (ky+kg)cog Ty + )
0Jo

1
h1=72 andml (Kot k) = [kn— K] (30)
n,m ~ ~
— [ky—kz| cog ¢y — ) ]dw, dw, (33)
By considering Eq(21), which definesa,,, we obtain, in continu- ~ The Deterministic Wave Group to the Second-Order in a
ous form Stokes Expansion: The Velocity Potential. The velocity poten-
tial of the linear wave grouf8) may be written in discrete form as
Hé © (o _ N ~
hl:mj J E(w1)E(wy)[(Kky+ky)— |k — K| Jdw,dw, d),(X,z,T):gnz1 Ano;, * exp(knz)sing, (34)
0oJo =
(31)

By considering the general second-order solution for the velocity
potential, given by Eq(10), we obtain the second-order velocity
Finally, we have that, if a very large crest height occurs, theotential of the wave group in continuous form as

second-order height may be written as: gHe = H2
¢(x,z,T)=¢.+¢..=?TC E(w)w*lexp(kz)sin@dmo—f
0

H2 o (o
h:Hc+4—Uc4f f E(w1)E(w,)[ (k1 +kz) — kg —k,|Jdw;dw, © (o
0.0 'fof E(w1)E(wy) w, exd (ky—kq)Z]
w1

+0(0?) (32)
XSiN(i)1= hp) dw,dw; (35)
ny ; H H J—
mgirr?. symbolo(o™") indicates terms which are of order greatetalculation of the Second-Order and ¢

In general, the second-order free surface displacement, when &et us consider the JONSWAP spectruidasselmann et al.
very high crest occurs at time instantat pointx,, is given by: [19]), which is defined as follows
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E(Wop) = ag?w, *Ex(W), (36) T=t 2T,

wherea is the Phillips parametew,=27/T, the peak frequency, V| WHe
and 0 /\A/\/—\,&
w—1)?2 XL
E.(w)=w Sexd — 1.25N4]exp[ In x; exr{ - (2—2) } 1 2
X2
(37) T=t, T,
is the nondimensional spectrutbeingw;= w;/w,).Typical val- EZE
ues of the spectrum parameters gge=3.3 andy,=0.08 (mean 0
JONSWAB. XL,
Furthermore, by  defining kj:kwj27r/Lp0, where -1 ?
Lo, [EgT;‘;/(Zw)] is the wavelength in deep water, the nondimen- T=t,
sional wave number ikw;wj2 and, thereforey; =k, 2mX/L, L A/H:
] ] (]
—27w;TIT,. 0
It follows that 1 XLy,
_ He [~ ~ '
(X, T)=— | Ea(w)cosydw T=t T
Ow Jo =i
L wHe
H% w? (= (=
oy f J Ea(W1)Ea(Wo)[ (WE+W3) o
4oy, 9 Jo Jo XL po
-1
X O Yy + ) — [Wi— W3] cos Yy — Prp) Jdws dw, T=t 42T,
(38) 1\ 1/H¢
5 _OHe 7 ~Lexp(2mk, 2/ in Jrdw °W
d(X,z,T)= 7 @p Ea(W)w™ " exp(27kyz/L o) - Sings YL,

2.5 0 25

w 0

H(Z: 0 (o

+ _4wpf f Ea(w1)Eq(Wp) W,
Ty 0 Jaw;

Fig. 1 The second-order space-time evolution of a wave
group in which a very large crest occurs at (X=0,T=t,)

- exf (kyo— kw1)2772/|—po]Sin(Tﬂl_Tﬂz)dWZdwl

where (39) group development: at this time the wave crest at pajmeaches
its maximum; finally the wave group has a decay stage.
> |7 o > a4 Second-order effects are evidemt,the space domajrat time
Ow= o Ea(w)dw=0*/(ag"w,") (40) t,, because the largest crest and trough amplitudes are equal,

) respectively, to 1.11 and 0.94 times the linear predictions. More-
Let us note that, from the second-order velocity poteri88), we  over the ratio between largest crest and trough amplitudes is equal
may easily derive the wave pressure and the wave kinematigs,1.87 for the linear group and to 2.22 for the second-order
exact to the second-order in a Stokes expanésee also Jensen group.

[20]). As an example, the second-order pressure fluctuation is

Ap=Ap,+Ap, , where the second-order componar,, is eas- The Second-Order Wave Crest Evolution in Time Domain

ily derived by the formula Figures 2-5 show a wave group the time domainFigure 2
— —\ 2 —\ 2 shows the wave group at poirg, where the largest crest occurs.
ADL = — ﬂ_} ﬁ_ﬁf’l (7_¢’I (41) Dotted line gives the linear prediction, which is computed by
PU==P51 7 2P| 3x 9z means of Eq.(6): we have the well known symmetric profile

(“New wave”), obtained also by Tromans et &[15]). In this
. case the linear largest trough amplitude is equaltotimes the
Applications largest crest amplitude, being* the narrow bandedness param-

(see Applications

The Wave Crest Evolution in Space Domain. Figure 1
shows the space—time evolution of the second-order free surface
displacement, when a very large crest height occurs at pgiat
time instantt,. In particular, the deep-water second-order free | !
surface displacement, computed by means of(88), is shownin
the space domajrat some fixed time instant. These graphs of the
water surface emphasize the existence of a well defined wave| o
group, which moves along theaxis, crossing the point, (where
X=0).

The space-time evolution of this nonlinear wave group is simi- | _;
lar to the linear dynamics of the group given by Boccdfté]). 15 1 05 o 05 , 15
Since the propagation speed for individual waves is greater than
the wave group celerity, each wave “runs along the envelope fro ] : : :
the tail where it is born to the head where it digBoccotti[6]). f,i}?lcﬁ aTCgr;elc:;Sg ocrrdeesrt “(?ggufsv_ OI#Egn s?)fli: m:zvse gi:,%uﬁhlg
In fact from Fig. 1, the wave group shows firstly a developmerfcond-order prediction  [Eq. (38)]. The dotted line gives linear
stage, during which the height of the largest cr@stthat fixed prediction [Eq. (6)], which is the “New wave” symmetric wave
instan} increases; therefore at tintg we have the apex of the profile.
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[ap/(pg)VH c

0
-1
-1 -0.5 0 0.5 1
Fig. 3 The time domain second-order wave pressure Ap at
point (x,,2/L,0=—0.05), when a very large crest height H: of

free surface displacement occurs at  (x,,7=0) (see Fig. 2). The
solid lines give the second-order perdiction. The dotted line
gives linear prediction.

and trough amplitudes is then 1.37 and 1.49, respectively. To the
second-orderjn the time domainthe ratio between crest and
trough amplitudes is equal to 1.67 for the mean JONSWAP spec-
trum and to 1.85 for the Pierson—Moskowitz spectrum.

The second-order wave profile(x,,t) (beingz=7.+7,) is
furthermore symmetric, because the compongnis symmetric.
The highest wave crest is in phase with the linear highest crest of

-

Figure 3 shows the second-order wave pressipeat point
(Xo,2=—0.09.0), when a very large surface crest occurs at
pointx, . As one can see from Fig. 3, second-order effects slightly
reduce the amplitude of the highest crest of the linear component
Ap .

Asymmetries in the Time Domain Wave Profile. By apply-
ing the first formulation of the quasi-determinism theory we may
obtain the free surface displacement in time domain at any fixed
pointx, + X, if a very large crest occurs at poixg. In Fig. 2 we

eter defined by Boccoti{[3,4]). The parameters* is defined as have seen the linear wave profile at poigt in time domain,

the absolute value of the quotient between the absolute minimuvhich is a symmetric profiléNew wave.

and the absolute maximum of the autocovariance function. It isAs discussed above the second-order wave profile is also sym-
equal to 0.73 for the mean JONSWAP spectrum and to 0.67 foinzetric, either in space domain far=0 or in time domain forX
Pierson—Moskowitz frequency spectrum. The ratio between cresp. Here we analyze the wave profiigT) at some points close

1| Ai/H

X/L =-0.10

1| A/H,

X/L =0.05

-1 -0.5 0 0.5 1

Fig. 4 The second-order time evolution of a wave group at
fixed points X/L,o, when a very large crest occurs at  (X=0,T
=0). The dotted lines show linear predictions, obtained from
Boccotti’'s quasi-determinism theory (first formulation ).

-1.5 -1

Fig. 5 The second-order time evolution of a wave group at
fixed points  X/L o (—0.20,—0.10,0,0.10,0.20) when a very large
crest occurs at (X=0,T=0)
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to x,. Figure 4 shows the wave profilg(T) at the locations
X/Lpo=(—0.10,-0.05,0). Note that, foX+0 the profile is not
symmetric: The trough depths beforkl(;) and after Hy,) the
highest crest are different, withlt;>H, (let us note that at
points havingX/L ,o>0 we haveHt;<H,, as one can see from
Fig. 5.

Thus, the asymmetry in the wave profile may be explained by
analyzing the space—time evolution of the wave groups: For ex-
ample, if we have a time record with a very high crest, with
Ht1>H+, (H11<Hyp), we have then probably recorded the
highest crest at a poinK<0 (X>0), before (after point x,
where the wave group reaches the apex of its development.

Finally, it is easy to verify that in deep water these asymmetries
are slightly modified by second-order nonlinearities: They may be
explained by the linear quasi-determinism theory, from @g.

The Asymptotic Form of the Second-Order Probability
of Exceedance of the Crest Height

Analytical models for the nonlinear wave crest distribution
have been proposed by many auth@se Tayfur{17], Tung and
Huang[21], Kriebel and Dawsorj22], Forristall [23], Prevosto
et al.[24], Arena and Fedelg25], Al-Humond et al[26], Tayfun
and Al-Humoud[27]).

Fedele and Arenfl8,28], based on the second-order crest am-
plitude given by Eq(32) derived an asymptotic distribution law
which is valid for finite-band spectra. They showed that the non-
linear crest may be rewritten as

HE

h=Hc+e— (42)

where
e e e

o= g1 f f Ea(wy) Ea(wWo)[(W] +w5) —[w] —w3|Jdw, dw,
OwJo Jo

(43)

beinge,=k,o the wave steepnes&(=2m/L ). The variance
of the second-order process is easily derived from(Bgand has
expression as

0'31=Ez (44)

where

Transactions of the ASME



(at some fixed time instanand in time domairiby analyzing the

0 1 2 3 4 5 wave profile and its asymmetries when a large crest ogcurs
Finally, the second-order probability of exceeding the largest

crest height has been obtained. For the case of JONSWAP spectra,

it has been shown that the new theoretical crest height distribution

agrees very well with the numerical distribution from Monte

Carlo simulations of the second-order random waves.
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