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ABSTRACT

In this paper, sufficient conditions for the occurrence of an
extreme crest in weakly nonlinear water waves are given. The
starting point is the Zakharov equation which governs the dy-
namics of the spectral components of the wave envelope of
the surface displacement η(x, t). It is proven that the optimal
spectral components giving an extreme crest at (x = 0, t = 0)
are solutions of a well deÞned constrained optimization prob-
lem. A new analytical expression for the probability of ex-
ceedance of the wave crest is then derived by means of the
theory of quasi-determinism of Boccotti. The analytical re-
sults agree well with measurements data at the Draupner Þeld
and can be used for the prediction of freak wave events.
Key words: Extreme crest, Zakharov equation, wave-wave

interaction, quasi-determinism, energy transfer, probability of
exceedance, freak wave.

INTRODUCTION

Single waves that are extremely unlikely as judged by the
Raleigh distribution are called freak waves. The freak event
occurred on January 1st 1995 under the Draupner platform in
the North Sea (Wist et al., 2002) provides evidence that such
waves can occur in the open ocean. During this freak event,
an extreme crest with an amplitude of 18.5 m occurred. The
maximal wave height of 25.6 m was much more than twice the
signiÞcant wave height of about 10.8 m.
Two linear mechanisms which can cause such a concen-

tration or focusing of wave energy in a small area of the
ocean have been proposed: time-space focusing and cur-
rent focusing. In particular, the Þrst mechanism can be ex-
plained by means of the theory of quasi-determinism (Boc-
cotti, 1981,1982,1989,1995,1997,2000). Boccotti showed that,
if in a Gaussian sea a very high wave height occurs at some
point in space and time, with high probability a well deÞned
quasi-deterministic wave group generates the high crest. In
particular, the initial conÞguration of the wave group is such
that in earlier stage of evolution of the group itself, the short-
est waves are in front of the long waves. As time evolves, the

long waves propagate faster and will catch up on the shorter
waves, producing a focusing of energy at some point in space
and time. The second linear mechanism, investigated inWhite
& Fornberg (1998), requires almost unidirectional waves en-
tering a zone of variable currents. However, ocean waves have
a natural directional spreading, therefore the focusing effect is
attenuated. A third mechanism which can be a cause of freak
waves is related to the four-wave interaction in weakly nonlin-
ear water waves (Janseen, 2003; Longuet-Higgins, 1962,1976;
Phillips, 1961; Benney, 1962; Komen et al., 1996). Weakly
nonlinear energy transfer among non-resonant and resonant
quartets is governed by the deterministic Zakharov integrald-
ifferential equation. A corrected version of this equation has
been derived in Krasitskii (1990,1994) using a Hamiltonian
approach and canonical transformations. Under the assump-
tion of narrow-band spectrum, the Zakharov equation reduces
down to the nonlinear Schrödinger (NLS) equation (Janseen,
2003). An enhanced NLS equation valid for broader spec-
tral bandwidth and larger steepness has been proposed by
Trulsen et al. (2000,2003). Based on this model, the effects
of directional spreading on the occurrence of freak waves have
been investigated in Onorato et al. (2002). As the directional
spreading increases, the appearance of extreme events tends
to reduce.

In this paper, sufficient conditions for the occurrence of an
extreme crest in weakly nonlinear water waves are given. The
starting point is the Zakharov equation which governs the dy-
namics of the spectral components Bn(t) of the wave envelope
of the surface displacement η(x, t). The Zakharov equation ad-
mits motion integrals: in particular, its Hamiltonian H (wave
energy), the wave action A and wave momentum M. It is
shown that the spectral components giving an extreme crest
at (x = 0, t = 0) satisfy a well deÞned constrained optimiza-
tion problem. As an application, the case of unidirectional
deep water waves is considered. In this case the formation
of an extreme wave is due to non-resonant energy transfer as
the Benjamin-Feir instability. An asymptotic solution for the
probability of exceedance of the crest height is then derived.
Finally, the analytical predictions are compared to the mea-
surements data at the Draupner Þeld (Wist et al., 2002) .
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THE ZAKHAROV EQUATION

Let us consider water waves over a Þnite depth d. The Za-
kharov integrodifferential equation for weakly nonlinear water
waves to the third order in amplitude, is

∂B(k,t)

∂t
+ iω(k)B(k,t) = (1)

= −i
Z Z Z

T (k,k1,k2,k3)δ(k+ k1 − k2 − k3) ·

·B∗(k1, t)B(k2, t)B(k3, t)dk1dk2dk3

Here the kernel T is a real function of k,k1,k2,k3 and is ob-
tained by symmetrization as described in Krasitskii (1994).
The coefficient B(k,t) can be interpreted as the spectral com-
ponent of the wave envelope. Moreover the Þrst order free-
surface η(x, t) is related to B(k,t) through

η(x, t) =
1

2π

Z ∞

−∞

s
ω(k)

2g
B(k, t)eik·xdk+c.c. (2)

where g∗ denotes the complex conjugate of g, k is the wave
vector, x = (x, y) is the horizontal spatial vector and ω is
the linearized wave frequency related to k through the linear
dispersion relation ω2(k)/g= |k| tanh (|k| d) with g as the ac-
celeration due to gravity. The Zakharov equation is invariant
under the transformation B → B∗, t → −t and admits as a
motion integral, besides its Hamiltonian H (wave energy)

H =

Z
ω(k)B(k, t)B∗(k, t)dk+ (3)

+
1

2

Z Z Z Z
T (k,k1,k2, δ(k+ k1 − k2 − k3) ·

·B∗(k, t)B∗(k1, t)B(k2, t)B(k3, t)dkdk1dk2dk3,

the wave action A and wave the momentumM given by

A =
Z
B(k, t)B∗(k, t)dk M =

Z
kB(k, t)B∗(k, t)dk.

(4)
If one considers B(k, t) as the superimposition of discrete
modes

B(k, t) =
X

n
Bn(t)δ(k− kn) (5)

then substituting Eq. (5) into Eq. (1), yields the set of time-
varying differential equations

dBn
dt

+ iωnBn (6)

= −i
X
p,q,r

Tnpqrδn+p−q−rB∗pBqBr.

Here, ωn = ω(kn) and Tnpqr = T (kn,kp,kq,kr). The gener-
alized Kronecker delta δn+p−q−r denotes that summation is
taken over those subscripts satisfying

kn + kp = kq + kr. (7)

Eq. (6) admits the discrete Hamiltonian

H =
X

n
ωnBn(t)B

∗
n(t)+ (8)

+
1

2

X
n,p,q,r

Tnpqrδn+p−q−r ·

B∗n(t)B
∗
p(t)Bq(t)Br(t)

and the discrete version of the motion integrals (4) is

A =
X

n
Bn(t)B

∗
n(t) M =

X
n

knBn(t)B
∗
n(t). (9)

In addition to the constraint (7), if the modes forms a resonant
quartet, i.e. ωn+ωp = ωq+ωr, the Hamiltonian reduces to
H =

X
ωn |Bn|2. In deep water, resonant quartets can only

occur for three dimensional waves.

SUFFICIENT CONDITIONS FOR THE OCCUR-
RENCE OF AN EXTREME CREST

If the nonlinear effects are weak enough to be neglected, the
free-surface is expressed as follows

ηL(x, t) =
1

2π

NX
n=1

r
ωn
2g
�Bn exp [i(kn·x+�ϕn)] + c.c. (10)

Here �ϕn are arbitrary phase angles and �Bn are positive coef-
Þcients deÞning the wave spectrum

E(k, t)dk =
ωn
π2g

�B2
n δ(k− kn) (11)

where N is the number of the spectral components. If the
nonlinear effects are not negligible, the free-surface η(x, t) is
given by

η(x, t) =
1

2π

NX
n=1

r
ωn
2g
|Bn(t)| exp [i (kn·x+ϕn(t))]+c.c. (12)

where the spectral component Bn(t) has been expressed as

Bn(t) = |Bn(t)| exp[iϕn(t)] n = 1, ...N

with ϕn(t) arbitrary time-varying phase angles. Eq. (12) is
the superimposition of N harmonic components nonlinearly
interacting among each other, according to the evolution equa-
tion (6). As time varies, a nonlinear energy transfer among
the N harmonic components occurs and the wave energy, ac-
tion and momentum are conserved [see Eqs. (8) and (9)]. At
some initial time t = −t0 the N harmonic components Bn(t)
are set to be equal to the corresponding linear components,
that is

Bn(t = −t0) = �Bn exp (i�ϕn) n = 1, ...N.

For linear waves, if all the harmonic components are in phase,
i.e. �ϕn = 0 n = 1, ...N , then the surface displacement ηL(x, t)
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has a stationary point at (x = 0, t = 0) where ηL(x, t) attains
its absolute maximum (Fedele & Arena, 2003)

(Hmax)linear =
1

π

NX
n=1

r
ωn
2g
�Bn.

The highest wave crest in the linear regime can only occur
if all the harmonic components are in phase so that a linear
focusing of energy is attained at a certain point in the space.
In the nonlinear regime, if one imposes that at (x = 0, t = 0)
all the harmonic components are in phase, i.e.

ϕn(0) = 0 n = 1, ...N, (13)

this condition assures the existence of a stationary point for
the nonlinear surface displacement η(x, t). From Eq. (12) the
spatial gradient and the partial derivative with respect to t
have respectively expression as follows

∇η|x=0,t=0 =
i

2π

NX
n=1

kn

r
ωn
2g
|Bn(0)| exp [iϕn(0)] + c.c.

(14)

∂η

∂t

¯̄̄̄
x=0,t=0

=
1

2π

NX
n=1

r
ωn
2g

∂Bn
∂t

¯̄̄̄
t=0

+ c.c.

If condition (13) is imposed, invoking the evolution equation
(6) one can evaluate the time derivative ∂Bn

∂t

¯̄
t=0

as follows

∂Bn
∂t

¯̄̄̄
t=0

= −iωn |Bn(0)|−

+i
X
p,q,r

Tnpqrδn+p−q−r |Bp(0)| |Bq(0)| |Br(0)|

and from Eq. (14) both the spatial gradient ∇η and the time
derivative ∂η

∂t vanish at (x = 0, t = 0). Thus η(x, t) has a
stationary point at (x = 0, t = 0) as in the linear case. In
the following sufficient conditions will be given such that at
the stationary point (x = 0, t = 0) an absolute maximum is
attained by η(x, t). From Eq. (12) the free-surface amplitude
at any time t at x = 0 is

η|x=0 (t) =
1

π

NX
n=1

r
ωn
2g
|Bn(t)| cos [ϕn(t)] . (15)

Imposing the condition (13), yields the maximal amplitude
Hmax that can be attained at time t = 0 for assigned values
of Bn(t = 0), that is

Hmax =
1

π

NX
n=1

r
ωn
2g
|Bn(0)| . (16)

From Eq. (15) it follows that at any time t

η|x=0 (t) ≤
1

π

NX
n=1

r
ωn
2g
|Bn(t)| . (17)

Thus a sufficient condition to have an absolute maximum at
(x = 0, t = 0), i.e. Hmax ≥ η(x = 0, t) ∀t, is that Hmax has

to be greater than the right hand side of the inequality (17).
This yields

NX
n=1

r
ωn
2g
|Bn(0)| ≥

NX
n=1

r
ωn
2g
|Bn(t)| ∀t. (18)

This inequality holds if the harmonic amplitudes |Bn(0)| sat-
isfy the following optimization problem

max
NX
n=1

r
ωn
2g
|Bn(0)| (19)

subject to the constraints [see Eqs. (8) and (9)]X
n
ωn |Bn(0)|2 +

1

2

X
n,p,q,r

Tnpqrδn+p−q−r · (20)

· |Bn(0)| |Bp(0)| |Bq(0)| |Br(0)| =

=
X

n
ωn �B

2
n +

1

2

X
n,p,q,r

Tnpqrδn+p−q−r �Bn �Bp �Bq �Br

andX
n
|Bn(0)|2 =

X
n
�B2
n

X
n

kn |Bn(0)|2 =
X

n
kn �B

2
n.

(21)
Thus, the condition (13) is sufficient for the occurrence of an
extreme crest in weakly nonlinear waves, provided the unique-
ness of the solution of the constrained optimization problem
(19). Condition (13) could also be necessary for the occurrence
of an absolute maximum, but this needs to be proved.

NONLINEAR STATISTICS OF EXTREME
CRESTS

The Theory of Quasi-Determinism for Gaussian
Seas

The theory of quasi-determinism for the mechanics of linear
wave groups was derived by Boccotti in the eighties, with two
formulations. The Þrst one (Boccotti, 1981,1982) enables us
to predict what happens when a very high crest occurs in a
Þxed time and location (Lindgren, 1970,1972; Breitung, 1997;
Sun, 1993); the second one (Boccotti, 1989,2000) gives the me-
chanics of the wave group when a very large crest-to-trough
height occurs. The theory, which is exact to the Þrst order
in a Stokes expansion (Gaussian sea), is valid for any type of
boundary conditions (for example either for waves in an undis-
turbed Þeld or in reßection). The theory was then veriÞed in
the nineties with some small-scale Þeld experiments (Boccotti
et al. 1993a,1993b), both for waves in an undisturbed Þeld
and for waves interacting with structures. An alternative ap-
proach for the derivation of the quasi-determinism theory and
a Þeld veriÞcation off the Atlantic coast of the USA were pro-
posed by proposed by Phillips et al. (1993a,1993b). The Þrst
formulation of the theory (derived only for the time domain)
was also considered in Tromans et al. (1991) and renamed as
�New Wave theory�.
Based on the Þrst formulation of the theory, Boccotti

showed that, if in a Gaussian sea state it is known that a very
high local maximum occurs in some location and time, this
implies with high probability that a well deÞned wave-group
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generates the high local maximum. In detail, if a local wave
maximum of given elevation H occurs at a time t = 0 at a
Þxed point x = 0, with probability approaching 1, the surface
displacement η(x, t) tends asymptotically to the deterministic
form

ηdet(x, t) =
H

σ2

Z
E(k) cos (k · x−ωt) dk H

σ
→∞ (22)

as H/σ → ∞, i.e. when the crest is very high with respect
to the mean wave height. Here, E(k) is the wave spectrum
deÞned in Eq. (11) and σ2 =

R
E(k)dk is the variance of the

Gaussian sea. An exceptionally high local maximum, with
a very high degree of probability, is also a wave crest of its
wave, since ηdet(x, t) attains its absolute maximum at (t =
0,x = 0). A direct consequence is that the number of wave
crests exceeding a Þxed threshold b tends to coincide with
the number of local wave maxima exceeding it, provided the
Þxed threshold is very high; which in its turns implies: the
number of wave crests exceeding a very high threshold b tends
to coincide with the number of b up-crossings (b+), that is

Ncr(b;T )
N+(b;T )

→ 1
H

σ
→∞.

Here, Ncr(b;T ) and N+(b;T ) denote respectively the number
of wave crests exceeding the threshold b and the number of
b+in the very large time interval T . Since

N+(b;T ) ∼ exp
µ
− b2

2σ2

¶
T

the probability of exceedance of a wave crest height admits
the following asymptotic expression

Pr[H > b] =
N+(b;T )
N+(0;T )

= exp

µ
− b2

2σ2

¶
b

σ
→∞. (23)

For discrete spectra

E(k)dk =
1

2
a2
nδ(k− kn) (24)

the deterministic group (22) reduces to

ηdet(x, t) =
H

σ2

NX
j=1

1

2
a2
n cos (kn·x−ωnt)

H

σ
→∞. (25)

By comparing Eq. (25) with the linear surface displacement
ηL(x, t) in Eq. (10) for x = 0 and t = 0, yields

�Bn =
H

2σ2
π

µ
ωn
2g

¶−1/2

a2
n �ϕn = 0 n = 1, ...N. (26)

This means that, in Gaussian seas with spectra (24), if a high
crest of height H occurs at (x = 0, t = 0), with probability
approaching one, the surface displacement ηL(x, t) tends to
assume the deterministic wave form (25). Moreover, if the
crest height H is very large the spectral components �Bn, with
probability approaching one, tend to be equal to the compo-
nents deÞned in Eq. (26). In the limit of H/σ → ∞ the
statistics of the wave crest height follows asymptotically the
Raleigh distribution (23).

The Nonlinear Crest Amplitude

Consider the case of deep water and deÞne the dimensionless
variables

Xn =
|Bn(0)|
H
q

ω0

2g

, �Xn =
�Bn

H
q

ω0

2g

(27)

for n = 1, ...N . The optimization problem (19) is then rewrit-
ten as

max
(X1,...XN)∈<N

NX
n=1

Xn
√
wn Xn > 0 (28)

and the constraints (20) and (21), are expressed in terms of
the Xn variables as follows

NX
n=1

X2
n =

NX
n=1

�X2
n, (29)

NX
n=1

|kn| cos θnX2
n =

NX
n=1

|kn| cos θn �X2
n,

NX
n=1

|kn| sin θnX2
n =

NX
n=1

|kn| sin θn �X2
n,

and

NX
n=1

wnX
2
n + ε

2
d

X
n,p,q,r

�TnpqrXnXpXqXr =

(30)
NX
n=1

wn �X2
n + ε

2
d

X
n,p,q,r

�Tnpqr �Xn �Xp �Xq �Xr.

Here, εd = |kd|H is the steepness of the linear wave and the
dimensionless frequencies wn are deÞned as ωn = wnω0, the
angles θn refer to the y-axis and

�Tnpqr =
1

|kd|3
Tnpqrδn+p−q−r

with |kd| the wave number corresponding to the peak fre-
quency of the linear spectrum. In the Euclidean space <N
the constraints in Eq. (29) represent quadratic hypersurfaces
whereas the constraint (30) represents a quartic hypersurface.
Their intersection manifold J ∈ <N−4 is bounded since one
of the hypersurfaces is a hypersphere.
The amplitude Hmax of the extreme crest in weakly deep-

water waves [see Eq. (16)] can be rewritten as

Hmax = (Hmax)L + (Hmax)NL .

Here, according to Eq. (27) the linear part (Hmax)L and the
nonlinear part (Hmax)NL are deÞned respectively as

(Hmax)L =
H

π

NX
n=1

√
wn �Xn (31)
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and

(Hmax)NL =
H

π

NX
n=1

√
wn (Xn − �Xn). (32)

In the previous section, it has been shown that if a very high
wave crest H occurs in Gaussian seas, with probability ap-
proaching one, the spectral coefficients �Bn tend to be equal to
Eq. (26). This implies (Hmax)L = H. Thus, in the limit of
H/σ→∞, the nonlinear crest height Hmax is given by

Hmax = (1 + λ)H
H

σ
→∞ (33)

where the dimensionless parameter λ is deÞned as

λ =
1

π

NX
n=1

√
wnXn − 1. (34)

Note that λ > 0 indicates self-focusing, i.e. the linear crest
amplitudeH increases due to third order nonlinear interaction
among free harmonics, i.e. harmonics satisfying the linear dis-
persion relation. Third order effects due to bound harmonics,
i.e. harmonics which do not satisfy the linear dispersion re-
lation, are neglected, but second order effects due to bound
harmonics are relevant. They break down the characteristic
symmetry of Gaussian seas implying that higher crests are
more probable than higher troughs (Arena & Fedele, 2002).
To evaluate the effects of second order bound harmonics the

approach proposed by Fedele & Arena (2003) is considered.
To the second order in the Stokes expansion the extreme wave
crest has expression as follows

h =
X
n

An +
1

4

X
n,s

AnAsΓns (35)

where An are harmonic amplitudes when the highest crest
occur and Γns = (|kn|+ |ks|) − | |kn|− |ks| | is the second
order transfer coefficient for the case of deep water. Setting
An = H

q
ω0

2g
1
π

√
wnXn, Eq. (35) transforms to

Hmax = (1 + λ)H + α |kd|H2. (36)

Here, the coefficients λ is deÞned as in Eq. (34) and α is given
by

α =
1

4π2

X
n,s

Γns
√
wnwsXnXs.

Eq. (36) allows to evaluate the amplitude of an extreme non-
linear wave crest by taking in to account both third order
effects due to free harmonics and second order effects due to
bound harmonics.

The Nonlinear Probability of Exceedance of an
Extreme Crest

The linear wave crest H follows asymptotically the Rayleigh
distribution (23). This implies that, from Eq. (36), the prob-
ability of exceedance of the extreme nonlinear crest height
Hmax is given by

Pr[Hmax > h] = exp

−(1 + λ)2
8ε2
dα

2

Ã
1−

s
1 +

4εdα

(1 + λ)2
ξ

!2

(37)

where ξ = h
σ and ξ ∼ ε

−1+ν
d , ν > 0 when εd → 0. The third

order effects are neglected if λ = 0. Note that one can assume
α ≈ 1/2 on deep water (Fedele & Arena, 2003).
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λ  
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Figure 1: The parameter λ as a function of the Benjamin-Feir
Index (BFI) for εd = 0.05.

NARROW-BAND SPECTRA

The optimization problem (28) will be solved for the case of
unidirectional waves in deep water, i.e. θn = 0 and kn =
|kn| / |kd| ∀n. Thus, in Eq. (29) the constraint relative to
the wave momentum along the x direction is ignored. If the
spectrum has a bandwidth ∆K, in the narrow band limit,
the effects of the Benjamin-Feir instability are signiÞcant if
∆K/ |kd| ≤ 2

√
2εd on the time scale t0 v O(1/(ε2

dω
2
d)). Here,

ωd is the wave spectral peak frequency. Assume a narrow band
spectrum where the harmonic components have dimensionless
wavelengths k separated by ∆k, i.e. kn = 1 + n∆k. The
corresponding dimensionless frequencies in the narrow band
limit can be expressed as

wn =
√
1 + n∆k ' 1 + n

2
∆k − n

2

8
(∆k)2 +O

¡
(n∆k)2

¢
and the interaction coefficient �Tnpqr can be assumed equal to
1 (Janseen, 2003). Then, the Eqs. (29) and (30) simplify as
follows

NX
n=1

X2
n =

NX
n=1

�X2
n,

NX
n=1

nX2
n =

NX
n=1

n �X2
n, (38)

and

− (∆k)2
NX
n=1

n2X2
n + 8ε

2
d

X
n,p,q,r

XnXpXqXr (39)

= − (∆k)2
NX
n=1

n2 �X2
n + 8ε

2
d

X
n,p,q,r

�Xn �Xp �Xq �Xr.

Janseen (2003) deÞnes the Benjamin-Feir index (BFI)
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BFI =
2
√
2 εd

∆K/ |kd|
.

in order to characterize the nonlinear behavior of the random
Þeld. If BFI > 1, as the frequency components of an ini-
tial wave packet change in time, energy ßows from the central
mode to the side-band modes. The energy eventually returns,
restoring the wave to its initial state. This energy exchange
occurs in time almost periodically and produce an effect of in-
termittence to the surface displacement: high crests occur in-
termittently in time, affecting the statistics of the wave crests
which tends to deviate from being Gaussian (Onorato et al.,
2001). Extreme events become more probable because of the
Fermi-Pasta Ulam recurrence and the kurtosis of the wave dis-
tribution increases. Consider an initial wave spectrum with
Gaussian shape

E(k) =
1p
2πσ2

k

exp

·
−(k − 1)

2

2σ2
k

¸
. (40)

The dimensionless bandwidth of this spectrum is assumed to
be equal to the relative width at the energy level of one half of
the spectrum maximum, i.e. ∆K/ |kd| = σk

√
2 log 2. Assume

a characteristic steepness εd = 0.05. If one neglects the effects
to due second order bound harmonics, taking the limit of α→
0 in Eq. (37), the probability of exceedance reduces to the
form

Pr[Hmax > h] = exp

·
− ξ2

2(1 + λ)2

¸
. (41)

The optimization problem (28) with the constraints (38) and
(39) is then solved for different values of BFI ∈ [1, 1.4]. The
parameter λ is plotted in Þg. (1) as a function of BFI . Note
that λ increases as the BFI increases implying that the prob-
ability of occurrence of extreme crests increases. In the limit
of narrow-band spectrum one expects λ uniquely deÞned by
the Benjamin-Feir index. Further studies are needed in order
to determine the correct scaling for λ. Monte Carlo simula-
tions of the Zakharov equation (where it is assumed �Tnpqr ' 1
for the case of narrow-band spectrum) have been performed
for two different values of the BFI equal respectively to 0.9
and 1.2. The empirical crest distributions agree very well with
the analytical distribution (41) as one can see from the plots
in Þgs. (2) and (3) for the case of BFI = 0.9 and BFI = 1.15
respectively. Observe that, as the BFI increases so does the
deviation from the Rayleigh distribution. Moreover the spec-
trum of the wave when the highest crest is attained broadens
if compared to the initial spectrum [see Þg. (4)]. This is a
consequence of the modulation instability. Furthermore the
spectrum broadens symmetrically because of the assumption
of narrow-band spectra. If one relaxes this hyphotesis a down-
shift of the spectrum occurs (Trulsen et al., 2000,2003).

0 1 2 3 4 5 6

10- 6

10
- 5

10
- 4

10- 3

10
- 2

10
- 1

100
h/σ 

P

BFI=0.9       
              
ε=0.05 

Rayleigh  

Figure 2: Comparison between the analytical probability of
exceedance (41) of the wave crest (solid line) and the empirical
distribution computed from Monte Carlo simulations (dotted
line). Here, BFI = 0.9 and εd = 0.05.
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Figure 3: Comparison between the analytical probability of
exceedance (41) of the wave crest (solid line) and the empirical
distribution computed from Monte Carlo simulations (dotted
line). Here, BFI = 1.15 and εd = 0.05.

JONSWAP SPECTRA

In this contest the unidirectional JONSWAP spectrum (Has-
selmann et al., 1973) is adopted in the following form

E (k) = A k−3 exp

·
−3
2
k2

¸
exp

(
ln γ exp

"
−(
√
k − 1)2
2χ2

2

#)
.

Here, k = |k| / |kd| , A is the Phillips parameter, γ is the
enhancement coefficient and for typical wind waves one can
assume χ2 = 0.08 . For γ = 1 and A = 0.0081 the Pierson-
Moskowitz spectrum is recovered. By Taylor-expanding the
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spectrum around its peak one can obtain the following spec-
trum

E (k) =
H2
s

16π

1

1 + (k − 1)2/δ2 , δ =

s
8χ2

2

24χ2
2 + ln γ

where Hs is the signiÞcant wave height and δ corresponds
exactly to the half-width at half-maximum of the JONSWAP
spectrum. The BFI parameter for the JONSWAP spectrum
(BFI = 2

√
2 εd /δ) is plotted in Þg. (5) as a function of

the enhancement coefficient γ. As γ increases, the spectrum
becomes higher and narrower around the spectral peak and
BFI increases. Note that for γ > 7 modulation instability
occurs since BFI > 1.

Consider the data of the wave elevation measured at the
Draupner Þeld in the central North Sea, during the storms
in the period from December 31,1994 to January 20,1995.
Joint frequency tables of successive wave crest heights and
wave trough depths of the Draupner time series are pro-
vided by Wist et al. (2002) and the empirical distributions
are readily obtained. The Draupner time series has signif-
icant wave height between 6.0 and 8.0 m, peak frequency
ωp = 0.55 rad/s and mean wave period Tm = 9.1 s. Consider
a JONSWAP spectrum with γ = 10 (BFI ' 1.1, λ ' 0.05
and α ' 0.55.). In Fig. 6 the probability of exceedance of the
extreme crest [see Eq. (37)] is compared against the exper-
imental distribution derived from the Draupner time series.
The Rayleigh distribution and the probability of exceedance
computed with λ = 0 (only second order effects) are also plot-
ted for comparison. As one can see, the probability of ex-
ceedance (37), which consider both second and third effects,
compares very well with the experimental data for high crest
amplitudes, i.e. ξ >> 1.
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Figure 4: Spectrum at the initial stage and when the highest
crest is formed (BFI = 1.15 and εd = 0.05)
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Figure 5: Benjamin-Feir index as a function of the parameter
γ of the JONSWAP spectrum.
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Figure 6: Probabilities of exceedance.

CONCLUSIONS

According to the Zakharov equation governing the dynamics
of the spectral components of the wave envelope of the surface
displacement η(x, t), the optimal spectral components which
give an extreme crest at (x = 0, t = 0) are derived. They are
solutions of a well deÞned constrained optimization problem.
By means of the theory of quasi-determinism of Boccotti, the
probability of exceedance of the wave crest is then obtained.
Numerical probability distributions obtained by Monte Carlo
simulations of the Zakharov equation are in agreement with
the new analytical distribution for the case of narrow-band
spectra. Moreover the new crest distribution agrees well with
the empirical distribution derived from the Draupner time se-
ries.

2004-FL-02 7



REFERENCES

Arena F., Fedele F. (2002) A family of narrow-band non-linear
stochastic processes for the mechanics of sea waves. Eur. J.
Mech. B Fluids 21 no. 1, 125�137.

Benney, D. J. (1962) Non-linear gravity wave interactions. J.
Fluid Mech. 14;577�584.

Boccotti P. (1981) On the highest waves in a stationary Gaus-
sian process. Atti Acc. Ligure di Scienze e Lettere;38:271-302.

Boccotti P. (1982) On ocean waves with high crests. Mecca-
nica;17:16-19.

Boccotti P. (1989) On mechanics of irregular gravity waves.
Atti Acc. Naz. Lincei, Memorie;19:11-170.

Boccotti P. (1995) A Þeld experiment on the small-scale model
of a gravity offshore platform. Ocean Engng. 22:615-627.

Boccotti P. (1997) A general theory of three-dimensional wave
groups. Ocean Engng. 24:265-300.

Boccotti P. (2000)Wave mechanics for ocean engineering. El-
sevier Science, Oxford.

Boccotti P, Barbaro G and Mannino L. (1993) A Þeld exper-
iment on the mechanics of irregular gravity waves. J. Fluid
Mech. 252:173-186.

Boccotti P, Barbaro G, Fiamma V et al. (1993) An experi-
ment at sea on the reßection of the wind waves. Ocean Engng.
20:493-507.

Crawford D. R., Lake B. M., Saffman P. G., Yuen H. C. (1981)
Stability of weakly nonlinear deep-water waves in two and
three dimensions. J. Fluid Mech. 105; 177�191.

Dysthe KB, Trulsen K., H. E. Krogstad & H. Socquet-Juglard
(2003) Evolution of a narrow band spectrum of random surface
gravity waves. J. Fluid Mech. 478, 1-10.

Fedele, F., Arena F. (2003) On the Statistics of High Non-
linear Random Waves. In Proc. of the Thirteenth Inter. Off-
shore and Polar Eng. Conference, Vol. III, pp. 17-22.

Hasselmann K, Barnett TP, Bouws E and al. (1973) Measure-
ments of wind wave growth and swell decay during the Joint
North Sea Wave Project (JONSWAP). Deut. Hydrogr. Zeit.
A8:1-95.

Janssen, Peter A. E. M. (2003) Nonlinear four-wave interac-
tions and freak waves. J. Phys. Oceanogr. 33, no. 4, 863�884.

Krasitskii, V. P. (1994) On reduced equations in the Hamilto-
nian theory of weakly nonlinear surface waves. J. Fluid Mech.
272, 1�20.

Krasitskii, V. P. (1990) Canonical transformations in a theory
of weakly nonlinear waves with a nondecay dispersion law.
Sov. Phys. JETP (English transl.) 71 (5), 921-927.

Komen G. J., Cavaleri L., Donelan M.,Hasselmann K., Hassel-
mann S.,and Janssen PAEM. (1996) Dynamics and Modelling
of Ocean Waves. Cambridge University Press, 554 pp.

Lindgren G. (1970) Some properties of a normal process near
a local maximum. Ann. Math. Statist. 4(6):1870-1883.

Lindgren G. (1972) Local maxima of Gaussian Þelds. Ark.
Mat. 10:195�218.

Longuet-Higgins, M. S. (1976) On the nonlinear transfer of
energy in the peak of a gravity-wave spectrum: a simpliÞed
model. Trans. Roy. Soc. London Ser. A 347, 311�328.

Longuet-Higgins, M. S. (1962) Resonant interactions between
two trains of gravity waves. J. Fluid Mech. 12 1962 321�332.

Maes MA, Breitung KW. (1997) Direct Approximation of the
extreme value distribution of nonhomogeneous Gaussian ran-
dom Þelds. J. Offshore Mech. Ar. Eng. 119:252-256.

Onorato, M.; Osborne, A. R.; Serio, M. (2002) Extreme wave
events in directional, random oceanic sea states. Phys. Fluids
14, no. 4, L25�L28.

Phillips, O. M. (1960) On the dynamics of unsteady gravity
waves of Þnite amplitude. I. The elementary interactions. J.
Fluid Mech. 9;193�217.

Phillips, O. M. (1961) On the dynamics of unsteady gravity
waves of Þnite amplitude. II. Local properties of a random
wave Þeld. J. Fluid Mech. 11;143�155.

Phillips OM, Gu D and Donelan M. (1993) On the expected
structure of extreme waves in a Gaussian sea, I. Theory and
SWADE buoy measurements. J. Phys. Oceanogr. 23:992-1000.

Phillips OM, Gu D and Walsh EJ. (1993) On the expected
structure of extreme waves in a Gaussian sea, II. SWADE
scanning radar altimeter measurements. J. Phys. Oceanogr.
23:2297-2309.

Sun J. (1993) Tail probabilities of the maxima of Gaussian
random Þelds. The Annals of Probability 21(1):34-71.

K. Trulsen, I. Kliakhandler, K. B. Dysthe & M. G. Velarde
(2000) On weakly nonlinear modulation of waves on deep wa-
ter. Phys. Fluids 12, 2432-2437.

Tromans PS, Anaturk AR and Hagemeijer P. (1991) A new
model for the kinematics of large ocean waves - application as
a design wave -. Shell International Research publ. 1042.

Onorato M, Osborne AR, Serio M and Bertone S. (2001) Freak
waves in Random Oceanic Sea States Phys. Review Letters 86,
no. 25, 5831�5834.

Wist HT, Myrhaug D, Rue H. (2002) Joint distributions of
Successive wave crest heights and Successive wave trough
depths for second-order nonlinear waves. Journal of Ship Re-
search;46(3):175-185.

White, B. S., Fornberg B (1998) On the chance of freak waves
at sea. J. Fluid Mech. 355, 113�138.

2004-FL-02 8


