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Abstract
The weakly nonlinear dynamics of axisymmetric Poiseuille pipe flows is
investigated. It is shown that small perturbations of the laminar flow with
amplitude ε ∼ O(Re−2.5) obey a coupled system of nonlinear Korteweg–de
Vries-type equations. To leading order, these support inviscid soliton-type
solutions and periodic waves in the form of toroidal vortex tubes that, due
to viscous effects, slowly decay in time on a longer time scale t ∼ O(ε−2.5),
irrespective of higher-order nonlinearities.

1. Introduction

The laminar Hagen–Poiseuille flow is believed to be linearly stable to periodic or localized

Q1

infinitesimal disturbances for all Reynolds numbers Re (see, e.g., Drazin and Reid (1981)),
unlike rotating pipe flows that exhibit a classic supercritical bifurcation (Mackrodt 1976). This
indicates that in non-rotating pipe flows, nonlinearities play a particularly important role in
shaping the dominant structures at transition, which is triggered by finite-amplitude perturba-
tions (Hof et al 2003). In experiments, at a critical fluid speed an intermittent turbulent region
develops along the pipe dominated by localized patches, known as puffs, and slug structures
(Wygnanski and Champagne 1973, Wygnanski et al 1975). They arise as a result of non-
axisymmetric perturbations, although strong axisymmetric input can lead to similar turbulent
structures (Leite 1959, Fox et al 1968). Slugs extend in the streamwise direction filling the
entire cross-section of the pipe, especially near the wall, whereas puffs are concentrated near
the pipe axis and are surrounded upstream and downstream by laminar flow. Self-sustained
turbulence is observed at Re ≈ 2000, and at Re ≈ 2250 puffs appear, which as Re increases
slowly delocalize by splitting into two or more puffs, eventually expanding into slug flow.

To explain such phenomena, Schmid and Henningson (2001) have suggested that
transition occurs due to transient algebraic energy growth of linear disturbances, due
to the non-normality of the linearized Navier–Stokes operator. Recently, Pringle and
Kerswell (2010) extended such a concept to nonlinear disturbances. Other recent studies try
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to explain transition in terms of exact nonlinear solutions to the Navier–Stokes equations in
the form of steady or travelling waves and periodic patterns (Waleffe 1995a,b, 1997, Faisst
and Eckhardt 2003, Wedin and Kerswell 2004, Kerswell 2005, Kerswell and Tutty 2007,
Gibson et al 2008, Willis et al 2008, Willis and Kerswell 2009). Their dominant feature is
the nonlinear interaction of streamwise vortices and streaks of the self-sustaining processes
formulated by Waleffe (1995a,b, 1997). A recent experimental work by Hof et al (2004)
has provided physical evidence that such special patterns can occur in turbulent pipe flows.
Their relevance to the understanding of turbulence is twofold. First, they seem to share the
same mean properties as the turbulent flow. On the other hand, they are believed to form the
skeleton of the turbulent attractor that separates from the laminar state through a chaotic edge
or boundary of turbulence (Schneider et al 2007, Duguet 2008, Duguet et al 2008, Willis and
Kerswell 2008). Indeed, if the Navier–Stokes equations are viewed as a dynamical system,
self-sustaining states correspond to saddle points in an infinite-dimensional phase space. They
form a rigid web of heteroclinic connections through their stable and unstable manifolds that
organize the turbulent dynamics. Recent numerical studies in turbulent pipe flows (Wedin and
Kerswell 2004, Kerswell 2005, Kerswell and Tutty 2007) as well as in Couette flows (Gibson
et al 2008) provide evidence that turbulence can be understood as an effective random walk
in phase space, where turbulent trajectories visit the neighbourhoods of equilibria, travelling
waves or periodic orbits, switching from one saddle to the other through their stable and
unstable manifolds (Cvitanović and Eckhardt 1991, Cvitanović 1995).

On the other hand, non-rotating axisymmetric pipe flows do not exibhit chaotic or
turbulent behaviour. Currently, numerical simulations seem to suggest that such flows are
nonlinearly stable (see, e.g., Patera and Orszag 1981, Willis and Kerswell 2008). Theoretical
investigations which attempted to prove or disprove this assertion have been limited by
the challenge of studying small flow perturbations bifurcating from infinity. Unfortunately,
weakly nonlinear approaches may not be appropriate for such an analysis (see Rosenblat
and Davis 1979). In fact, Davey and Nguyen (1971) predicted that nonlinearity increases
the damping rate of a disturbance of small but finite amplitude localized near the axis of
the pipe, whereas Itoh (1977) for the same centre mode found the opposite result. Both their
methods are theoretically sound, but as pointed out by Rosenblat and Davis (1979) the authors
have constructed amplitude equations for the small-norm bifurcation solution with a dominant
structure as that of the least stable linear eigenmode. However, bifurcation from infinity occurs
as a result of a strongly nonlinear balance between viscous and inertial effects, and thus it is
not a weakly nonlinear phenomenon, even though it is concerned with small-norm solutions.
As pointed out by Davey (1977), calculations to higher order for determining more terms

Q2
in the amplitude equation would be needed to correctly predict subcritical instability, if any
occurs.

For non-rotating non-axisymmetric pipe flows, Smith and Bodonyi (1982) found
nonlinear neutral centre modes, hereafter labelled as SB modes, in the form of inviscid
travelling waves of small but finite amplitude, which are unstable equilibrium states (see
Walton 2004). More recently, Walton (2011) studied the nonlinear stability of impulsively
started pipe flows to axisymmetric disturbances at high Reynolds numbers and found the
axisymmetric analogue of SB modes, also primarily governed by inviscid dynamics. Walton’s
neutral mode and the inviscid axisymmetric ‘slug’ structure proposed by Smith et al (1990)
are similar to the slugs of vorticity that have been observed in both experiments (Wygnanski
and Champagne 1973) and numerical simulations (Willis and Kerswell 2009). As pointed out
by Walton (2011), it would be a bit of a stretch to suggest that these neutral modes are the
same as the experimental slugs; however, such inviscid structures may play a role in pipe
flow transition as precursors to puffs and slugs, since most likely they represent unstable
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equilibrium states, as do the SB modes (see Walton 2004). Indeed, as mentioned above, the
experimental results show that strong axisymmetric forcing can also trigger similar turbulent
structures such as puffs and slugs (Leite 1959, Fox et al 1968).

In light of the studies mentioned above, I propose to describe axisymmetric nonlinear
near-neutral modes in pipe flows from a point of view that draws from recent work on exact
wave solutions of nonlinear partial differential equations (PDEs) via the inverse scattering
transform (IST). For some of them, integrability holds and the IST unveils the dynamics of
solitons and travelling waves (see, e.g., Ablowitz et al 1974, Ablowitz and Segur 1981, Drazin
and Johnson 1990). Among the integrable PDEs, the Korteweg–de Vries (KdV) equation

∂t u + ∂xxx u + 6u∂x u = 0

arises as a fundamental mathematical model governing the propagation of waves in shallow
waters, long waves in a density-stratified ocean, ion and acoustic waves in a plasma or acoustic
waves on a crystal lattice. It admits the cnoidal periodic wave solution equation (see, e.g.,
Drazin and Johnson 1990)

u(x, t)=
c

2
cn (ζ,M) , ζ =

√
c

2
(x − ct) , (1)

where cn(ζ,M) is one of the Jacobi elliptic functions of modulus 06 M 6 1, and c is the
wave celerity. For M = 1, (1) reduces to the cnoidal soliton

u =
c

2
sech2(ζ ). (2)

More generally, the long-term regime of KdV solutions can be completely identified via
the IST as an active nonlinear state of elastically interacting solitons propagating through a
cnoidal wave background. If integrability does not hold, direct perturbation theory (see, e.g.,
Keener and McLaughlin 1977, Kodama and Ablowitz 1981, Herman 1990a, Mann 1997a,b)
or adiabatic approximation theory (see, e.g., Herman 1990b, Gerdjikov et al 2001) provides
a mathematical framework for studying analytical solutions of non-integrable equations as
weak perturbations of integrable ones. Indeed, many non-integrable equations also possess
simple localized solutions that may be called solitons, solitary waves or dissipative solitons
in which, for example, nonlinearities are balanced with dispersion and dissipation (see, e.g.,
Knobloch 2008).

Thus, drawing from the IST theory I attempt to explore the hypothesis of a Navier–Stokes
flow defined as a nonlinear sea state (Fedele 2008, Fedele and Tayfun 2009) of interacting
coherent wave structures of soliton-bearing equations. Such sea states may, for example,
explain the occurrence of steady ‘puffs’ observed in both numerical simulations and
experiments of turbulent pipe flows (Willis and Kerswell 2008, 2009). Indeed, the puff
dynamics appears to be similar to that of a soliton. This loses energy as it interacts with
the background or other solitons, and it delocalizes in space by splitting into many other
smaller solitons, leading to a solitonic sea state. In numerical experiments of pipe flows
at Re ≈ 105, Duguet (2008) and Duguet et al (2008) also discovered ‘edge’ states in the
form of localized travelling waves that neither relaminarize nor become turbulent. These
appear to be ‘semi-stable’ solitary waves or solitons. Thus, for a better understanding of the
transition to turbulence in pipe flows, it would be useful to attempt to unveil the existence of
solitons and travelling waves of Navier–Stokes pipe flows and their associated dynamical
equations. Recent studies by Ryzhov (2010) do so for the Blasius flows, which at high
Reynolds numbers are described by a Benjamin–Davis–Acrivos integro-differential equation.
This supports soliton structures that explain the formation of spikes observed in boundary-
layer transition (Kachanov et al 1993).
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In this paper, I present a similar study for the special case of non-rotating axisymmetric
pipe flows, which aims at reducing the Navier–Stokes equations to soliton-bearing equations.
The paper is structured as follows. I first introduce the stream function formulation for
describing axisymmetric pipe flows. Then, I show that the associated equations can be reduced
at high Reynolds numbers to weakly nonlinear coupled generalized KdV equations, which
support travelling wave solutions as solitons and periodic waves. Finally, the interpretation of
the associated vortical structures is discussed.

2. Axisymmetric Poiseuille pipe flow

Consider the axisymmetric motion of an incompressible fluid in a pipe of circular cross
section of radius R driven by an imposed uniform pressure gradient ∂z P . Define a cylindrical
coordinate system (z, r, θ) with the z-axis along the streamwise direction, and (u, v, w) as the
radial, azimuthal and streamwise velocity components and p is the pressure perturbation to
P . Further, rescale the time, radial and streamwise lengths as well as velocities with T , R and
U0, respectively. Here, T = R/U0 is a convective time scale and U0 is the maximum laminar
flow velocity. Neglecting the azimuthal velocity component v, the axisymmetric velocity field
(independent of θ ) can be expressed in terms of the Stokes stream function 9(r, z, t) as

u = −
1

r

∂9

∂z
, w =

1

r

∂9

∂r
, (3)

and the condition of incompressibility is satisfied. In order to investigate the nonlinear
behaviour of a perturbation superimposed on the base flow W0(r)= 1 − r2, the stream
function is divided into two terms as

9 =90 +ψ, (4)

where90 = r2(1 − r2/2)/2 represents the stream function of the laminar flow W0, and ψ that
of the disturbance. The following nonlinear equation for ψ(z, r, t) can be derived from the
Navier–Stokes equations as (Itoh 1977)

∂t Lψ + W0∂zLψ −
1

Re
L2ψ =N (ψ), (5)

where the nonlinear differential operator

N (ψ)= −r−1∂rψ∂zLψ + r−1∂zψ∂r Lψ − 2r−2∂zψLψ, (6)

the linear operator

L = L+ ∂zz, L= ∂rr − r−1∂r = r∂r
(
r−1∂r

)
(7)

and Re is the Reynolds number based on U0 and R. The boundary conditions for (5) reflect
the boundedness of the flow at the centreline of the pipe and the no-slip condition at the wall,
that is, ∂rψ = ∂zψ = 0 at r = 1.

Expanding the operator L, (5) can be written as

∂tLψ + W0∂zLψ︸ ︷︷ ︸
Convection

+ ∂t zzψ + W0∂zzzψ︸ ︷︷ ︸
Dispersion

−
1

Re
L2ψ︸ ︷︷ ︸

Viscosity

= −r−1∂rψ∂zLψ + r−1∂zψ∂rLψ − 2r−2∂zψLψ︸ ︷︷ ︸
KdV-type nonlinearities ∼ψ∂zψ

+ HOT. (8)
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Here, if one ignores the r dependence, differentiated terms in z are identified to be similar to
those of KdV equations, i.e. convection, dispersion and nonlinearities proportional to ψ∂zψ .
In addition, viscous effects play a role and HOT represents higher-order nonlinearities of the
type ψ∂zzzψ and ∂zψ∂zzψ . It must be pointed out that, traditionally, the KdV equation arises,
for example, from the shallow water equations (see, e.g., Drazin and Johnson 1990) whenever
one studies the weakly nonlinear evolution of wave packets. In particular, the relevance or
not of the KdV equation thus follows from the dispersion relation ω = ω(k) of Fourier waves
exp(ikx − iωt)when the wave packet’s carrier wave exp(ik0x) corresponds to an extremum of
group velocity. For the nonlinear equation (8) there is no need to study amplitudes and phases
of Fourier waves in order to appreciate the hidden KdV scaling that arises if nonlinearities
balance out dispersion. Indeed, one can clearly realize that (8) is already in a generalized
KdV-type form, whereas the shallow water equations are not.

To solve (8), consider a function space S as the span of a complete set of J generalized
harmonics χ j (r), and expand ψ as

ψ(r, z, t)=

J∑
j=1

g j (z, t)χ j (r). (9)

One can then average along the radial direction r by projecting (8) onto S and obtain
the nonlinear equations governing the dynamics of the amplitudes g j . In a multiple scale
perturbation setting, the structure of (8) suggests the following KdV scaling for g j in order to
balance dispersion and nonlinearities:

g j (z, t)→ εb j (ξ, τ ), (10)

where b j is a new amplitude defined on the stretched reference frame

ξ = ε1/2 (z − V t) , τ = ε3/2t, (11)

with ε being a small parameter and V denotes a convective speed to be properly chosen. As a
result of the scalings (10) and (11), the axisymmetric Navier–Stokes equation (5) reduces to
a set of coupled generalized KdV equations as shown below.

3. Reduction to KdV-type equations

The basis χ j in (9) will be chosen as the eigenfunctions of a linear boundary value problem
(BVP) defined as follows. If in (8) nonlinearities are neglected and the flow is assumed
uniform in the streamwise direction, then the associated stream function ψ0(r, t) satisfies the
linear PDE

∂tLψ0 =
1

Re
L2ψ0, (12)

with the boundedness of r−1ψ0 and r−1∂rψ0 at the pipe centreline, and ψ0 = ∂rψ0 = 0 at
r = 1. The general solution of (12) is

ψ0(r, t)= q090(r)+
∞∑
j=1

q jφ j (r)e
−λ2

j t/Re, (13)

where q j are arbitrary constants, 90 is the laminar stream function corresponding to
a zero-eigenvalue eigenfunction and the basis φ j (Stokes eigenmodes) satisfy the BVP
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Figure 1. The five least stable Stokes eigenmodes of the eigenvalue problem (14).

(see appendix A)

L2φ j = −λ2
jLφ j , (14)

with r−1φ j and r−1∂rφ j bounded at r = 0+, and φ j = ∂rφ j = 0 at r = 1. The positive
eigenvalues λ j are the roots of J2(λ j )= 0, where J2(r) is the Bessel function of the first kind
of second order (see Abramowitz and Stegun 1972). For the first two least stable eigenmodes
λ1 = 5.136 and λ2 = 8.417, respectively. The first five least stable eigenmodes, shown in
figure 1, exhibit an increasing number of maxima that monotonically decrease towards the
centre of the pipe. Further, higher and more damped ‘wall modes’ tend to localize toward
r = 1. The function space S, span of the set of the generalized harmonics φ j , is a Hilbert
space supported by the inner product

〈ϕ1, ϕ2〉 = −

∫ 1

0
ϕ1 Lϕ2 r−1 dr =

∫ 1

0
∂rϕ1∂rϕ2r−1 dr, (15)

and the associated eigenfunctions form a complete and orthonormal set. Note that 90 makes
the null space of the operator L2 and also denotes the steady-state solution of (12). According
to (12), the cross-sectional area average wr

= 2
∫ 1

0 (r) w dr of the streamwise velocity w =

1
r

dφn

r associated with each eigenfunction φn vanishes, but that of the corresponding streamwise
pressure gradient does not because viscous stresses are not uniformly distributed across the
pipe section as the local streamwise acceleration forces. To conserve the mass flux of the
laminar base state, q0 must be set equal to zero. Then, the perturbation ψ0 is given by the sum
of viscous non-normal eigenmodes that exponentially decay in time and the laminar flow is
linearly stable (see, e.g., Itoh 1977, Drazin and Reid 1981).

To solve for the nonlinear equation (8) the basis χ j in (9) are chosen as the Stokes
eigenmodes φ j of (14). Since φ j satisfies the pipe flow boundary conditions a priori, so does
ψ of (9). The eigenmode amplitudes g j in the expansion (9) depend upon both z and t and
the number J of modes should be very large for the completeness of the eigenset. However,
in the nonlinear regime, one can focus on the dynamics of the first few least stable modes as
long as the perturbation amplitude g j remains for all time in a small neighbourhood of zero
(the laminar state). Indeed, in this case higher-order modes can be considered as slaved and
will not affect the weakly nonlinear dynamics of the less stable modes. However, in general,
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higher damped modes cannot be neglected for finite-amplitude perturbations near a nontrivial
fixed point, if any exists. Hereafter, only small flow perturbations of O(ε) near the laminar
state are considered in order to legitimately neglect slaved modes.

The set of equations for g j are obtained by Galerkin-projecting (5) onto S by means of
the inner product (15). In accord with the scaling (10) and (11), the Galerkin equations in the
new variables b j (z, τ ), correct to O(ε), reduce to the KdV-type system

∂τb j + β̃ j j∂ξξξb j +
∑
n,m

F̃ jnmbn∂ξbm = ε

(
−
V j

ε5/2 Re
+N j

)
, (16)

where N j accounts for higher-order terms of the type bn∂ξξξbm and ∂ξbn∂ξξbm ,

V j =

∑
m

λ̃2
jmbm, (17)

and indices in any sum implicitly run between 1 and J . The derivation of (16) and the
coefficients F̃ jnm , β̃ j j and λ̃2

jm are given in appendix C. As Re → ∞, if ε ∼ O(Re−2/5), then
(16) reduces to

∂τb j + β̃ j j∂ξξξb j +
∑
n,m

F̃ jnmbn∂ξbm = ε
(
−V j +N j

)
, (18)

where the viscous part V j is of the same order as the nonlinear N j . Note that (18) is in
general non-Hamiltonian and non-integrable. However, for special cases it may represent
coupled/uncoupled Camassa–Holm equations (Camassa and Holm 1993) or KdV equations
(see, e.g., Drazin and Johnson 1990) that are both integrable.

4. Inviscid travelling waves

If one ignores both O(ε) viscous and nonlinear terms in (18), then the inviscid dynamics of
the perturbation is governed by the KdV-type system

∂t b j + β̃ j j∂ξξξb j +
∑
n,m

F̃ jnmbn∂ξbm = 0. (19)

The complete integrability of this system may hold only for particular forms of the tensor
F̃ jnm . In the general case, (19) may still possess localized travelling waves that may be
called solitons or solitary waves. To proceed analytically, drawing from Lou et al (2006),
travelling waves of (19) are sought as related to solutions of the nonlinear Klein–Gordon
(NKG) equation in the form

b j = k2
[

p j + x j8
2(ζ )

]
, j = 1, . . . , J. (20)

Here, ζ = k (ξ − cτ) and 8 satisfies the NKG equation (see, e.g., Lou and Ni 1989)(
∂ζ8

)2
= µ82 +

λ

2
84 + ρ, (21)

where the wave speed c, the coefficients k, p j , x j and the triplet {µ, λ, ρ} are free parameters
to be determined. Substituting (20) into (19) yields

R j8 ∂ζ8+S j8
3 ∂ζ8= 0, (22)

where

R j = −ck3x j + 4µk5β̃ j j x j + k5
∑
n,m

F̃ jnm pn xm, (23)
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Figure 2. The cn-soliton of equation (29), wall mode: (top) contour plot of ψd and
(bottom) velocity profiles of the perturbed (solid) and laminar (dash) flows.

S j = 6λk5β̃ j j x j + k5
∑
n,m

F̃ jnm xn xm . (24)

Note that (22) must be satisfied for any choice of the function 8. Thus, both (23) and (24)
must vanish. In particular, S j = 0 yields a set of equations for J hyperconics 0 j in RJ given
by

6λβ̃ j j x j +
∑
n,m

F̃ jnm xn xm = 0, j = 1, . . . , J, (25)

to be solved for the coefficients xn (see appendix B for the case J = 2). Further,R j = 0 leads
to a linear system

(−c + 4ηk2β̃ j j )x j + k2
∑
n,m

F̃ jnm pn xm = 0, j = 1, . . . , J, (26)

which can be solved to determine pn , given the celerity c. For steady solutions (in the reference
frame of ξ ), c = 0, and (26) is satisfied by

pn =
2η xn

3λ
.

As a result, the KdV system (19) admits an infinite family of travelling wave
solutions by a proper choice of the triplet (µ, λ, ρ), which yields 8 as a solution of the
NKG equation (21) in terms of the Jacobi elliptic functions cn(ζ ), sn(ζ ) and dn(ζ ) with
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Figure 3. The cn-soliton of equation (29), centre mode: the same as in figure 2.

modulus 06 M 6 1 (see Lou and Ni 1989). As an example, consider the two triplets{
2M2

− 1,−2M2, 1 − M2
}

and
{
2 − M2,−2,−1 + M2

}
, which yield two sets of exact

solutions given by, respectively,

bI
j (ξ, τ )= k2x j

[
−

2M2
− 1

3M2
+ cn2(kξ)

]
(27)

and

bII
j (ξ, τ )= k2x j

[
−

4M2
− 2

6
+ dn2(kξ)

]
, (28)

with k and M being free parameters. For M = 1, they both reduce to the family of sech-
solitons

bIII,s
j (ξ, τ )= −

1
3 k2x j + k2x j sech2(kξ). (29)

The triplet
{
−(1 + M2)/4,M/2,M/4

}
provides a more complicated form of travelling wave,

viz

bIV
j (ξ, τ )= k2x j

−
4M2 + 4

12M
+

4M2[1 + Msn(kξ)]2[1 + sn(kξ)]2(√
1 + M[1 + Msn(kξ)] +

√
1 − Mdn(kξ)]

)2

 . (30)

As M approaches 1, bIV
j also tends to a soliton shape similar to (29).
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Figure 4. The cn-soliton of equation (29), mixed mode: the same as in figure 2.

5. O(ε)-dynamics of solitary waves

Hereafter, it will be shown that the higher-order terms N j in (18) do not have any role in the
weakly nonlinear dynamics of the inviscid solitary waves (29). In the Galilean reference frame
(ξ, τ ), the disturbances just decay due to viscous dissipation on the time scale τ ∼ O(ε−1).
Similar conclusions also hold for the limiting soliton form of (30). To proceed to a tractable
analytical solution of (18) via perturbation methods, define the new variable

b̃ j = b j + 1
3 k2x j , (31)

which satisfies

∂τ b̃ j + β̃ j j∂ξξξ b̃ j +
∑
n,m

(L̃ jnm∂ξ b̃m + F̃ jnm b̃n∂ξ b̃m)= εF̃ j , (32)

with L̃ jnm = k2xn F̃ jnm xn/3 and

F̃ j =

∑
m

λ̃2
jm(k

2xm/3 − b̃m)+N j . (33)

From (29), the O(1) unperturbed equations (32) admit the soliton solutions

b̃ j = b j + 1
3 k2x j = k2x j sech2(kξ). (34)

10
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Figure 5. The dn-travelling wave of equation (28), wall mode (M = 0.2): the same as in figure 2.

To determine the effects of the perturbation terms in (32) on the dynamics of the unperturbed
soliton b̃ j , assume that k(τ2) varies on the slow viscous time scale τ2 = ετ = ε5/2t . The
evolution of k is derived by means of adiabatic approximation theory as follows (see, e.g.,
Herman 1990b, Gerdjikov et al 2001). The rate of change in the pseudo energy

E =
1

2

∑
j

∫
∞

−∞

b̃2
j dξ =

2k3

3

∑
n

x2
n (35)

is given by

dE

dτ2
=

∑
j

∫
∞

−∞

b̃ j∂τ b̃ j dξ. (36)

Using (32) and (34), this yields after some algebra and integration by parts the dynamical
equation for k

dk

dτ2
=
γ

3
k, (37)

where

γ = −

∑
n,m λ̃

2
nm xn xm∑

n x2
n

. (38)
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Figure 6. The dn-travelling wave of equation (28), centre mode (M = 0.2): the same as in figure 2.

Note that (37) can also be derived from direct perturbation theory (Keener and
McLaughlin 1977, Kodama and Ablowitz 1981, Herman 1990a, Mann 1997a,b). The solution
of (37) follows as

k(t)= k0 exp
(γ

3
ε5/2t

)
, (39)

where k0 is the soliton parameter. Numerical computations reveal that γ is negative so that
as Re → ∞, an inviscid soliton of small amplitude ε ∼ O(Re−2/5) is affected by viscous
dissipation only on the very long time scale t ∼ O(ε−2.5)= O(Re6.25). As a result, the soliton
structures can be assumed to behave inviscidly on shorter time scales, but they will eventually
decay. Similar conclusions also hold for their periodic counterparts.

6. Nonlinear modes

The stream function ψd of the generic cnoidal wave disturbance follows from (9) and (20) as

ψd(r, Z)= ψ/(εk2)=

[
2µ

3λ
+82(Z)

] J∑
j=1

x jφ j , (40)

where, owing to the KdV scaling (11), Z = ε1/2 (z − V t) denotes a reference frame moving
with the perturbation at the speed V and J denotes the number of eigenmodes. Since the
Stokes eigenmodes φ j are strongly damped (see, for example, Fedele et al 2005), consider
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Figure 7. The dn-travelling wave of equation (28), mixed mode (M = 0.2): the same as in figure 2.

the weakly nonlinear dynamics of the amplitudes in (19) for the first J = 2 least stable
modes φ1 (λ1 = 5.136) and φ2 (λ2 = 8.417), respectively. Solving (25) yields three nontrivial
travelling wave solutions with the factor γ negative and equal to −8.49,−20.96 and −23.89,
respectively (see appendix D). In physical space, ψd represents a localized/periodic toroidal
vortex tube travelling with the celerity V ' 0.77U0, U0 being the maximum laminar flow
speed. In particular, the disturbance travels faster than the average laminar flow speed ∼ U0/2.
Further, the streamwise velocity wd of the disturbance is given by

wd(r, Z)=
1

r

∂ψd

∂r
=

[
2µ

3λ
+82(Z)

]
1

r

J∑
j=1

x j
dφ j

dr
. (41)

The radial average wd
r is null and the mass flux is conserved through the pipe, where

wd
r
= 2

∫ 1
0 r wd(r, Z)dr . However, the streamwise mean wd

Z is non-zero

wd
Z (r)= lim

L→∞

∫ L/2
−L/2wd(r, Z)dZ

L
=

2µ

3λr

J∑
j=1

x j
dφ j

dr
, (42)

and so is the cross-sectional area-average of the streamwise perturbation pressure gradient.
The contours of ψd for each of the three vortical structures associated with the sech-
soliton (29) are shown in figures 2–4, respectively. In the same figures, the streamwise velocity
profiles at Z = 0 of both the perturbed and laminar flows are also shown. From (28), their
dn-periodic counterparts are shown in figures 5–8; the cn-periodic solutions of (27) yield
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Figure 8. Travelling wave of equation (30), wall mode (M = 0.3): the same as in figure 2.

structures with the same topology and are not shown here. In particular, figure 2 shows a
vortical structure localized near the wall (wall mode, γ = −23.89), whereas that of figure 3
wraps around the pipe axis (centre mode, γ = −20.96). The soliton structure of figure 4 fills
the cross-section almost entirely as a superposition of a wall and a centre mode (mixed mode)
and it is also the least stable mode in the viscous regime (γ = −8.49). A similar classification
also holds for their dn-periodic counterparts (28) as clearly seen from figures 5–8, as well
as for the travelling waves of (30) shown in figures 8–10. Clearly, the perturbed flow
(laminar+vortex) shows a signature of axisymmetric streaks, especially the wall modes.

7. Conclusions

It is shown that the axisymmetric Navier–Stokes equations can be related to soliton-bearing
equations. A generic perturbation to the laminar state is expanded in the Fourier sum of
(linearly stable) Stokes modes with amplitudes varying in both the streamwise direction
and time. As Re → ∞, the nonlinear dynamics of a small perturbation of ε ∼ O(Re−2/5)

can be reduced to that of the first few least stable modes neglecting the interactions with
higher damped modes, which can be set as slaved. For time scales much less than t ∼

O(ε−2.5)= O(Re6.25), the dynamics is primarily inviscid and governed by a set of KdV-
type equations. These support nonlinear travelling waves, which in physical space represent
localized/periodic toroidal vortices that travel slightly slower than the maximum laminar flow
speed. The vortical structures are localized near the wall (wall mode) or wrap around the pipe
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Figure 9. Travelling wave of equation (30), centre mode (M = 0.3): the same as in figure 2.

axis (centre mode). They have a non-zero streamwise mean, but they radially average to zero
to conserve mass flux through the pipe.

On the one hand, the wall modes may be interpreted as the axisymmetric analogue
of the two-dimensional (2D) rolls+streaks stage of the self-sustaining process (SSP) of
Waleffe (1995a,b) in Couette flows or that of Wedin and Kerswell (2004) in pipe flows.
However, in SSPs the streaks generated by streamwise rolls are unstable to spanwise
perturbations, which trigger the nonlinear regeneration of rolls so that the process can sustain
itself. On the other hand, the periodic centre modes as those of figures 6 and 9 may be related
to the neutral centre modes discovered by Walton (2011) in unsteady pipe flows, inviscid
axisymmetric slug structures similar to those proposed by Smith et al (1990). Walton’s slug
modes emerge from the wall layer as the disturbance amplitude is increased, eventually
tending to concentrate along the pipe centreline and propagating downstream at almost the
maximum laminar fluid velocity. As suggested by Walton (2011), the slug modes most likely
represent unstable equilibrium states.

If the inviscid nonlinear modes found in this work are proven to be unstable to non-
axisymmetric perturbations, that would also suggest the existence of a new SSP, where
poloidal disturbances nonlinearly sustain toroidal vortices. To investigate this possibility, it
would be useful to start with the investigation of a simpler three-component but still 2D flow
disturbance with no azimuthal dependence. In this case, the velocity field

u(r, z, t)=

(
−

1

r
∂zψ, v,

1

r
∂rψ

)
(43)
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Figure 10. Travelling wave of equation (30), mixed mode (M = 0.3): the same as in figure 2.

can be written in terms of the stream function ψ for the axisymmetric part of the flow as
in (3) and the azimuthal velocity component v. From the Navier–Stokes equations, ψ and v
satisfy

∂t Lψ + W0∂zLψ −
1

Re
L2ψ =N (ψ)− r−1∂zv

2,

(44)

∂tv + W0∂zv−
1

Re
L1v + r−1∂rψ∂zv + r−1∂zψ(∂rv + r−1v)= 0,

where L1 = r−1∂r (r∂r )+ ∂zz − r−2. Without toroidal disturbances any poloidal perturbation v
acts as a passive scalar and dissipates on the time scale t ∼ O(Re−1). As shown in this work,
an inviscid toroidal vortical structure of ε ∼ O(Re−2/5) dissipates on a much longer time
scale t ∼ O(ε−2.5)= O(Re6.25). Thus, it may counterbalance the dissipation of v, which in
turn can destabilize the vortex before viscous effects become appreciable. Work is in progress
to carry out a Galerkin reduction of the system (44). Preliminary results (to be confirmed
elsewhere) indicate that the poloidal component is indeed unstable to the toroidal travelling
waves (40), suggesting that the system (44) may support a new SSP, as a possible precursor
of puffs and slugs seen experimentally.

Finally, it is worth noting that the KdV system (18) can be extended to the case of
developing laminar pipe flows treated by Walton (2011), with the coefficients β̃ j j (τ2) and the
speed V (τ2) slowly varying on the viscous time scale τ2 = ετ and growing from zero to the
values for fully developed Poiseuille flow. These are the two coefficients of the KdV system
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that are functions of the base flow. The leading order travelling wave solution is still given
by (20), but now both k and x j depend upon the slow time scale τ2, since x j is a function of
β̃ j j via the constraint (25). The evolution equations for x j follow by differentiating (25) with
respect to τ2 and are coupled to the adiabatic equation for k given in (37), which itself contains
an extra term that arises from the differentiation of x j in the energy (35). Such an analysis
is beyond the scope of this work and will be discussed elsewhere, but it suggests that the
asymptotic technique presented here may be applicable to other stability problems.
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Appendix A

Consider the factorization of (14) as

L
(
L+ λ2

)
φ = 0. (A.1)

The general solution is given by φ = f1 + f2 such that L f1 = 0 and
(
L+ λ2

)
f2 = 0, i.e.

φ = C1 + C2r2 + C3r Y1 (λr)+ C4r J1(λr), (A.2)

where, respectively, Y1 (r) and J1 (r) are the Bessel functions of the first kind (see Abramowitz
and Stegun 1972) and C1,C2,C3 and C4 are constants to be determined by the boundary
conditions. Since both the functions, φ

r and 1
r

dφ
dr , must tend to zero as r → 0+, then C1 =

C3 = 0. On the other hand, from the boundary conditions at r = 1, namely φ

r =
1
r

dφ
dr = 0, the

following homogeneous linear system for the unknowns (C2,C4) emerges:{
C2 + J1 (λ)C4 = 0,
2C2 + [J1 (λ)+χ J0 (λ)− J1 (λ)] C4 = 0.

(A.3)

Non-trivial solutions exist if and only if J2 (λ)= 0 with J2 (r) being the Bessel function of the
first kind (see Abramowitz and Stegun 1972). Consequently, there are infinitely many roots or
eigenvalues λn , n = 1, 2, 3, . . .. The corresponding eigenfunctions can be expressed as

φn = cn

[
r2

−
r J1 (λnr)

J1 (λn)

]
, (A.4)

where cn are constants. The set {φn} is orthonormal with respect to the scalar product (15)
provided one chooses cn =

√
2
λn

.

Appendix B

To obtain the Galerkin equations for g j , equation (5) is projected onto S by means of the inner
product (15). This yields the vector system

∂t g + C∂zg − A∂zzt g + B∂zzzg +
1

Re
(3g − 2∂zzg + A∂zzzzg)+ f1,z(g)+ f2,z(g)= 0, (B.1)

where the (J × 1) column vectors g, f1 and f2 are given by, respectively,[
g
]

j = g j ,
[
f1,z
]

j = gTF j∂zg,
[
f2,z
]

j = ∂zgT G j∂zzg + gTH j∂zzzg, (B.2)
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and the (J × J ) matrices A,B,C,Λ,F j ,G j and H j are given in appendix C. It is convenient
to diagonalize the convective term ∂zg in (B.1) via the variable transformation

g = Qa, (B.3)

where Q is the eigenvector matrix of C with elements qi j , i.e. C = QVQ−1, and V is the
eigenvalue matrix with diagonal elements ĉ j . This leads to

∂t a + V∂za − Â∂zzt a + B̂∂zzza +
1

Re
(3̂a − 2∂zza + Â∂zzzza)+ Q−1f1,z(Qa)+ Q−1f2,z(Qa)= 0,

(B.4)

where X̂ = Q−1XQ for X = A,B and Λ. The convective velocities ĉ j of each eigenmode in
V are very close to their average speed

V =

∑
j ĉ j

J
, (B.5)

with very good approximation up to J = 4, and the excess δV = (V I − V) from V can beQ3

neglected since of O(0.1) or less. Consider the rescaling (10)–(11) for a j as

a j (z, t)→ εa j (ξ, τ ) , (B.6)

where the new space–time variables are given by

ξ = ε1/2 (z − V t) , τ = ε3/2t, (B.7)

with V being the average speed defined in (B.5). As a result of (B.6), (B.7) and (B.5), (B.4)
can be written as

∂τa + B̂∂ξξξa + Q−1f1,ξ (Qa)= −
1

ε3/2 Re
3̂a+ε

(
δV∂ξa + Â∂ξξτa − Q−1f2,ξ (Qa)

)
+ O(ε2).

(B.8)

Here, the excess δV from the average speed V appears at O(ε). It is convenient to further
diagonalize the dispersive term ∂ξξξa by the variable transformation

a = Rb, (B.9)

where R is the eigenvector matrix of B̂ with elements ri j , i.e. B̂ = RSR−1, and S is the
eigenvalue matrix with elements β̃ j j . This leads to

∂τb + S∂ξξξb + T−1f1,ξ (Tb)= −
1

ε3/2 Re
3̃b + δṼ∂ξa + ε

(
Ã∂ξξτb − T−1f2,ξ (Tb

)
+ O(ε2),

(B.10)

where T = QR, X̃ = T−1XT for X = A and Λ, and δṼ = R−1δVR. The matrix elements of
T, T−1, δṼ, Ã and 3̃ are denoted by T jk , T̃ jk , 1c jm , α̃ jm and λ̃2

jm , respectively. Further,
from (B.3) and (B.9),

g = Tb,

or equivalently

g j =

∑
k

T jkbk, j = 1, . . . , J.
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From (B.10), the scalar functions b j (z, τ ) satisfy the system

∂τb j + β̃ j j∂ξξξb j +
∑
n,m

F̃ jnmbn∂ξbm = ε

(
−

∑
n,m λ̃

2
jmbm

ε5/2 Re
+N j

)
, (B.11)

with

N j =

∑
m

(1c jm∂ξbm + α̃ jm∂ξξτbm)−
∑
n,m

(G̃ jnm∂ξbn∂ξξbm + H̃ jnmbn∂ξξξbm),

where indices in any sum implicitly run between 1 and J ,

F̃ jnm =

∑
k,s,h

T̃ jk Tsn Fksh Thm,

and similarly for G̃ jnm and H̃ jnm .

Appendix C

[3] jm = λ2
jδim , [C] jm = c jm, [A] jm = α jm, [B] jm = β jm,

[
F( j)

]
nm

= F jnm,
[
G( j)

]
nm

= G jnm,
[
H( j)

]
nm

= H jnm,

where

c jm = −

∫ 1

0
W0φ jLφm r−1 dr, α jm =

∫ 1

0
φ jφm r−1 dr, β jm = −

∫ 1

0
W0φ jφm r−1 dr,

F jnm = −

∫ 1

0
φ j
[
∂rφnLφm − ∂r (Lφn) φm + 2r−1Lφnφm

]
r−2 dr,

G jnm = −

∫ 1

0
φ jφm∂rφnr−2 dr, H jnm = −

∫ 1

0
φ j
[
−φm∂rφn + 2r−1φnφm

]
r−2 dr.

Appendix D

Consider now the case when J = 2. The algebraic system (25) reduces to a set of equations
of two conics 01 and 02 in the Cartesian plane (x1 = X, x2 = Y ), that is,

a1 X2 + b1Y 2 + c1 XY + d1 X = 0, (01)

a2 X2 + b2Y 2 + c2 XY + d2Y = 0, (02)

(D.1)

where

a1 = F111, b1 = F122, c1 = F112 + F121, d1 = 6λβ̃11,

a2 = F211, b2 = F222, c2 = F212 + F221, d2 = 6λβ̃22.

The two conics can be classified based on the sign of C j = a j b j − c2
j/4. In particular,

for j = 1, 2 if C j > 0 or C j < 0, then 0 j is an ellipse or a hyperbola, respectively. The case
C j = 0 is degenerate since the conic reduces to the locus of two intersecting lines. The solution
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for (X, Y ) is given by the intersection 01 ∩02. Further,

X = R cos θ, Y = R sin θ,

where t = tan θ satisfies the complete cubic equation

d2b1t3 + (d2c1 − d1b2)t
2 + (d2a1 − d1c2)t − d1a2 = 0 (D.2)

and

R = −
d1 cos θ

a1 cos2 θ + b1 sin2 θ + c1 sin θ cos θ
.

For Poiseuille flows, (D.2) admits three non-trivial simple real roots.
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