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Introduction

The theory of quasi-determinism for the mechanics of lin
random waves was obtained by Boccotti in the eighties. The
formulation of the theory~Boccotti @1,2#! gives necessary an
sufficient conditions for the occurrence of a large wave crest
certain location in space and in time. Boccotti then extended
first formulation @3–5# to deal with the highest crest-to-troug
wave height. He showed that both the highest wave height and
highest wave crest are different occurrences of the space–
evolution of a well defined wave group. Thus the two formu
tions are congruent to each other@6#.

The theory was verified in the nineties, both for waves in
undisturbed field and for waves interacting with structures,
means of some small-scale field experiments~Boccotti @7,8#, Boc-
cotti et al.,@9,10#!.

The quasi-determinism was obtained with a different proced
by Phillips et al.@11,12#, which obtained also a field verificatio
off the Atlantic coast of the USA.

A rigorous analysis of the statistical properties of a Gauss
field in the neighborhood of a local maximum was given in t
early seventies by Lindgren@13,14#.

The first formulation of the theory was also given by Troma
et al. ~@15#!, which renamed the theory as ‘‘New wave.’’

In this paper we consider unidirectional random waves~long-
crested waves! in deep water. The results given here can be ea
extended to consider three-dimensional waves on finite depth
this will not be discussed here. Following the first formulation
the theory of quasi-determinism we derive the analytical exp
sions of the nonlinear free surface displacementsh̄ and velocity
potential f̄, when a very high crest occurs at a fixed time a
location. In particular, the nonlinear surface displacementh̄ en-
ables us to represents, in space–time domain, the evolution
nonlinear wave group. The nonlinear dynamics of this group
then investigated.

Finally, the second-order probability of exceeding the larg
crest height is obtained. For the case of JONSWAP spectra,
shown that the new theoretical crest height distribution agr
very well with the numerical distribution from Monte Carlo simu
lations of second-order random waves.

Contributed by the OOAE Division for publication in the JOURNAL OF OFF-
SHOREMECHANICS ANDARCTIC ENGINEERING. Manuscript received November 6
2003; final revision, October 6, 2004. Review conducted by: J. Niedzwecki.
46 Õ Vol. 127, FEBRUARY 2005
Copyright © 2
ar
rst

t a
his
h
the

time
a-

an
by

ure

ian
e

ns

ily
but

of
es-

d

of a
is

st
it is
ees
-

The Theory of Quasi-Determinism for a Linear High
Crest

The theory of quasi-determinism by Boccotti~@6#!, for linear
three-dimensional wave groups~either for high wave height or for
high wave crest! may be used in place of the periodic waves:
enables us to predict, in space–time domain, the free surface
placement and the velocity potential when a very high wave
curs. The theory may be applied either for waves in an und
turbed field or for waves interacting with structures.

In this paper we shall consider only the first formulation, p
ticularized for long-crested random waves. In detail we have t
if a local wave maximum of given elevationHC occurs at a time
to at a fixed pointxo , and if HC /s→` ~s being the standard
deviation of the free surface displacement!, with probability ap-
proaching 1 the surface displacement at pointxo1X at time to
1T is asymptotically equal to the deterministic form

h̄ I~xo1X,to1T!5
C~X,T;xo!

C~0,0;xo!
HC if HC /s→` (1)

Let us note that the theory is exact forHC /s→`, that is when the
crest height is very large with respect to the mean crest heigh

The space–time covarianceC(X,T;xo) is defined as

C~X,T;xo![^h~xo ,t !h~xo1X,t1T!& (2)

where the time average operator^•& is defined as

^ f ~ t !&5 lim
t→`

1

t E0

t

f ~ t !dt (3)

Because the absolute maximum of the autocovariance func
c(T) is at T50, the local wave maximum of given elevationHC
is the highest maximum of its wave. We have also a symmetrich̄ I
profile both in time domain~for X50) and in the space domai
~for T50).

The velocity potential of the deterministic wave group~1!, at
point xo1X, at depthz, is given by

f̄ I~xo1X,z,to1T!5
F~X,z,T;xo!

C~0,0;xo!
HC (4)

where the space–time covarianceF(X,z,T;xo) is defined as

F~X,z,T;xo![^h~xo ,t !f~xo1X,z,t1T!& (5)

The Linear Deterministic Wave Group in an Undisturbed
Field. For long-crested waves in deep water, the free surf
displacement@see Eq.~1!# of the wave group at (xo1X,to1T),
Transactions of the ASME
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when an exceptional crest height of given elevationHC occurs at
time to at fixed pointxo , may be rewritten as a function of th
frequency spectrumE(v):

h̄ I~xo1X,to1T!5
HC

s2 E
0

`

E~v!cos~kX2vT!dv (6)

where

s25E
0

`

E~v!dv (7)

As function of the frequency spectrum, the velocity potential a
fixed point (xo1X,z), when a very large crest occurs at pointxo ,
is given by:

f̄ I~xo1X,z,to1T!5
gHC

s2 E
0

`

E~v!v21 exp~kz!sin~kX

2vT!dv (8)

where the wave numberk, in deep water, is equal tov2/g. From
Eq. ~8! one can derive the linear wave kinematics of wave gro
as well as the first Stokes order pressure fluctuationD p̄I ~which is
defined asD p̄I52r]f̄ I /]t).

Nonlinear Space–Time Evolution of a High Wave Crest
According to the theory of wind-generated waves, the free s

face displacement to the first-order in a Stokes expansion
random Gaussian process. The water surface is then modeled
sum of a very large number of periodic components, with ph
angles randomly and uniformly distributed between 0 and 2p. The
wave amplitudes follow the Rayleigh distribution.

To the second-order in a Stokes expansion, the free sur
displacement and the velocity potential, for long-crested rand
deep-water waves, are respectively, given by~Sharma and Dean
@16#, Tayfun @17#!:

h~x,t !5h11h25(
n51

N

an coscn1
1

4 (
n51

N

(
m51

N

anam@~kn

1km!cos~cn1cm!2ukn2kmucos~cn2cm!# (9)

f~x,z,t !5f11f25g(
n51

N

anvn
21 exp~knz!sincn

2(
n51

N

(
m5n

N

anamvm exp@~km2kn!z#sin~cm2cn!

(10)

where

cn5knx2vnt1«n (11)

and$an%nP: , $«n%nP: coefficients to be specified.
In the following we shall derive sufficient and necessary co

ditions such thath(x,t) @see Eq.~9!# attains a local maximum a
point x5xo at time t5to . By means of the theory of quas
determinism this maximum is the crest of its own wave~see also
Lindgren @13,14#!. Thus the deterministic wave group solution
the second-order is derived.

The Deterministic Wave Group to the Second-Order in a
Stokes Expansion: The Free Surface Displacement.Let us
assume that the free surface displacement has a local maximh
at point x5xo and that this maximum occurs at timet5to . In
order to obtain the deterministic free surface displacem
h̄(X,T) at pointxo1X at time instantto1T, we shall follow the
approach proposed by Fedele and Arena@18#. Here,h is the crest
amplitude ands the standard deviation of the free surface d
placement.
Journal of Offshore Mechanics and Arctic Engineering
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A local maximum is attained at timet5to ~that isT50) and at
point x5xo ~that isX50) if the following conditions are satisfied

h̄~X,T! such thatH h̄uX50,T505h
~]h̄/]X!uX50,T5050

~]2h̄/]X2!uX50,T50,0
. (12)

By applying a perturbation approach we expand the assig
heighth as

h5h01h11h21 . . . (13)

whereh0 , h1 , h2 ,... areunknown parameters to be determine
We assume thath0}s, h1}s2,..., hn}sn11. From the general
solution given by Eq.~9!, conditions~12! give three equations a
follows:

(
n51

N

an cosqn1
1

4 (
n51

N

(
m51

N

anam@~kn1km!cos~qn1qm!

2ukn2kmucos~qn2qm!#

5h01h11h21 . . . (14)

2(
n51

N

ankn sinqn1
1

4 (
n51

N

(
m51

N

anam@2~kn1km!2
•sin~qn1qm!

1ukn2kmu~kn2km!sin~qn2qm!#50 (15)

2(
n51

N

ankn
2 cosqn1

1

4 (
n51

N

(
m51

N

anam@2~kn1km!3
•cos~qn1qm!

1ukn2kmu~kn2km!2 cos~qn2qm!#,0 (16)

whereqn5knx02vnt01«n . Because we assumean}s, a hier-
archy of perturbation equations to the first and to the second-o
in a Stokes expansion may be obtained. All the terms in thh
expansion higher than the second-order vanish.

i) Perturbation Equations to O(s). To the first-order, Eqs.
~14!–~16! give, respectively,

O~s!5
(
n51

N

an cosqn5h0

(
n51

N

ankn sinqn50

(
n51

N

ankn
2 cosqn.0

(17)

Note that the second and third Equations in~17! are satisfied
whatever are the values of the coefficients$an%nP: if one imposes
that all the harmonic components are in phase, i.e.,

qn50;n. (18)

The first equation in~17! then gives

h05(
n

an . (19)

Other solutions could exist with some coefficientsqnÞ0. In the
following we shall prove that condition~18! is necessary and suf
ficient so that an absolute maximum is attained atx5xo and t
5to . Moreover this is also a local maximum.

From the quasi-determinism theory we know that if a very lar
crest heightHC5h0 occurs at a fixed pointx5xo at time instant
t5to , the free surface displacement@Eq. ~6!# in discrete form is
given by

h̄ I~X,T!5(
n51

N

ãn cosc̃n (20)
FEBRUARY 2005, Vol. 127 Õ 47
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where

ãn5
h0

s2 E~vn!dvn (21)

and

c̃n5knX2vnT. (22)

Note that the high wave group defined by Eq.~20! at (X50,T
50) attains a local maximum since the first derivative in spa
vanishes and the second derivative is negative at that location

~]h̄ I /]X!X50,T5052(
n51

N

ãnkn sinc̃n50 (23)

~]2h̄ I /]X2!X50,T5052(
n51

N

ãnkn
2 cosc̃n,0 (24)

Moreover, since atX50, T50 we havec̃n50;n, this yields the
wave amplitude at that location, that is

h̄ I~X50,T50!5(
n51

N

ãn5h0 . (25)
t

r

t

e

48 Õ Vol. 127, FEBRUARY 2005
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Note that in the linear caseh0 is the highest amplitude that can b
attained for the assigned spectrumE(v) or equivalently for the
assigned harmonic componentsãn . Thus atX50, T50 the local
maximum is also an absolute maximum. Equations~23!–~25! are
identical to the system of Eqs.~17! if

qn5c̃n~X50, T50!50 (26)

and

an5ãn (27)

whereãn is given by Eq.~21!. Thus, the linear wave grouph̄ I is
identical to the first-order part of the nonlinear grouph̄ if the
conditions ~26! and ~27! hold. Then the conditionqn50;n is
necessary and sufficient for the existence of an absolute maxim
at X50, T50 which is also a local maximum. Equation~27!
gives the amplitude of the harmonic coefficientsan as a function
of the assigned frequency spectrum, that is

an5
h0

s2 E~vn!dvn . (28)

ii) The Second-Order Problem.To the second-order, Eqs
~14!–~16! give
O~s2!5
1

4 (
n,m

anam@~kn1km!cos~qn1qm!2ukn2kmucos~qn2qm!#5h1

1

4 (
n,m

anam@2~kn1km!2sin~qn1qm!1ukn2kmu~kn2km!sin~qn2qm!#50

1

4 (
n,m

anam@2~kn1km!3 cos~qn1qm!1ukn2kmu•~kn2km!2 cos~qn2qm!#,(
n51

N

ankn
2 cosqn

(29)
s

city
y

From the first-order problem@Eqs. ~17!#, it has been shown tha
q i50; i , which implies that the last two conditions in Eq.~29!
are satisfied, while the first condition becomes the following fo

h15
1

4(n,m
anam@~kn1km!2ukn2kmu# (30)

By considering Eq.~21!, which definesan , we obtain, in continu-
ous form

h15
HC

2

4s4 E
0

`E
0

`

E~v1!E~v2!@~k11k2!2uk12k2u#dv1dv2

(31)

Finally, we have that, if a very large crest height occurs,
second-order height may be written as:

h5HC1
HC

2

4s4 E
0

`E
0

`

E~v1!E~v2!@~k11k2!2uk12k2u#dv1dv2

1o~s2! (32)

where symbolo(sn) indicates terms which are of order great
thann.

In general, the second-order free surface displacement, wh
very high crest occurs at time instantto at pointxo , is given by:
m

he

r

en a

h̄~X,T!5h̄ I1h̄ II 5
HC

s2 E
0

`

E~v!cosc̃dv

1
HC

2

4s4 E
0

`E
0

`

E~v1!E~v2!@~k11k2!cos~ c̃11c̃2!

2uk12k2ucos~ c̃12c̃2!#dv1dv2 (33)

The Deterministic Wave Group to the Second-Order in a
Stokes Expansion: The Velocity Potential. The velocity poten-
tial of the linear wave group~8! may be written in discrete form a

f̄ I~X,z,T!5g(
n51

N

ãnvn
21 exp~knz!sinc̃n (34)

By considering the general second-order solution for the velo
potential, given by Eq.~10!, we obtain the second-order velocit
potential of the wave group in continuous form as

f̄~X,z,T!5f̄ I1f̄ II 5
gHC

s2 E
0

`

E~v!v21 exp~kz!sinc̃dv1
HC

2

s4

•E
0

`E
v1

`

E~v1!E~v2!v2 exp@~k22k1!z#

3sin~ c̃12c̃2!dv2dv1 (35)

Calculation of the Second-Orderh̄ and f̄

Let us consider the JONSWAP spectrum~Hasselmann et al.
@19#!, which is defined as follows
Transactions of the ASME
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E~wvp!5ag2vp
25Ea~w!, (36)

wherea is the Phillips parameter,vp52p/Tp the peak frequency
and

Ea~w!5w25 exp@21.25w24#expH ln x1 expF2
~w21!2

2x2
2 G J

(37)
is the nondimensional spectrum~being wj5v j /vp).Typical val-
ues of the spectrum parameters arex153.3 andx250.08 ~mean
JONSWAP!.

Furthermore, by defining kj5kwj
2p/Lpo

, where

Lpo
@[gTp

2/(2p)# is the wavelength in deep water, the nondime

sional wave number iskwj
5wj

2 and, therefore,c j5kwj
2pX/Lpo

22pwjT/Tp .
It follows that

h̄~X,T!5
HC

sw
2 E

0

`

Ea~w!cosc̃dw

1
HC

2

4sw
4

vp
2

g E
0

`E
0

`

Ea~w1!Ea~w2!@~w1
21w2

2!

3cos~ c̃11c̃2!2uw1
22w2

2ucos~ c̃12c̃2!#dw1dw2

(38)

f̄~X,z,T!5
gHC

sw
2 vp

21 E
0

`

Ea~w!w21 exp~2pkwz/Lp0!• sinc̃dw

1
HC

2

sw
4 vpE

0

`E
v1

`

Ea~w1!Ea~w2!w2

• exp@~kw22kw1!2pz/Lp0#sin~ c̃12c̃2!dw2dw1

(39)
where

sw
2 5E

0

`

Ea~w!dw5s2/~ag2vp
24! (40)

Let us note that, from the second-order velocity potential~39!, we
may easily derive the wave pressure and the wave kinema
exact to the second-order in a Stokes expansion~see also Jense
@20#!. As an example, the second-order pressure fluctuatio
D p̄5D p̄I1D p̄II , where the second-order componentD p̄II is eas-
ily derived by the formula

D p̄II 52r
]f̄ II

]T
2

1

2
rF S ]f̄ I

]X
D 2

1S ]f̄ I

]z
D 2G (41)

~see Applications!.

Applications

The Wave Crest Evolution in Space Domain. Figure 1
shows the space–time evolution of the second-order free sur
displacement, when a very large crest height occurs at pointxo at
time instantto . In particular, the deep-water second-order fr
surface displacement, computed by means of Eq.~38!, is shownin
the space domain, at some fixed time instant. These graphs of
water surface emphasize the existence of a well defined w
group, which moves along thex-axis, crossing the pointxo ~where
X50).

The space–time evolution of this nonlinear wave group is si
lar to the linear dynamics of the group given by Boccotti~@6#!.
Since the propagation speed for individual waves is greater
the wave group celerity, each wave ‘‘runs along the envelope f
the tail where it is born to the head where it dies’’~Boccotti @6#!.
In fact from Fig. 1, the wave group shows firstly a developm
stage, during which the height of the largest crest~at that fixed
instant! increases; therefore at timeto we have the apex of the
Journal of Offshore Mechanics and Arctic Engineering
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group development: at this time the wave crest at pointxo reaches
its maximum; finally the wave group has a decay stage.

Second-order effects are evident,in the space domain, at time
to , because the largest crest and trough amplitudes are e
respectively, to 1.11 and 0.94 times the linear predictions. Mo
over the ratio between largest crest and trough amplitudes is e
to 1.87 for the linear group and to 2.22 for the second-or
group.

The Second-Order Wave Crest Evolution in Time Domain
Figures 2–5 show a wave groupin the time domain. Figure 2
shows the wave group at pointxo , where the largest crest occur
Dotted line gives the linear prediction, which is computed
means of Eq.~6!: we have the well known symmetric profil
~‘‘New wave’’ !, obtained also by Tromans et al.~@15#!. In this
case the linear largest trough amplitude is equal toc* times the
largest crest amplitude, beingc* the narrow bandedness param

Fig. 1 The second-order space–time evolution of a wave
group in which a very large crest occurs at „XÄ0,TÄt o…

Fig. 2 The second-order time evolution of a wave group in
which a very large crest occurs. The solid lines give the
second-order prediction †Eq. „38…‡. The dotted line gives linear
prediction †Eq. „6…‡, which is the ‘‘New wave’’ symmetric wave
profile.
FEBRUARY 2005, Vol. 127 Õ 49
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eter defined by Boccotti~@3,4#!. The parameterc* is defined as
the absolute value of the quotient between the absolute minim
and the absolute maximum of the autocovariance function. I
equal to 0.73 for the mean JONSWAP spectrum and to 0.67 f
Pierson–Moskowitz frequency spectrum. The ratio between c

Fig. 3 The time domain second-order wave pressure Dp at
point „x o ,zÕL p0ÄÀ0.05…, when a very large crest height HC of
free surface displacement occurs at „x o ,TÄ0… „see Fig. 2 …. The
solid lines give the second-order perdiction. The dotted line
gives linear prediction.

Fig. 4 The second-order time evolution of a wave group at
fixed points XÕL p0 , when a very large crest occurs at „XÄ0,T
Ä0…. The dotted lines show linear predictions, obtained from
Boccotti’s quasi-determinism theory „first formulation ….

Fig. 5 The second-order time evolution of a wave group at
fixed points XÕL p0 „À0.20,À0.10,0,0.10,0.20… when a very large
crest occurs at „XÄ0,TÄ0…
50 Õ Vol. 127, FEBRUARY 2005
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and trough amplitudes is then 1.37 and 1.49, respectively. To
second-order,in the time domain, the ratio between crest an
trough amplitudes is equal to 1.67 for the mean JONSWAP sp
trum and to 1.85 for the Pierson–Moskowitz spectrum.

The second-order wave profileh̄(xo ,t) ~being h̄5h̄11h̄2) is
furthermore symmetric, because the componenth̄2 is symmetric.
The highest wave crest is in phase with the linear highest cres
h̄ I .

Figure 3 shows the second-order wave pressureD p̄ at point
(xo ,z520.05Lp0), when a very large surface crest occurs
point xo . As one can see from Fig. 3, second-order effects sligh
reduce the amplitude of the highest crest of the linear compon
D p̄I .

Asymmetries in the Time Domain Wave Profile. By apply-
ing the first formulation of the quasi-determinism theory we m
obtain the free surface displacement in time domain at any fi
point xo 1X, if a very large crest occurs at pointxo . In Fig. 2 we
have seen the linear wave profile at pointxo in time domain,
which is a symmetric profile~New wave!.

As discussed above the second-order wave profile is also s
metric, either in space domain forT50 or in time domain forX
50. Here we analyze the wave profileh̄(T) at some points close
to xo . Figure 4 shows the wave profileh̄(T) at the locations
X/Lpo5(20.10,20.05,0). Note that, forXÞ0 the profile is not
symmetric: The trough depths before (HT1) and after (HT2) the
highest crest are different, withHT1 .HT2 ~let us note that at
points havingX/Lp0.0 we haveHT1,HT2 , as one can see from
Fig. 5!.

Thus, the asymmetry in the wave profile may be explained
analyzing the space–time evolution of the wave groups: For
ample, if we have a time record with a very high crest, w
HT1.HT2 (HT1,HT2), we have then probably recorded th
highest crest at a pointX,0 (X.0), before ~after! point xo
where the wave group reaches the apex of its development.

Finally, it is easy to verify that in deep water these asymmetr
are slightly modified by second-order nonlinearities: They may
explained by the linear quasi-determinism theory, from Eq.~6!.

The Asymptotic Form of the Second-Order Probability
of Exceedance of the Crest Height

Analytical models for the nonlinear wave crest distributio
have been proposed by many authors~see Tayfun@17#, Tung and
Huang @21#, Kriebel and Dawson@22#, Forristall @23#, Prevosto
et al. @24#, Arena and Fedele@25#, Al-Humond et al.@26#, Tayfun
and Al-Humoud@27#!.

Fedele and Arena@18,28#, based on the second-order crest a
plitude given by Eq.~32! derived an asymptotic distribution law
which is valid for finite-band spectra. They showed that the n
linear crest may be rewritten as

h5HC1w
HC

2

s
(42)

where

w5
«p

4sw
4 E

0

`E
0

`

Ea~w1!Ea~w2!@~w1
21w2

2!2uw1
22w2

2u#dw1dw2

(43)

being «p5kps the wave steepness (kp[2p/Lp0). The variance
of the second-order process is easily derived from Eq.~9! and has
expression as

sh
25

s2

b2 (44)

where
Transactions of the ASME



t
t

t

,

b
o

n

est
ctra,
tion
te

ss,’’

s,’’

d.

s,’’

ity

ri-

he

sea

of
nts,’’

of
mea-

axi-

the
rna-

of a
and

y of

’ J.

om

wind

iven

on-

in

nd-

ns

as-

r

or

om
b5F11
«p

2

2sw
4 E

0

`E
0

`

Ea~w1!Ea~w2!~w1
41w2

4!dw1dw2G21/2

(45)

The nondimensional crest heightjhigh5h/sh can then be ex-
pressed as

jhigh5bu1wbu2 (46)

where the random variableu5HC /s has Rayleigh distribution.
Consequently after some algebra we obtain the probability of
ceeding the absolute maximum~crest! as

P~jhigh.j!5expF2
1

8w2 S 12A11
4uwuj

b D 2G (47)

The probabilityP(jhigh.j), which is valid for j→`, depends
upon the two parametersw andb.

The Distribution of the Crest of the Highest Waves: Analyti-
cal Prediction and Comparison with Data. The analytical pre-
diction of the crest height distribution is then compared with
data of numerical simulations. In detail a second-order simula
of random waves with a mean JONSWAP spectrum has been
ried out, with a generation of nearly 50000 waves.

Figure 6 shows a good agreement between the crest heigh
tribution obtained from data and the theoretical prediction giv
by Eq.~47!. Let us note that for the mean JONSWAP spectrum
deep water, we havew50.028 andb50.996. Finally, Fig. 6
shows that theoretical prediction are in good agreement with
crest height distribution obtained with the Forristall model.

Conclusions
The first formulation of the theory of quasi determinism

Boccotti, has been extended to take into account the second-
effects. The nonlinear free surface displacementsh̄ and velocity
potential f̄, when a very high crest occurs at a fixed time a
location, have been derived.

Second-order effects have been analyzed, both in space do

Fig. 6 The second-order probability of exceeding the crest
height, obtained both with presented model „continuous line …

and with Forristall model „broken line …. The dotted line gives
the Rayleigh distribution „exact to the first-order …. Data is ob-
tained from numerical simulations.
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~at some fixed time instant! and in time domain~by analyzing the
wave profile and its asymmetries when a large crest occurs!.

Finally, the second-order probability of exceeding the larg
crest height has been obtained. For the case of JONSWAP spe
it has been shown that the new theoretical crest height distribu
agrees very well with the numerical distribution from Mon
Carlo simulations of the second-order random waves.
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