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The advection-diffusion equation is notoriously difficult to solve for higher Peclet number
when using standard Galerkin methods. Strong oscillations occur in regions of higher gradi-
ent. In order to improve the Galerkin solution two successful stabilized methods have been
considered in the last decade, which are the Streamline Upwinding Petrov Galerkin method
and the residual-free bubbles method. Moreover Herrera, in the context of his algebraic theory
for boundary methods, has shown that optimal schemes can be derived by using optimal test
functions satisfying a local adjoint boundary value problem. In this paper we apply Herrera’s
approach to consider unstructured triangular meshes. In order make the residual error vanish
locally at each element an adjoint integro-differential boundary-value problem has been derived
and solved under the hypothesis of dominant advection by the methods of successive approxi-
mations and multiple-scale perturbation. We have applied the proposed approach to the linear
and quadratic elements, thereby showing that the stabilized quadratic Galerkin elements per-
form better than the stabilized linear Galerkin elements. Comparison with other stabilization
methods is also illustrated.

1. INTRODUCTION

The advection-diffusion equation is notoriously difficult to solve for higher Peclet num-
bers Pe when using standard Galerkin methods. Strong oscillations occur in regions of
higher gradient. Many numerical approaches have been proposed to reduce the oscilla-
tory behavior of the Galerkin solution. In particular, the Streamline Upwinding Petrov
Galerkin method of Hughes [2] adds numerical diffusion along the streamline direction
damping the oscillations. Brezzi et al.[1] have proposed a residual-free bubble method.
Both the above mentioned approaches belong to the general class of stabilized methods
[3]. Herrera,([5][4]), in the context of his algebraic theory for boundary methods, has
shown how to choose optimal test functions to derive an optimal numerical scheme with
higher order convergence. According to his theory, the optimal test function satisfies a
local adjoint boundary value problem. Celia et al.[6] applied this approach for structured
grids, leading to an Eulerian-based numerical scheme that is able to resolve sharp-front
problems with minimal numerical oscillations. In this paper we apply Herrera’s approach
to consider unstructured triangular grids. We first introduce a Petrov-Galerkin formula-
tion for the advection-diffusion equation and choose the space of the test functions such
that the equation of the residual error solution is identically zero. In order to achieve
this condition, an adjoint integro-differential boundary-value problem has to be satisfied
locally at each triangular element of the mesh. An exact analytical solution over the entire



range of Peclet numbers of the latter boundary-value problem is difficult; therefore we
have applied the methods of successive approximations and multiple-scale perturbation
to obtain an asymptotic solution valid for higher Peclet numbers (dominant advection).
Finally some benchmark problems are considered in order to show that the stabilized
quadratic Galerkin elements perform better than the stabilized linear elements.

2. THE PETROV-GALERKIN METHOD

Let us consider the advection-diffusion operator L = −∇ · (D ∇ )+~c ·∇ in a bounded
domain Ω in the (x, y) space, where D is a 2x2 diffusivity tensor and ~c is a divergence-free
velocity field. The boundary value problem considered is the following

L(u) = f on Ω u|∂Ω1 = g (D ∇u− u~c) · ~n
¯̄̄
∂Ω2

= r (1)

where ∂Ω = ∂Ω1 ∪ ∂Ω2 is the exterior boundary and g : ∂Ω1 → < and r : ∂Ω2 → < as
well as the source term f : Ω → < are given functions. For the sake of simplicity we
shall assume that Ω is a polygonal domain. We introduce on Ω a triangulation Υh with
polygonal boundary Ω where K is the generic triangular element and h = max

K ²Υh
diam(K).

Over the entire domain Ω, we define the finite functional space

V sh = {u ∈ Cs (Ω) , u |K is a polynomial of order s : u = g on ∂Ω1} (2)

Without loosing generality we choose the space of the test functions Wh as the space of
the C0 (K)-continuous functions over the generic triangle K

Wh = {w ∈ C0 (K) : w = 0 on ∂Ω1}
With this functional setting the Petrov-Galerkin formulation for the approximate solution
û ∈ V sh is defined as the following
A(û, w) +B(û, w) = L(w) ∀w ∈Wh (3)

Where

A(p, q) =
R
Ω

h
(D∇p) ·∇q +∇ · (~cp)q

i
dΩ

B(p, q) = − R∂Ω2 ~c · ~n pq dS L(q) =
R
Ω fq dΩ+

R
∂Ω2
rq dS

(4)

The exact solution u satisfies the variational equation

A(u,w) +B(u,w) = L(w) ∀w ∈Wh (5)

From eqs. 3 and 5 the residual equation for e = u − û is A(e, w) + B(e, w) = 0 or in
explicit formX
K

Z
K

L(e)w dΩ+ X
K∩∂Ω=φ

Z
∂K

(D∇e) · ~n wdS +
Z

∂Ω2

h
(D∇e) · ~n− e~c · ~n

i
w dS = 0 (6)

where in the second sum, only the internal triangular elementsK are considered. Equation
6 reveals that the sum of the internal element-wise residual R(û) = [L(û)− f ] = −L(e),



the jumps of the gradient of û across the elements as well as the flux error at the boundary
∂Ω2 are in an average sense equal to zero. At this level we are free to choose the space
Wh so that the residual error e vanishes. In order to do this we consider the following
Green formulaR

Ω
[wL(e)− eL∗(w)] dΩ = − R

∂Ω
w(D ∇e) · ~n dS+ (7)

+
R
∂Ω
e[(D ∇w) · ~n+ w~c · ~n ]dS + P

K∩∂Ω=φ

R
∂K

h
−w(D ∇e) + e (D ∇w)

i
· ~n dS

where L∗(w) = −∇ · (D ∇w)−~c ·∇w is the adjoint operator of L. The formulas 6 and 7
yield the dual residual equation of the formP
K

R
K
eL∗(w) dΩ+ P

K∩∂Ω=φ

R
∂K
e(D∇w) · ~n dS + R

∂Ω2

e(D∇w) · ~n dS = 0 (8)

in which we have set e = 0 and w = 0 on ∂Ω1 by definition. The residual equation 8
defines a dual velocity field w. The choice of a test function w satisfying the local adjoint
equation L∗(w) = 0, the dual flux (D ∇w) · ~n continuous across the internal boundaries
∂K and zero at the external boundary ∂Ω2, make the residual error to vanish. The third
term in eq. 8 can be considered as the condition that the contribution from the dual flux
(D ∇w) · ~n along the boundary ∂K vanishes in an average sense locally at each element
K. The total boundary flux is f (K)tot =

R
∂K(D∇w) · ~ndS and can be considered as an

uniform source flux distributed over the element K as f (K)tot /AK where AK is the element
area. We shall impose instead that the latter uniform source flux f (K)tot /AK in an average
sense is zero, getting the new dual residual equation as

P
K

R
K eL∗(w) dΩ+

P
K

R
K e

f
(K)
tot

AK
dΩ = 0 (9)

Eq. 9 is identically zero if, over the triangle element K, the test function w satisfies the
following integro-differential equation

L∗(w) + 1
AK

R
∂K(D∇w) · ~n dS = 0 (10)

With this choice of the spaceWh, the residual equation is identically zero overK for every
choice of the approximate space V sh ; hence the approximate solution û is the projection
of the exact solution u onto the space V sh . In other words, for this choice of Wh, eq. 3
is satisfied by both the approximate solution û and the exact solution u. For the case of
dominant advection, we expect that the the interfacial flux error is negligible if compared
to the element residual error. In the following we shall consider only linear and quadratic
elements (s = 1, 2); hence we shall build the test functions such that they form a basis
for Wh by choosing

Wh(Ωh) = {w ∈ C0 (K) , w = φ+ δw with δw |∂K = 0, φ ∈ V sh } (11)

where we require that the correction δw vanishes at the boundary of the triangular element
K for the completeness of the basis. Consequently we solve for the correction δw as

L∗(δw) +
R
∂K(D∇δw) · ~n dS

AK
= F (x, y) δw|∂K = 0 (12)



where F (x, y) = −L∗(φ)− 1
AK

R
∂K(D∇φ) · ~n dS is the generic source term which depends

upon the choice of the approximation functional space V sh . Let us split the Petrov-Galerkin
formulation 3 as follows:

[A(û,φ) +B(û,φ)− L(φ)]GAL +A(û, δw) +B(û, δw)− L(δw) = 0 (13)

The first three terms in square brackets in eq. 13 represent the standard Galerkin for-
mulation and the other terms are the sub-grid corrections. The element-wise sub-grid
correction has the form

A(û, δw) = Ia(û, δw) + Ib(û, δw) (14)

where

Ia =
R
Ω~c ·∇û δw dΩ, Ib =

R
Ω(D∇û) ·∇δw dΩ (15)

The added sub-grid corrections in 15 stabilize the standard Galerkin formulation. We
shall particularize the expressions of the sub-grid corrections for linear and quadratic
elements. For linear elements (s = 1) we shall show that the stabilization is enforced by
adding numerical diffusion along the streamline and cross-wind directions. For dominant
convection the cross-wind sub-grid correction is negligible if compared to the streamline
sub-grid correction and the method reduces down to the residual free-bubble method of
Brezzi [1]. For quadratic elements (s = 2) in the case of dominant advection, the major
contribution for the stabilization comes from the added numerical diffusion and dispersion
along the streamline direction. In the following we assume D = ²I where I is the 2x2
identity matrix and ² is the diffusion coefficient.

2.1. Linear elements
Let us consider the space V 1h (Ωh) consisting of linear polynomials over the element K.

In this case L∗(φ) = −~c ·∇φ and it is constant over the element; therefore we can solve
eq. 12 with unitary source as L∗(W ) + 1

Ae
²
R
∂K

∂W
∂n
dS = 1 and (see appendix for further

details in the solution of eq. 12)

δw = −W
h
L∗(φ) + 1

AK
²
R
∂K

∂φ
∂n
dS
i

It is an easy task to recognize the nature of the sub-grid corrections; regarding the cor-
rection Ia

Ia(û, δw) = R (Pe) (~c ·∇û) ~c ·∇φ− ² R (Pe) (~c ·∇û) 1
AK

R
∂K

∂φ
∂n
dS (16)

where R (Pe) =
R
KW dΩ = AKL0

c
f0 (Pe) and f0 (Pe) = − 1

Pe
+
R 1
0 t

2 coth
³
Pe

t
2

´
dt with

Pe =
c L0
²
the local Peclet number and L0 the maximum length of the element K along

the direction of the velocity. The sub-grid correction Ia adds numerical diffusion along
the streamline direction. Let us observe that the second sub-grid correction in eq. 16 due
to the jump fluxes is of O(²) and therefore negligible for dominant convection (²→ 0) as
we expect. The sub-grid correction Ib can be expressed as

Ib(û, δw) =
³
²
c

R
K

∂W
∂η
dΩ

´
c∂û
∂η

∂φ
∂ξ
+O(²2) (17)



in which higher terms of O(²2) have been neglected and a local orthogonal system of
axes ξ, η respectively parallel and perpendicular to the velocity field has been considered
(see appendix). The sub-grid correction Ib adds numerical diffusion along the cross-wind
direction. It results in Ia ∼ O(1) and Ib ∼ O(²); therefore for dominant advection
(² → 0) the contribution from the cross-wind correction is negligible as compared to the
streamline correction. Furthermore let us note that as Pe → ∞, f0 → 1/3. In this case
the streamline correction Ia reduces to the residual-free bubble method of Brezzi et al.
[1].

2.2. Quadratic elements
Let us consider the space V 2h (Ωh) consisting of quadratic polynomials over the triangular

element K. In this case, for solving eq. 12, we consider F (ξ, η) = −L∗(φ) neglecting the
contribution from the jump fluxes. In this case F (ξ, η) has linear variation over the
triangle K and the solution of the optimal test function has expression as

δw(ξ, η) =
∂φ

∂ξ

¯̄̄̄
¯
ξ−,η

g1 (ξ, η) +
∂2φ

∂ξ2

¯̄̄̄
¯
ξ−,η

g2 (ξ, η)

where the functions g1 (ξ, η) , g2 (ξ, η) are reported in the appendix. For this case we
consider only the correction Ia which is of O(1) as ²→ 0, expressed as:

Ia(û, δw) =
Z
K
c
∂û

∂ξ

∂φ

∂ξ

¯̄̄̄
¯
ξ−,η

g1 (ξ, η) dΩ+ β
Z
K
c
∂û

∂ξ

∂2φ

∂ξ2

¯̄̄̄
¯
ξ−,η

g2 (ξ, η) dΩ (18)

The first integral in eq. 18 adds numerical diffusion along the streamline direction; the
second integral represents the variational formulation of a third order derivative ∂3u

∂ξ3
and

therefore it adds numerical dispersion along the wind direction. In order to understand the
effect of the second sub-grid correction in eq. 18, we have introduced a generic parameter
β ∈ [0, 1]. Numerical investigation shows that optimal solutions can be obtained with
β = 1/3 as we shall show in the next section.

3. BENCHMARK PROBLEMS

In order to test the stabilized linear and quadratic elements we have considered two
benchmark problems. The first problem is introduced for studying a downstream bound-
ary layer and a characteristic internal layer that propagates along the characteristic when
inflow boundary conditions are discontinuous. The domain is defined as Ω = {(x, y) :
0 < x < 1, 0 < y < 1} and the velocity field is ~c = (1, 10/3) m/s; the size of the mesh
used is h = 0.06 m with a mean Peclet number P̄e = 800 (596 < Pe < 962). The inflow
boundary conditions are defined at y = 0 as u(x, y = 0) = H(x)−H(x−1/3) where H(x)
is the step function. The figures 1 and 2 show the numerical solutions respectively for the
linear and quadratic elements. As one can see, the quadratic elements produce a sharper
front with less overshoot than the linear elements. In this case the linear elements give
the same solution as the residual-free bubble method. Regarding the second problem, let
us consider for the domain Ω an L-shaped geometry where the velocity field is a vortex
defined as ~c = (−x, y) m/s; the size of the mesh used is h = 0.058 m with a mean Peclet
number P̄e = 100 (256 < Pe < 20). The inflow boundary conditions are defined at y=0



as u(x, y = 0) = H(x − 1/2) − H(x − 1) where H(x) is the step function. The figures
3 and 4 show that the quadratic elements produce an enhanced numerical solution with
sharper fronts and minimal oscillations.

Figure1. Boundary layer - Linear FE Figure2. Boundary layer - Quadratic FE

Figure3. Variable flow field - linear FE Figure4. Variable flow field - quadratic FE

4. CONCLUSIONS

We have derived a stabilization of the standard Galerkin FEM by choosing the space
of the test functionWh such that the residual error equation is identically zero. The opti-
mal test function w ∈Wh satisfies an adjoint integro-differential boundary value problem
which is solved by the methods of successive approximations and multiple-scale pertur-
bation, under the hypothesis of dominant convection. We recognize that the contribution
from the interfacial errors is negligible for high Peclet number as one expects. Both the
linear and quadratic elements have been considered. The application of the proposed ap-
proach for some benchmark cases shows that the stabilized quadratic Galerkin elements
have better performance than the stabilized linear Galerkin elements.

5. APPENDIX

In order to solve the boundary value problem 12 we first refer to a local orthogonal
coordinate axes system ξ,η that is parallel and perpendicular to the velocity field. Let
us assume for the diffusivity tensor the form D = ²I where I is the 2x2 identity matrix
and ² is the diffusion coefficient; in this new frame we apply the method of successive



approximations as

L∗ξη
³
Q(n+1)

´
+ (1− δn0)²

R
∂K

∂Q(n)

∂n
dS

AK
= F (ξ, η) Q(n+1)

¯̄̄
∂K
= 0 (n = 0, 1, 2, ..) (19)

where δjk is the Kronecker symbol, L∗ξη = −²
³

∂2

∂ξ2
+ ∂2

∂η2

´
− c ∂

∂ξ
and ∂

∂n
are respectively

the adjoint and the normal derivative operators and c =
q
c2x + c

2
y, (cx, cy) = x and y

velocities for the element K. Here F (ξ, η) = −L∗(φ) − 1
AK
²
R
∂K

∂φ
∂n
dS. We shall solve

only for the leading term Q(1) by applying the multiple-scale perturbation method. Let
us define the inflow and outflow boundaries of the triangle element K as

∂K+ = {ξ = ξ+(η) : ~c · ~n > 0} ∂K− = {ξ = ξ−(η) : ~c · ~n < 0}
As ²→ 0, the adjoint solution Q(1) has a boundary layer localized at the inflow boundary
∂K− (the velocity field is reversed for the adjoint problem) where the solution changes
rapidly. In the following, for the leading solution Q(1), we shall drop the superscript. The
diffusion flux ²∂Q

∂ξ
and advection flux cQ are of the same order inside the boundary layer.

Far from the boundary layer the advection becomes dominant and the diffusion flux can
be neglected. Moreover inside the boundary layer we expect that the contribution of the
cross-wind diffusion flux ²∂Q

∂η
is negligible if compared to the streamline diffusion flux ²∂Q

∂ξ
,

as advection becomes dominant. By defining the change of variable ξ− ξ−(η) = ²ζ eq. 19
(in this case n = 0) transforms as follows

−∂2Q
∂ζ2
− c∂Q

∂ζ
= ²F

h
ξ− (η) + ²ζ, η

i
+ ²2 ∂

2Q
∂η2

(20)

From eq. 20 one can recognize that the advection and streamline diffusion fluxes have the
same order; furthermore the cross-wind diffusive flux ²∂Q

∂η
is of order O(²) compared to

the streamline diffusion flux ∂Q
∂ζ
which is of order O(1). Now we can apply the method

of multiple-scale perturbation only for the variable ζ by introducing an auxiliary scale
Z = ²ζ (ζ is the fast scale and Z is the slow scale). We define the following pertubation
expansion for Q as:

Q(ζ, η) = Q0 (ζ, Z; η) + ²Q1 (ζ, Z; η) + ...... (21)

For the presence of the two scales, the partial derivatives of Q with respect to the variable
ζ operate as ∂

∂ζ
→ ∂

∂ζ
+ ² ∂

∂Z
, ∂2

∂ζ2
→ ∂2

∂ζ2
+2² ∂2

∂ζ∂Z
+ ²2 ∂2

∂Z2
. Plugging eq. 21 into eq. 20 one

gets

−
³
∂2Q0
∂ζ2

+ 2² ∂
2Q0

∂ζ∂Z
+ ²∂

2Q1
∂ζ2

´
− c

³
∂Q0
∂ζ
+ ²∂Q0

∂Z
+ ²∂Q1

∂ζ

´
= ²

µ
F |ξ−,η + ∂F

∂ξ

¯̄̄
ξ−,η

Z
¶
+O(²2)

We therefore obtain to O(²), the following hierarchy of perturbation equations :

O(1) Lζ(Q0) = 0 O(²) Lζ(Q1) = S1(ζ, Z, η) (22)

where Lζ = − ∂2

∂ζ2
− c ∂

∂ζ
, S1(ζ, Z, η) = 2 ∂

2Q0
∂ζ∂Z

+ c∂Q0
∂Z
+ F |ξ−,η + ∂F

∂ξ

¯̄̄
ξ−,η

Z and the zero

boundary condition has to be satisfied by all the perturbational terms. The solution of
the leading term Q0 (see eq. 22) is

Q0(ζ, Z, η) = A0(Z, η)z0 (ζ) +B0(Z, η)z1 (ζ) (23)



where z0 (ζ) = 1, z1 (ζ) = exp [−cζ] are the fundamental solutions of Lζ(z) = 0 and
A0(Z, η), B0(Z, η) are undetermined functions. Now let us solve for theQ1 term. Plugging
eq. 23 into the expression of the source term S1 one gets

S1(ζ, Z, η) = H0(Z, η) z0 (ζ) +H1(Z, η) z1 (ζ)

Where H0(Z, η) = c∂A0
∂Z
+ F |ξ−,η + ∂F

∂ξ

¯̄̄
ξ−,η

Z, H1(Z, η) = −c∂B0∂Z
. The source term S1

contains resonant forcing terms because it is a combination of the fundamental solutions
z0 (ζ) and z1 (ζ). Therefore Q1 admits particular solutions of the form ζz0 (ζ) and ζz1 (ζ)
which are not admissible for the boundary layer. Thus in order to avoid non physical
solutions, one has to impose the vanishing of the components of S1 proportional to z0 (ζ)
and z1 (ζ). Proceeding in this way, one gets two equations to solve for A0,B0 which
are H0(Z, η) = 0 and H1(Z, η) = 0. By imposing zero values at the boundary ∂K as
Q0(ξ−, η) = 0 and Q0(ξ+, η) = 0, the O(1) solution Q0 as function of the ξ,η coordinates
is

Q0(ξ, η) =
1
c
F |ξ−(η),η g1 (ξ, η) + 1

c
∂F
∂ξ

¯̄̄
ξ−(η),η

g2 (ξ, η) (24)

where

g1 (ξ, η) = −
³
ξ − ξ−

´
+ L (η) P (ξ, η) g2 (ξ, η) = −(ξ−ξ−)

2

2
+ L(η)2

2
P (ξ, η)

with L (η) = ξ+ (η)−ξ− (η) and P (ξ, η) =
µ
exp

·
−c(ξ−ξ−)

²

¸
− 1

¶
/
³
exp

h
− cL(η)

²

i
− 1

´
. One

could continue with deriving the higher order terms Q1, Q2,..., but we stop at the leading
term for the sake of simplicity.
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