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ABSTRACT
The quasi-determinism theory, for the mechanics of the linear
three-dimensional waves, was obtained by Boccotti in the
eighties. The first formulation of the theory deals with the
largest crest amplitude; the second formulation deals with the
largest wave height. The theory was verified in the nineties with
some small scale field experiments.
In this paper the first formulation of the quasi-determinism
theory, for the space-time domain, is extended to the second
order. The analytical expressions of the second-order free
surface displacement and velocity potential are obtained.
Therefore the space-time evolution of a wave group, to the
second-order in a Stokes expansion, when a very large crest
occurs at a fixed time and location is investigated.
Finally the second-order probability of exceedance of the crest
amplitude is obtained, as a function of two deterministic
parameters.
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INTRODUCTION
The quasi-determinism theory for the mechanics of linear

random waves was formulated by Boccotti in the eighties. The
first formulation of the theory (Boccotti [1-2]) deals with the
highest crest; the second formulation (Boccotti [3-5]) deals with
the highest crest-to-trough wave height. The theory was verified
in the nineties, either for waves in an undisturbed field or for
waves interacting with structures, with some small-scale field
experiments (Boccotti [6-7], Boccotti et al., [8-9]).

Boccotti [10] proposed then a complete review of the theory,
and showed as the two formulations are congruent to each
other.

An alternative approach for the derivation of the quasi-
determinism theory was proposed by Phillips et al. ([11-12]),
which obtained also a field verification off the Atlantic coast of
USA.

The first formulation of the theory (derived only for the
time domain) was also given by Tromans et al. ([13]), who
renamed the theory as ‘New wave’.

Following the first formulation of the quasi-determinism
theory we have that, if a very high crest (very high with respect
to the mean crest height) occurs in some time and location in a
Gaussian sea state, this implies that a well-defined quasi-
deterministic wave group generates the highest crest.

In this paper the quasi-determinism theory is extended to
the second-order in a Stokes expansion: the second-order free
surface displacements η  and velocity potential φ , when a
very high crest occurs at a fixed time and location, are obtained.
In particular, if the high wave crest occurs at point ox  at instant

ot , the analytical second-order expressions of η  and φ  (at any
depth z) are derived at any point Xxo +  at any instant Tto + ,
as a function of the wave spectrum.

The linear and nonlinear predictions are then compared,
showing as the second order effects modify the wave profile.

Finally, the second-order probability of exceedance of the
largest crest height is obtained. For the case of deep water the
later probability depends upon a characteristic wave steepness
and the wave spectrum.
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THE QUASI-DETERMINISM THEORY FOR A LINEAR
HIGH CREST
The quasi-determinism theory by Boccotti ([10]), for linear
three dimensional wave groups (either for high wave height or
for high wave crest) may be used in place of the periodic waves:
it enables us to predict the space time evolution of the free
surface displacement and of the velocity potential when a very
high wave occurs. The theory may be applied either for waves
in an undisturbed field or for waves interacting with structures,
in both the formulations. The first formulation of the quasi-
determinism theory deals with the crest height, the second
formulation with the crest-to-through height.
In this paper we shall apply only the first formulation
particularized for long-crested random waves. In detail we have
that, if a local wave maximum of given elevation HC occurs at a
time ot  at a fixed point ox , and if ∞→σCH  (σ  being the
standard deviation of the free surface displacement), with
probability approaching 1 the surface displacement at point

Xxo +  at time Tto +  is asymptotically equal to the
deterministic form
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Let us note that the theory is exact for ∞→σCH , that is for
the crest height very large with respect to the mean crest height.
The space-time covariance );,( oxTXΨ  is defined as

>++<≡Ψ ),(),();,( TtXxtxxTX ooo ηη , (2)

where the ensemble average operator >⋅<  is defined as
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Because the absolute maximum of the autocovariance function
)(Tψ  is at 0=T , the local wave maximum of given elevation

HC is the highest maximum of its wave. We have also a
symmetric Iη  profile both in time domain (for X=0) and in the
space domain (for T=0).
The velocity potential of the deterministic wave group (1), at
point Xxo + , at depth z, is given by:
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where the space-time covariance );,,( oxTzXΦ  is defined as
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The linear deterministic wave group in an
undisturbed field

For an undisturbed wave field the free surface displacement

[see Eq. (1)] of the wave group at Xxo +  at time Tto + , when
an exceptional crest height of given elevation HC occurs at time

ot  at fixed point ox , may be rewritten as a function of the
frequency spectrum )(ωE :
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As function of the frequency spectrum, the velocity potential at
a fixed point ( ox +X, z), when a very large crest occurs at point

ox , is given by:
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where the wave number k, in deep water, is equal to g/2ω .
From Eq. (8) we may obtain the linear wave kinematics of wave
group as well as the first Stokes order pressure fluctuation Ip∆

(which is defined as tp II ∂∂−=∆ /φρ ).

NON-LINEAR SPACE-TIME EVOLUTION OF A HIGH
WAVE CREST

According to the theory of wind generated waves, the free
surface displacement to the first order in a Stokes expansion is a
random Gaussian process. It may be modelled as a sum of a
very large number of periodic components, with phase angles
randomly and uniformly distributed between 0 and π2 . The
wave amplitudes follow the Rayleigh distribution.

To the second order in a Stokes expansion, the free surface
displacement and the velocity potential, for long-crested
random deep-water waves, are respectively given by (Sharma &
Dean [14], Tayfun [15]):
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where

nnnn txk εωψ +−= (11)

and { } ℵ∈nna , { } ℵ∈nnε  coefficients to be specified.
In the following we shall define the conditions under which
( )tx,η , defined above by Eq. (9), has a local maximum at point

oxx =  at time instant ott = . By means of the quasi-
determinism theory this maximum is the crest of its own wave.
Thus the deterministic wave group solution to the second order
is derived.

The deterministic wave group to the second order in
a Stokes expansion: the free surface displacement

Let us assume that the free surface displacement has a local
maximum h at point oxx =  and that this maximum occurs at
time ott = . We have to obtain the deterministic free surface
displacement ),( TXη  at point Xxo +  at time instant Tto + ,
when h is very large with respect to the standard deviation σ  of
the free surface displacement.

The conditions of a local maximum at time ott =  (that is
T=0) at point oxx =  (that is 0=X ) are
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By applying a perturbation approach we expand the assigned
height h as

...........210 +++= hhhh (13)

where 0h , 1h , 2h , … are unknown parameters to be

determined. We assume that σ∝0h , 2
1 σ∝h , …,

1+∝ n
nh σ ,..., where σ is the standard deviation of the surface

displacement. From the general solution (9), conditions (12)
give three equations, which are respectively
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where nnnn txk εωϑ +−= 00 . Because we assume σ∝na , a
hierarchy of perturbation equations to the first and to the second
order in a Stokes expansion can be obtained. All the terms in
the h expansion higher than the second order vanish.

i) Perturbation equations to )(σO
To the first order, Equations (14-16) give respectively
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The second and third Equations in (17) are satisfied if
nn ∀= 0ϑ  whatever are the values of the coefficients { } ℵ∈nna

which gives a constraint from the first equation as

n

n

nah ϑcos0 ∑= . Really other solutions could exist with some

coefficients 0≠nϑ .
From the quasi-determinism theory we know that if a very large
crest height 0hHC =  occurs at a fixed point oxx =  at time
instant ott = , the free surface displacement [Eq. (6)] in discrete
form is given by
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Because the high wave group defined by Eq. (18) at
)0,0( == TX  attains a maximum, it follows:
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Finally, by comparing these equations (21-23) with equations of
system (17), we have that the solution of the later, for

∞→σ0h , is nn ψψ ~= , nn aa ~=  [being na~  given by Eq. (19)],
which implies nn ∀= 0ϑ .

ii) The second order problem
To the second order Equations (14-16) give
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From the first order problem (17), it has been shown that
ii ∀= 0ϑ , which implies that the last two conditions in Eq.

(24) are satisfied, while the first condition becomes of the form
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By considering Eq. (19), which defines na , we obtain, in
continuous form
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Finally, we have that, if a very large crest height occurs, the
second order height may be written as:
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More in general, the second order free surface displacement,
when a very high crest occurs at time instant to at point ox , is
given by:
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[let us note that 2σ  is defined by Eq. (7)].

The deterministic wave group to the second order in
a Stokes expansion: the velocity potential
Regarding the velocity potential of the linear wave group (8), it
can be written in discrete form as
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By considering the general second order solution for the
velocity potential, given by Eq. (10), we obtain the second
order velocity potential of the wave group in continuous form as
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CALCULATION OF THE SECOND ORDER η  AND φ
The expressions (28) and (30) may be rewritten as a function of
the nondimensional frequency spectrum. In particular, for a
JONSWAP spectrum (Hasselmann et al. [16]) we have

)()( 52 wEgwE app
−= ωαω , (31)

where α  is the Phillips parameter, pp T/2πω =  the dominant
frequency and
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is the non dimensional spectrum (being pjjw ωω /= ). For a

mean JONSWAP spectrum, the parameters 1χ  and 2χ  are
equal respectively to 3.3 and 0.08.
Furthermore, by defining 

opjwj Lkk /2π= , where opL  is the

dominant wavelength in deep water [ )2/(2
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non dimensional wave number is 2
jjw wk =  and therefore
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It follows that
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Let us note that, from second order velocity potential (34), we
may easily derive the wave pressure and the wave kinematics,
exact to the second order in a Stokes expansion (see
Applications). For example, the second order pressure
fluctuation is III ppp ∆+∆=∆ , where the second order

component IIp∆  is easily derived by the formula
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(see Applications).

APPLICATIONS

The wave crest evolution in space domain
Figure 1 shows the space-time evolution of the second order

free surface displacement, when a very large crest height occurs
at point ox  at time instant ot . In particular it is shown the deep
water free surface displacement in the space domain at different
time instant, to the second-order predictions, obtained by means
of Eq. (33).
We find a well defined wave group, which moves along the x-
axis, crossing the point ox  (where X=0). We have also that
propagation speed for individual waves is greater than the wave
group celerity: each wave ‘runs along the envelope from the tail
where it is born to the head where it dies’ (Boccotti [10]).
The wave group shows also firstly a development stage, during
which the height of the largest crest (at that fixed instant)
increases; therefore at time to we have the apex of the group
development: at this time the wave crest at point xo reaches its
maximum. All these results on the space time evolution of non-
linear wave groups are identical to those of Boccotti’s book
([10]), from the first order quasi-determinism theory.
As for the second order effects, they increase the crest
amplitude and decrease the trough amplitude. For example we
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Figure 1. The second-order space-time evolution of a wave
group in which a very large crest occurs at (X=0, T=to).

have that, in space domain, at time to, second-order largest crest
and trough amplitudes are equal respectively to 1.11 and 0.94
times the linear predictions; the ratio between crest and trough
amplitude is equal to 1.87 to the first order and to 2.22 to the
second-order.

The second-order wave crest evolution in time
domain
Figures 2-5 show a wave group in time domain. Figure 2 shows
the wave group at point xo, where the largest crest occurs.
Dotted line gives the linear prediction, which is obtained from
Eq. (6): we have the well known symmetric profile (‘New
wave’), obtained also by Tromans et al. ([13]). In this case the
largest trough amplitude is equal to *ψ  times the largest crest

amplitude, being *ψ  the narrow bandedness parameter defined

by Boccotti ([3-4]). The parameter *ψ  is defined as the
absolute value of the quotient between the absolute minimum

and the absolute maximum of the autocovariance function. It is
equal to 0.73 for the mean JONSWAP spectrum and to 0.67 for
a Pierson-Moskowitz frequency spectrum. The quotient
between crest and trough amplitudes is then 1.37 and 1.49
respectively.
To the second order, in time domain, the quotient between crest
and trough amplitudes is equal to 1.67 for a mean JONSWAP
spectrum and to 1.85 for a Pierson-Moskowitz spectrum. The
second order wave profile ),( txoη (being =η 1η + 2η ) is
furthermore symmetric, because the component 2η  is
symmetric and presents the highest wave crest in phase with the
linear highest crest of 1η .

Figure 3 shows the second order wave pressure p∆  at point
)05.0,( 0po Lzx −= , when a very large crest of free surface

displacement occurs at point ox . As we can see second-order
effects reduce the amplitude of the highest crest of linear
component Ip∆ .

How explain some asymmetries in the time domain
wave profile
By applying the first formulation of the quasi-determinism
theory we may obtain the free surface displacement in time
domain at any fixed point Xxo + , if a very large crest occurs
at point ox . In Fig. 2 we have seen the linear wave profile at
point ox  in time domain, which is a symmetric profile (‘New
wave’).
In this paper we have extended the quasi-determinism theory to
the second order in a Stokes expansion. We have obtained that
the second-order wave profile is symmetric too, either in space
domain for T=0 or in time domain for X=0. Now we analyze the
wave profile )(Tη  at some points close to ox . Figure 4 shows

the )(Tη  at points )0,05.0,10.0(/ 0 −−=pLX . As we can see,
for 0<X  the profile is not symmetric: the trough depths before
( 1TH ) and after ( 2TH ) the highest crest are different, with

1TH > 2TH  (let us note that at points having 0/ 0 >pLX  we

have 1TH < 2TH , as we can see from Figure 5). Therefore, an
asymmetry in wave profile may be explained by analyzing the
space time evolution of the wave groups: if we have a time
record with a very high crest, with 1TH > 2TH  ( 1TH < 2TH ),
we have probably recorded the highest crest at a point X<0
(X>0), before (after) point xo where the wave groups reaches the
apex of its development.
Finally, it is easy to verify that in deep water these asymmetries
are only slightly a non-linear effects: they may be obtained from
the linear quasi-determinism theory, from Eq. (6).
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Figure 2. The second-order time evolution of a wave group in
which a very large crest occurs. Continuous lines give the
second-order prediction [Eq. (33)]. Dotted line gives linear
prediction [Eq. (6)], which is the ‘New wave’ symmetric wave
profile.

Figure 3. The time domain second-order wave pressure ∆p at
point )05.0/,( 0 −=po Lzx , when a very large crest height HC of

free surface displacement occurs at )0,( =Txo  (see Figure 2).
Continuous lines give the second-order prediction. Dotted line
gives linear prediction.

THE ASYMPTOTIC FORM OF THE SECOND-ORDER
PROBABILITY OF EXCEEDANCE OF THE CREST
HEIGHT

The second-order crest elevation, given by Equations (13) and
(26), may be rewritten as
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being σε pp k=  the wave steepness.

The variance of the second order process is easily derived from
(9) and has expression as
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So we have that the non-dimensional crest height ησξ /hhigh =

can be expressed as the following
2uuhigh βϕβξ += (40)

where the random variable σ/CHu =  has Rayleigh
distribution. As consequence the probability of exceedance of
the absolute maximum (crest) is:
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The probability )( ξξ >highP , which is valid for ∞→ξ ,

depends then upon the two parameters ϕ  and β.

The distribution of the crest of the highest waves:
analytical prediction and comparison with data

The analytical prediction of the crest height distribution are then
compared with the data of numerical simulations. In detail a
second-order simulation of random waves with a mean
JONSWAP spectrum has been carried out, with a generation of
near 50000 waves.
Fig. 6 shows the crest height distribution, obtained from data,
and theoretical predictions, which are obtained from Eq. (41).
Let us note that for a mean JONSWAP spectrum, in deep water
we have 028.0=ϕ  and .9996.0=β
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Figure 4. The second-order time evolution of a wave group at
fixed points 

0
/ pLX , when a very large crest occurs at

(X=0,T=0). Dotted lines show linear predictions, obtained from
Boccotti’s quasi-determinism theory (first formulation).

Figure 5. The second-order time evolution of a wave group at
fixed points 

0
/ pLX  (-0.20, -0.10, 0, 0.10, 0.20) when a very

large crest occurs at (X=0,T=0).
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