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SUMMARY

The classical collocation method using Hermite polynomials is computationally expensive as the dimen-
sionality of the problem increases. Because of the use of a C1-continuous basis, the method generates
two, four and eight unknowns per node for one, two and three-dimensional problems, respectively.
In this paper we propose a numerical strategy to reduce the nodal unknowns to a single degree of
freedom at each node. The reduction of the unknowns is due to the use of Lagrangian polynomials
to approximate the �rst-order derivatives over the minimal compact stencil surrounding each node. For
the solvability of the problem the reduction of the number of collocation equations is done by a nodal
weighting strategy. We have applied the proposed approach to enhance the e�ciency of a collocation-
based multiphase �ow and transport simulator. Benchmark cases illustrate the higher performance of
the new methodology when compared to classical Hermite collocation. Copyright ? 2004 John Wiley
& Sons, Ltd.

KEY WORDS: single-degree-of-freedom; Hermite collocation; Lagrangian polynomials; transport equa-
tion; NAPL; multiphase �ow

1. INTRODUCTION

The classical collocation approach to the solution of di�erential equations has been known
since at least 1937 [1]. However, it was largely through work conducted in the early 1970s
(see for example References [2–6]) that the method was popularized for the solution of
second-order partial-di�erential equations. While it was evident that the inherent simplicity
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of the approach held promise as a computationally e�cient algorithm, the popularity of the
method was limited, largely by the necessity of using C1 continuous functions as a basis.
Recently there has been renewed interest in the collocation approach. Bialecky et al. [7]

formulated a collocation approach for linear parabolic problems on rectangles and Li et al. [8]
studied the problem of transverse vibrations of a clamped square plate. Elliptic boundary value
problems [9], Schrodinger wave equation problems [10] and biharmonic problems [11], as
well as techniques to e�ciently solve the resulting approximating equations have also been
studied by this group of researchers [12]. For more references about collocation methods see
References [13–24].
In Wu and Pinder [26] a new numerical approach that builds upon the classical collocation

approach was introduced. The method provides enhanced e�ciency through a reduction in the
number of degrees of freedom from two in one dimension, four in two dimensions and eight
in three dimensions to one in any number of dimensions. In this current paper we extend this
earlier work to consider several open theoretical questions and we also apply the method to
two example problems.
In the �rst part of the paper we present the theoretical formulation of the new numerical

methodology for the one-dimensional case. A Fourier-based analysis gives the order of con-
vergence of the error of the derived numerical scheme. In the second part of the paper we
present the application of the proposed technique to the dissolution of residual saturations of
non-aqueous phase �uids in �owing groundwater.

2. THEORETICAL FORMULATION

Let us consider a general linear di�erential operator L and a boundary operator B which can
be of Neumann, Dirichlet or Robin type. In the N dimensional bounded domain �⊂�N , the
following boundary value problem is considered

Lu=f

Bu= g
(1)

where f; g :�N →� are given functions. Hereafter, we assume that the solution u of (1) is
regular enough and as many times di�erentiable as we need, i.e. u∈C∞.
To present the key ingredients of the proposed method we initially consider the one-

dimensional case N =1 for clarity in presentation, but we consider higher dimensions in
the application. On the domain �= [0; L], let �x=L=Nx be the space step for discretization,
where Nx is the number of subintervals. We now de�ne a uniform mesh �x= {xj; 06j6Nx}
where xj= j�x.

2.1. LOcalized COllocation Method (LOCOM)

Let us refer to the minimum compact stencil of the generic node j; �j ≡ [xj−1; xj+1]. As
indicated in Figure 1, the stencil embeds a two-subinterval element neighbourhood and has a
size of 2�x, that is

�j=�j; L ∪�j;R (2)
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Figure 1. Template for LOCOM scheme.

where �j; L≡ [xj−1; xj]; �j; R≡ [xj; xj+1] are, respectively, the left and right interval with respect
to the node j.
In each stencil we have four collocation points which are located at the abscissae �( j)k with

k=1; 2; 3; 4 (two collocation points for each subinterval). The Hermite approximation ûH is
the following:

ûH

(
x; {uq};

{
du
dx

∣∣∣∣
xq

})

=



H0;j−1(x)uj−1 +H1; j(x)uj + H̃0; j−1(x)

du
dx

∣∣∣∣
xj−1

+ H̃1; j(x)
du
dx

∣∣∣∣
xj

x∈ [xj−1; xj]

H0;j(x)uj +H1; j+1(x)uj+1 + H̃0; j(x)
du
dx

∣∣∣∣
xj

+ H̃1; j+1(x)
du
dx

∣∣∣∣
xj+1

x∈ [xj; xj+1]
(3)

where the generic set {aq} collects the elements {aj−1; aj; aj+1} with the index q spanning
j−1; j; j+1 and H0; j and H̃1; j are the classical Hermite polynomials (for the exact mathematical
formulation of the Hermite polynomials see References [23, 24]). The collocation equations
are generated by imposing the vanishing of the residual Lu−f at the collocation points. We
denote these residual equations as

R
(j)
k

(
{uq};

{
du
dx

∣∣∣∣
xq

})
=LûH(�

(j)
k )− f(�(j)k )=0 (4)

From the collocation points belonging to the template identi�ed with node j we have
available 2× 2=4 residual equations of type shown in Equation (4) and 2× 3=6 unknowns
(two for each of the three nodes in the stencil). The problem is under-determined (more
unknowns than available equations).
We want to derive a single residual equation for the node xj which depends only on

the surrounding nodal values of the function for the selected stencil, i.e. uj−1; uj; uj+1. By
proceeding in this way we can get one equation for each node and the well-posedness of the
solution is satis�ed.

2.2. Approximation of derivatives

In the following we shall address a way to approximate the Hermite nodal derivatives in
Equation (4) as a function of the nodal values uj−1; uj; uj+1. Let us set

du
dx

∣∣∣∣
xq

≈ dûL
dx

∣∣∣∣
xq

+ Sq q= j − 1; j; j + 1 (5)
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where ûL is the Lagrangian approximation over the stencil �j, i.e.

ûL(x)=
j+1∑

h= j−1
Lh−j+2(x)uh

with Ls(x); s=1; 2; 3 the Lagrangian polynomials and

Sq=
j+1∑

h= j−1
Sq; h(�x)uh (6)

are unknown coe�cients to be determined and are linearly dependent upon the nodal values. In
the following we shall present a consistency-based criteria which allows us to select optimal
values for Sq; h(�x) so that the convergence of the proposed scheme is optimal. Note that
for the consistency of Equation (5), as the space step �x tends to zero, Sq must approach
zero (i.e. in Equation (6) we need to have Sq; h(�x)→ 0 as �x→ 0). By substituting the
approximations in Equation (5) for the derivatives in the four residual equations (4) one gets
four new residual equations which depend upon the nodal values of the stencil centred at the
node j

R̃
( j)
k ({uq}; {Sq})=0 k=1; 2; 3; 4 (7)

where

R̃
(j)
k ({uq}; {Sq})=R

(j)
k

(
{uq};

{
dûL
dx

∣∣∣∣
xq

+ Sq

})
=0

2.3. Reduction of the residual equations

For each node we have four residual equations and one unknown, therefore the problem is
overdetermined (more equations available than unknowns). To make it solvable we consider
the following averaging strategy. Within each template �i we de�ne the weighting factors
for the left and right intervals as wL; wR with wL + wR =1. Since there are potentially four
collocated residual equations of the type described in Equation (7), we derive an average
collocation equation for the node j as

Rj({uq}; {Sq})=wL R̃
(j)
1 + R̃

(j)
2

2
+ wR

R̃
(j)
3 + R̃

(j)
4

2
=0 (8)

The problem now is well posed because, for each nodal unknown, we can have an averaged
collocation equation. Let us specify that Equation Rj de�nes an approximation L̂u for the
operator Lu at the jth node. In order to complete the formulation of the scheme, the co-
e�cients Sj−1; Sj; Sj+1 must be given as linearly dependent upon the unknown nodal values
uj−1; uj; uj+1. In the following we shall address a way to determine them based on a consistency
analysis.
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2.4. Consistency-based Hermite derivative approximations

The Hermite approximation ûH(x) de�ned in Equation (3) can be split into two parts depen-
dent, respectively, on the nodal function values and nodal derivative values as

ûH

(
x; {uq};

{
du
dx

∣∣∣∣
xq

})
= û(1)H (x; {uq}) + û(2)H

(
x;

{
du
dx

∣∣∣∣
xq

})
(9)

where we have split the approximating polynomial into the two components û(1)H which is
only dependent upon (uj−1; uj; uj+1) and û

(2)
H which is only dependent on (du=dx|xj−1 ; du=dx|xj ;

du=dx|xj+1). By means of the approximations (5), the Hermite approximation ûH (see Equa-
tion (9)) can be expressed as the following:

ûH

(
x; {uq};

{
du
dx

∣∣∣∣
xq

})
= û(1)H (x; {uq}) + û(2)H

(
x;

{
dûL
dx

∣∣∣∣
xq

})
+ û(2)H (x; {Sq}) (10)

By some algebra one can prove that the sum of the �rst two terms in Equation (10) gives the
Lagrangian approximation ûL(x) since the Lagrangian derivatives set {dûL=dx|xq} is forced to
be the nodal derivatives in the Hermite approximation; now ûH is of the form

ûH

(
x; {uq};

{
du
dx

∣∣∣∣
xq

})
= ûL(x) + û

(2)
H (x; {Sq}) (11)

We now de�ne the discrete operator LûH to be consistent, for any solution u(x) in C∞,
if the di�erence between the L(u) and L̂(u) vanishes as the space step approaches zero.
That is,

lim
�x→0

[L(ûH)−L(u)]=0 (12)

The order of convergence of this limit gives us the order of consistency of L̂. Because of
Equation (11) the limit (12) is

lim
�x→0

[L(ûL)−L(u) +L(û(2)H (x; {Sq}))]=0 (13)

In general we can choose the set of parameters {Sq} such that the order of convergence is
the highest possible. The limit (13) tells us that we can choose the parameters {Sq} so that
the term L(û(2)H (x; {Sq})) can balance the residual error L(ûL)−L(u) due to the Lagrange
approximation ûL of the exact solution u. The numerical scheme thereby derived is a compact
Hermite based collocation. Further studies are needed in order to determine the optimal choice
of the parameters {Sq} for various operators following the outline described above. In the
following we shall show that the choice of {Sq=0} gives optimal rates of convergence for
the case of advection–di�usion operators.
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3. THE ADVECTION–DIFFUSION EQUATION

We now restrict the operator L in Equation (1) to be the advection–di�usion operator de-
�ned as

Lu=
@u
@t
+ c

@u
@x

−D
@2u
@x2

(14)

Here, the velocity c and the di�usion coe�cient D are assumed spatially constant. In Equa-
tion (5) we set Sq=0. We choose as weighting factors, wL≡�; wR ≡ (1− �) with 06�61.
The parameter � is of an up-winding type. By applying the procedure de�ned above, ∀u∈C∞

we get the averaged collocation equation relative to the node j as

Rj(uj−1; uj; uj+1)

= L̂xu = a1
duj−1
dt

+ a2
duj
dt
+ a3

duj+1
dt

+ b1uj−1 + b2uj + b3uj+1 (15)

where

a1 =
4� − 1 + w2

8
a2 =

3− w2
4

a3 =
3− 4�+ w2

8

b1 = − c
�x

(
�+

1
Pe

)
b2 =

c
�x

(
2� − 1 + 2

Pe

)
b3 =

c
�x

(
1− � − 1

Pe

)
(16)

where we have de�ned the cell Peclet number as Pe = c�x=D and L̂x is the semi-discrete
operator. The time derivatives in Equation (15) can be approximated by a �nite di�erence
treatment. On the time interval [0; T ], let �t=T=Nt . At the (n+1)th time level, based on the
mesh �x, the discrete operator L̂ can be written as

L̂u=A1un+1j−1 + A2u
n+1
j + A3un+1j+1 + B1u

n
j−1 + B2u

n
j + B3u

n
j+1 (17)

where

Ap=
ap
�t
+ �bp Bp = − ap

�t
+ (1− �)b p=1; 2; 3 (18)

in which � is the location of the spatial operator L̂x in the time interval �t.
When Equation (17) is written for each nodal location xj; j=1; : : : ; Nx − 1, one obtains

Nx−2 equations in Nx unknowns. The imposition of boundary conditions provides the required
additional two equations. While �rst-type conditions are accommodated in the standard way
by simply replacing the value of the unknown function at the boundary node, second type
boundary conditions can be treated somewhat di�erently. Recall that we have yet to de�ne
an equation for the node at x0 and at node xNx . While no equation is needed for the case of
the �rst-type condition, in the case of a second-type condition the term @û=@x|x0 is replaced
prior to the approximation of the derivatives. While this is not especially interesting in a one-
dimensional problem because of its simplicity, the implications for multidimensional problems
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are quite important. Recalling that in a two-dimensional problem there are four degrees of
freedom per node, it becomes apparent that there are two conditions imposed on each side
node of the domain, and three conditions imposed at corner nodes. This is unique to the
collocation approach.

3.1. The optimal scheme

In the formulation of the numerical scheme described by Equation (17) we have de�ned three
parameters which are, respectively, the time-weighting factor �, the collocation point location
w and the up-wind factor �. In the following we shall choose �= 1

2 to get a Crank–Nicolson
scheme in time. We shall derive expressions for the coe�cients w and � which gives an
optimal rate of convergence of the error E(�x;�t)= u(x; t) − û(x; t) with u∈C∞ the exact
analytical solution and û its numerical approximation. The analytical solution u satis�es the
following initial boundary value problem

Lu=0

u(x; 0) = u0(x); u0 ∈C∞ (19)

and

u(x; t)=
∞∑

k=−∞
Uk; Uk = vke−D!2k tei!k (x−ct) (20)

where Uk is the generic harmonic, !k ≡ 2�
L k where L is the length of the domain, and the set of

coe�cients {vk}k∈Z is the set of Fourier coe�cients of the function u0(x). The approximating
function û satis�es the corresponding discrete problem:

L̂û=0

û(x= xj; 0) = u0(x= xj)
(21)

An exact analytical expression for the approximant û can be derived since the problem here
considered is one dimensional and the velocity c and the di�usion coe�cient D are assumed
spatially constant.
Let x= xj and t= tn be �xed. By imposing the requirement that L̂û = 0 at the nodes, the

following di�erence equation is obtained:

A1ûn+1j−1 + A2û
n+1
j + A3ûn+1j+1 + B1û

n
j−1 + B2û

n
j + B3û

n
j+1 =0 (22)

The general solution of this di�erence equation is

û(xj; tn)= ûnj =
∞∑

k=−∞
Ûk Ûk = hk exp(i!kxj)(�k)n (23)

where Ûk is the generic harmonic and

�k =− B3e
i!k + B2 + B1e−i!k

A3ei!k + A2 + A1e−i!k
(24)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1337–1354



1344 F. FEDELE ET AL.

After application of the initial condition for the problems de�ned in Equations (19) and (21)
we can easily obtain {hk}∞k=−∞= {vk}∞k=−∞. In general the coe�cients �k in Equation (24)
do depend upon the Courant number de�ned as

Cou =
c�t
�x

For stability of the numerical scheme, from Equation (23), numerical investigation yields that
for every frequency !k →|�|61 (see Equation (24)) if and only if �¿ 1

2 , whatever the value
of Pe and Cou. The method is also stable for all collocation point locations, that is for all
w∈ [0; 1].
The stability constraint on � is understood more clearly when one observes that � controls

an up-winding phenomenon. As would be expected, when the equivalent of down-stream
weighting is used, the scheme is not stable.
To derive the rate of convergence of the error E(�x;�t), we consider the limit of the dif-

ference between the analytical solution and the approximate solution as �x→ 0 and �t→ 0.
For �xed (x; t), �x→ 0;�t→ 0 is equivalent to letting j→∞, and n→∞. By using Equa-
tions (20) and (23) one obtains for the error E(�x;�t) the representation that follows:

E(�x;�t)=
∞∑

k=−∞
(Uk − Ûk)=

∞∑
k=−∞

Uk(1− �k) (25)

where

�k =
(�k)n

e−D!2k te−i!kct
(26)

depends upon �x and �t. When (x; t) is �xed, the McLauren expansion for �k has the
following form:

�k =1+ ti!3k�3 − t!4k�4 + ti!5k�5 + o(�t3 + �x4) (27)

where the coe�cients �3; �4, and �5 depend only upon D; c;�x;�t; w; and �. Thus the error
E (see Equation (25)) can be simpli�ed as

E(�x;�t)= �3t
@3u
@x3

+ �4t
@4u
@x4

+ �5t
@5u
@x5

+ o(�x4 + �t3) (28)

because of the uniform convergence of both the Fourier series of u0(x) and all of its derivatives
of every order (since u0(x) is assumed C∞). The coe�cients �3; �4, and �5 are bounded for
�nite values of D; c;�x;�t; w. Therefore, when both �x and �t approach zero the error
terms vanish.
For the case of non-zero di�usion the dominant coe�cients are the following:

�3 =
1
12
c3�t2 +

1− 2�
2

D�x +
1
24
c�x2(1− 3w2)

�4 =−1
4
Dc2�t2 − 1

24
D�x2[5 + 24(−1 + �)� − 3w2]

+
1
16
c�x3(−1 + w2)(1− 2�)

(29)
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and the convergence rate depends upon the values of � and w. For any values of � and w,
the rate of convergence with respect to �t is quadratic as we have expected by choosing
�= 1

2 . The order of convergence with respect to �x depends upon the choice of collocation
points and the magnitude of the upwinding parameter �. In particular, if one selects �¿ 1

2 ; the
order of convergence is O(�x +�t2) irrespective of the location of the collocation points.
The reason for this is the fact that under these circumstances the coe�cient of �x in the
de�nition of �3 is always non-zero. On the other hand, if �= 1

2 , which corresponds to no
upstream weighting, the coe�cients �3 and �4 reduce to the expressions

�3 = 1
2 c

3�t2 + 1
24 c�x

2(1− 3w2)
�4 =− 1

4 Dc
2�t2 + 1

24 D�x
2(1 + 3w2)

(30)

and the order of convergence is O(�x2 +�t2) whatever the choice of the collocation points.
Finally we have

(D 
=0) E(x; t) ≈
{
O(�x2 + �t2) if �= 1

2 ∀w∈ [0; 1]
O(�x +�t2) if � 
= 1

2 ∀w∈ [0; 1]
(31)

For pure advection problems (D=0), the expressions of the dominant coe�cients in E are
the following

�3 =
1
12
c3�t2 +

1− 3w2
24

c�x2

�4 =− (−1 + w
2)(−1 + 2�)
16

c�x3

�5 =
1
80
c5�t4 − −1 + 3w2

96
c3�x2�t2 +

A

960
c�x4

A=23− 120�+ 120�2 − 30(1− 2�)2w2 + 15w4

(32)

If one chooses non-Gaussian collocation points, i.e. w2 
= 1
3 , we can impose the vanishing �3

term by choosing

w2 =
1 + 2C 2ou

3

getting O(�x3+�t4) with up-winding (�¿ 1
2 ) and O(�x

4+�t4) for �= 1
2 . Other collocation

points (except Gaussian) imply an order of convergence of O(�x2 + �t2).
If the Gaussian points are selected as collocation points the expressions for �3; �4; and �5

reduce to the form

�3 =
1
12
c3�t2

�4 =
−1 + 2�
24

c�x3

�5 =
1
80
c5�t4 +

11− 60�+ 60�2
720

c�x4

(33)
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and if up-winding is considered (�¿ 1
2 ) the coe�cient �4 is non-zero and the order of conver-

gence is O(�x3 + �t2). If one uses no up-stream weighting (�= 1
2) �4 is zero and because

�5 does not vanish, the convergence rate is O(�x4 + �t2). Finally, if the collocation points
are not Gaussian and we consider pure convection (D=0) the convergence rate is O(�x2)
irrespective of the value of �. When Gaussian collocation points are used one gets a con-
vergence rate greater than that which one obtains when non-Gaussian points are employed,
viz.

(D=0) E(x; t)=




w2 
= 1
3
;
1 + 2C 2ou

3
O(�x2 + �t2) ∀�¿ 1

2

w2 =
1 + 2C 2ou

3

{
O(�x3 + �t4) �¿ 1

2

O(�x4 + �t4) �= 1
2

w2 =
1
3

{
O(�x2 + �t2) �¿ 1

2

O(�x4 + �t2) �= 1
2

(34)

The rates of convergence obtained, are identical to the rates of a special form of the Petrov
Galerkin method [25, 27, 28]. Indeed, for this special case, (see the paper of Bouloutas and
Celia [27]), the equivalent coe�cients as expressed in Equation (16) for Petrov Galerkin are
the following:

(a1)PG =
1
6
+
�
12
+
	
4

(a2)PG =
2
3
− �
6

(a3)PG =
1
6
+
�
12

− 	
4

(b1)PG = − c
�x

(
1 + 	
2

+
1
Pe

)
(b2)PG =

c
�x

(
	+

2
Pe

)
(b3)PG =

c
�x

(
1− 	
2

− 1
Pe

) (35)

where the parameters 	 and � control the distortion of the linear weighting functions by cubic
or quadratic functions, respectively. Some algebra yields the relationship between the Petrov
Galerkin parameters 	; � and the LOCOM parameters �; w as

�=
1+ 	
2

w2 =
1 + 2�
3

4. COMPUTATIONAL EXAMPLES

4.1. Transport of a Gaussian hill

We �rst consider the transport of a Gaussian hill to test the order of convergence of the error
of the proposed method. The very challenging case of pure convection of an initial square
pulse is considered in order to compare the accuracy of the proposed methods against the
widely used Eulerian based �nite di�erence and �nite element methods. The boundary value
problem de�ned via the operator speci�ed in Equation (14) with zero boundary conditions
and initial conditions as

u(x; 0)= u0(x)= exp
[
− (x − x0)

2

2
2

]
(36)
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Figure 2. Convergence obtained for the case of advective-di�usive transport of a Gauss cone using
D=1:0× 10−5 m2=s and D=1:0× 10−2 m2=s, c=0:25m=s, �t=1=400 s, �x=2nm, n=4; 5; 6; 7; 8;


2 = 0:002m2, and x0 = 0:5m. First-order collocation points have been used.

has a simple analytical solution which is

u(x; t)=

√


2 + 2Dt
exp
[
− (x − x0 − ct)

2

2(
2 + 2Dt)

]
(37)

Both the case of dominant di�usion (D 
=0) and pure convection (D=0) were examined
using the sup-norm of the error as the measure. In the following we shall specify �rst-order
and second-order collocation points for the case of w = 0 and w2 = 1

3 , respectively. The
sup-norm is given by

E(t)= sup
x∈R

|u(x; t)− û(x; t)| ∼ O(�x)� (38)

in which u is the exact solution, û is the numerical solution, and � is the rate of convergence.
We consider decreasing values of the spatial step as �xk =2−k for di�erent values of the
integer k. In the �rst example we assume 
2 = 0:002m2, c=0:25m=s, x0 = 0:5m, �t=1=400 s
and the length of the domain is L=1 m. In the relationship �xk =2−k ; k=4; 5; 6; 7 and 8.
The numerical error is evaluated at the 200th time step. The di�usion coe�cient is given as
D=10−5 and 0:01 m2=s. First-order collocation points are used, i.e. w=0.
The plots of Figure 2 show that the order of convergence of the error depends upon the

choice of �. When �=1 the convergence rate is O(�x) and for �= 1
2 the rate is O(�x

2).
This result is consistent with the theoretical results presented in Equation (31).
Consider the case of pure advection, when Gauss points are chosen as the collocation points.

Figure 3 shows the results of a calculation wherein c=0:25 m=s, �t=1=200 s; �x=2n m,
n=3; 4; 5; 6, 
2 = 0:02m2, L = 5m and x0 = 2m. The left-hand panel of this �gure shows the
rate of convergence with �rst-order and second-order collocation points and no up-winding.
In the right-hand panel the same information is provided for the case of full up-winding.
The numerical results con�rm the earlier theoretical estimates which state that if Gauss points
are not used as the collocation points, the pure advection case has an order of convergence
of O(�x2) irrespective of the up-stream weight selected. If Gauss points are used as the
collocation points, O(�x3) convergence is achieved with up-winding and O(�x4) without up-
winding. For some examples of numerical simulations the reader is referred to Reference [26].
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Figure 3. Convergence obtained for the case of advection of a Gauss cone using D=0m2=s, c=0:25m=s,
�t=2−n m, n=3; 4; 5; 6, 
2 = 0:02 m2, L=5 m, and x0 = 2 m.

4.2. Multiphase �ow and transport

The LOCOM method was implemented into an existing multiphase �ow and transport code
(see Reference [29]) that solves three phase and two transport equations. The general form
of the equations are as follows:
Water Phase Equation

�
@SW
@t

+∇ · qW =QW + E
W
n − EGn=W − ESn=W

�Nr

+
(
1− �Wr

�Nr

){
�SWWn �

W
n

�Wr
− ∇ · [�SWDW · ∇�Wn ]

�W

}
(39)

Gas Phase Equation

�
@SG
@t
+∇ · qG =QG+E

G
n + E

G
n=W

�Nr
+
(
1− �Gr

�Nr

){
�SGGn �

G
n

�Gr
− ∇ · [�SGDG · ∇�Gn ]

�G

}
(40)

NAPL Phase Equation

�
@SN
@t

+∇ · qN =QN − EGn + E
G
n

�Nr
(41)

NAPL Contaminant Species in Water Transport

�SW
@�Wn
@t

+
(
�W

�Wr

)
�SWWn �

W
n + q

W · ∇�Wn −∇ [(�SWDW) · ∇�Wn ]
= (�̃Wn − �Wn )QW +

(
1− �Wn

�Nr

)
[EWn − EGn=W − ESn=W] (42)
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Figure 4. Three-dimensional dissolution problem set-up.

NAPL Contaminant Species in Gas Transport

�SG
@�Gn
@t

+ qG · ∇�Gn −∇[(�SGDG) · ∇�Gn ] +
�SG�GGn
�Gr

�Gn

= (�̃Gn − �Gn )QG +
(
1− �Gn

�Nr

)
[EGn + E

G
n=W] (43)

where � is the porosity of the porous medium, S	 is the saturation of the 	-phase where
	=W (water), N (NAPL), G (gas), q	 is the 	-phase �ux vector [L3=T ], Q	 is the point
source (+) or sink (−) of 	-phase mass [1=T ], EWn is the mass exchange of NAPL from the
NAPL phase to the water phase (dissolution) [M=TL3], EGn=W is the mass exchange of NAPL
contaminant species from the aqueous phase to the gas phase (evaporation) [M=TL3], ESn=W is
the mass exchange of NAPL contaminant species from the aqueous phase to the solid phase
(adsorption) [M=TL3], EGn is the mass exchange of NAPL from the NAPL phase to the gas
phase (volatilization) [M=TL3], �	r is the mass density of the pure 	-phase [M=L3], 	n is the
decay coe�cient for species i in the 	-phase [1=T ], �	n is the mass concentration of the NAPL
contaminant species in the 	-phase [M=L3], D	 is the dispersion coe�cient for the 	-phase, a
symmetric second-order tensor [L2=T ] and �̃	n is the concentration of the injected or extracted
water from source Q [M=L3].
The multiphase code used in this comparison employs a classical collocation method applied

to the linearized equations [39–43]. The code was modi�ed to employ LOCOM. No upwinding
was considered and collocation equations were written at the Gauss points. The two methods
were compared in terms of accuracy and computational e�ciency.

4.2.1. Dissolution problem setup. The problem set-up is as seen in Figure 4. The domain of
interest is a 50× 100× 30 cm box. The box has an initial water saturation (Sw) of 1:0, with
the exception of a 30× 40× 10 cm box located approximately in the center of the domain,
where a residual saturation of non-aqueous phase liquid (NAPL) of 0:2 (Sw =0:8) is imposed.
The NAPL is considered to be at its residual saturation and is thereby an immobile phase
(note that this is not a limitation of the method). A 2:5cm water gradient is imposed from left
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50
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m

30 cm

100 cm

Figure 5. Representative slice taken of the domain to show the results from the sample problem.

Figure 6. The results of the concentration of NAPL contaminant species in the water phase for (a) the
classical collocation method and (b) LOCOM, at time=256 000 s.

to right across the box, with no �ow conditions present on the top, bottom, front and back.
A Dirichlet condition of zero concentration of aqueous NAPL contaminant species is imposed
on the left and top of the box, with zero-�ux Neumann conditions de�ned elsewhere. A zero
NAPL saturation condition is imposed on the left and right of the box and a zero �ux of
NAPL elsewhere.
The NAPL contaminant species is then allowed to dissolve into the water phase for

800 000 s. The problem was run using four di�erent grid spacings, �x=�y=�z=10; 5; 2:5
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Figure 7. The results of the concentration of NAPL contaminant species in the water phase for (a) the
classical collocation method and (b) LOCOM, at time=256 000 s.

and 1:25cm. Visual comparisons of the results for saturation of NAPL (Sn) and concentration
of NAPL contaminant species in water (�wn ) were then examined and the computational time
was recorded. A representative slice of the domain, as shown in Figure 5, was taken to view
the results.

4.2.2. Visual comparison of results. A comparison of the two methods depicting the satura-
tion of NAPL and the concentration of NAPL contaminant species at time t=256 000 s is
found in Figures 6 and 7, respectively. The saturation solutions appear to be similar in the
amount of residual NAPL remaining in the domain, although the shape of the curves are
slightly di�erent. The concentration results for the two methods are very similar, though the
LOCOM solution is slightly more di�used than the classical method.

4.2.3. Computational e�ciency. The computational time required for a solution was deter-
mined for both methods for the four di�erent grid spacings mentioned previously. The results
can be seen in Table I.

4.2.4. Error analysis. A similar problem to that shown in Figure 6 was run in two dimensions
and an error analysis was performed on the results. The classical collocation method at the
smallest grid spacing was used as the ‘exact’ solution. The grid spacings of �x=�y=�z=
10; 5; 2:5 and 1:25 cm were then analysed and the results can be seen in Figures 8 and 9.
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Table I. A comparison of computation time versus the number of nodes in the system (in seconds).

Number of nodes Hermite (s) LOCOM (s) Speed up

264 (6× 11× 4) 88.61 37.92 2.3
1617 (11× 21× 7) 834.03 348.06 2.4
11 193 (21× 41× 13) 8,823.88 2,700.33 3.3
83 025 (41× 81× 25) Non convergent 22,680.69 —

Figure 8. Rates of convergence of LOCOM and classical collocation pressure solutions.

Figure 9. Rates of convergence of LOCOM and classical collocation concentration solutions.

5. CONCLUSION

We propose a new numerical technique which enhances the performance of the classical
Hermite collocation method. Reduction in the degrees of freedom can be obtained while
maintaining higher accuracy. The nodal derivatives which are unknowns in classical Hermite
collocation are approximated as functions of the nodal values of the minimal compact stencil
relative to each node. Optimal approximations for the nodal derivatives can be chosen such
that the truncation error of the discretized operator has the highest order of convergence. The
new numerical technique has been applied to an existing multiphase transport code based on
Hermite collocation.
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