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ABSTRACT: The solution of the 1D contaminant transport problem for steady-state flow fields is attained by  
de-coupling the transport equation in one convective and in one dispersive component. The convective 
component is solved by a new numerical methodology: moving from the upstream to the downstream 
elements, the concentration in each element is analytically computed along the time step assuming a spatial 
zero-order approximation. The average leaving flux is then assigned as entering flux, constant along the time 
step, at the next downstream element. The global mass conservation is guaranteed and the unconditional 
stability is proved using Fourier  analysis. To reduce the numerical diffusion each element is divided, for the 
solution of only the convective transport component, in several subelements. The total number of subelements 
remains constant and each element is fractioned according to the norm of the concentration gradients and to 
the concentration value.  
The dispersive component  can be solved by assuming a first order approximation of the previously estimated 
concentrations and by locating the nodes at the center of each element. The final results are compared with the 
analytical solutions in well-known bench mark cases.   

1 DOUBLE ORDER SOLUTION FOR THE 
TRANSPORT EQUATION 

In diffusion simulation of passive contaminant, the 
advection-diffusion equation on the mass transport is 
solved by using calculated results of flow field. The 
1D groundwater contaminant transport equation is 
given by: 
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where c=concentration of contaminant; U=the 
velocity component along x; D=diffusion coefficient 
in x direction. The numerically solution of (1) can be 
found by splitting the original equation in two 
components (Komatsu et al. 1997); the first 
omponent corresponding to D=0, called convective, 
is described  by  
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and the second component corresponding to U=0, 
called dispersive, is also  described by 
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This splitting approach no has physical explanation, 
but permit to choose the most appropriate scheme 
for each transport process. The numerical 
discretization of the equations (1) and (2) is:  
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where (.)n  is the finite difference approximation of 
the argument estimated at time level n. The 
equations (3) and (4) can be solved sequentially 
respectively from level time time t to time t + ∆t/2 
and from time t + ∆t/2  to time t + ∆t.  
The solution of the convective component presents 
several difficulties (Venezian 1984), especially in 
2D problems. Methods like up-stream FEM can be 
used (Gross et al. 1999), but strongly oscillations 
occur near the zones with high gradients: the method 
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with the initial condition ck(t=t0)=ck
*. If we assume 

Fk
e(t)= Fk

e to be constant in time, the Cauchy 
problem has easy solution , that is  

displays numerical dispersion. To overcame this 
problem it is possible to use refined elements using 
Hermite polynomials (Lapidus & Pinder 1982) or 
Lagrangian-Eulerian approachs (Yeh 1990) or 
improved FEM (Yu & Singh 1995), but several 
computational inconvenients occur.  In the 
following, a new methodology for the solution of the 
advective equation is presented. The methodology 
has the following merits: 
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A mixed analytical-numerical solution can be found 
by solving sequentially equation (6) from the 
upstream elements to the downstream elements. 
Fixed a finite time and space step, call t the known 
time level. The concentration value at time t+∆t is 
evaluated by (6), that is: 

1) It is unconditionally stable and guarantees global 
mass conservation; 

2) It is simple to apply, because is an explicit 
method and it should be easily extensible to 2D 
and 3D problems; 

3) Never estimates negative concentrations.   
The proposed methodology assumes a constant 
value of the concentration inside each element. After 
the solution of the convective component, the 
dispersive one is solved using a standard finite 
difference method. The method computes fluxes 
assuming in space a first order approximation of the 
concentration. For this reason we say that a double 
order approximation is used. Observe that, if nodes 
are located at the center of the elements, the change 
of the approximation order affects the fluxes 
between elements, but not the global mass 
conservation. This also implies that a fully implict 
approximation of the second order derivatives has to 
be used. 
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where Fk
e(t+∆t) is the average contaminant flux 

entering in the k-th cell between t and t+∆t. The 
average flux entering in the next cell during ∆t can 
be found through the mass balance, that is: 
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Evaluated the entering flux in element k+1, it’s 
possible to sequentially apply equations (7) and (9) 
to all the remaining downstream elements. To 
formulate the algorithm we set t=n ∆t, x=k ∆x  and  

2 THE PROPOSED METHODOLOGY FOR THE   
CONVECTIVE EQUATION 
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2.1 Introduction  
Assume a steady-state flow field. The 1D convective 
transport equation is:   
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equations (9) and (10) become:  
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During an infinitesimal time interval dt the entering 
mass is Fk

e(t)dt and the leaving mass is Qck(t)dt, 
where Fk

e(t) is the entering flux in the k-th element, 
ck(t) the concentration value and Q the flow rate.  
Mass conservation provides: 

where cou=Q∆t/w is the Courant number.  
kk

e
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in which w=Adx is the volume of each element, with 
section area A. Dividing by dt, the governing 
equation for the k-th element is 

2.2 Fourier analysis 
System  (12) is linear and can be studied through the 
Fourier analysis (Shapiro & Pinder 1981; Bentley et 
al. 1990). Due to linearity, we can limit the stability 
analysis to a single armonic component.  ( ) ( )tc
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We try to find the solution of system (12) assuming   
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in which α=2π/L is the wave spatial frequency, L is 
the domain extension and ρ is a complex unknown 
number. Substitution in (11) provides the following 
algebraic system, with unknown coefficients co, fo: 
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System (14) has non-zero solutions only if its 
determinant is zero,  that is: 
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Equation (15) has only one non zero solution for the 
unknown ρ: 
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The first of equations (13) becomes: 
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We now compare this numerical solution with the 
analytical solution of the convective problem for 
armonic initial condition   
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For x=k ∆x and t=n ∆t we obtain  
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This implies that the algorithm is consistent when ∆t 
goes to zero faster than ∆x.  Call T the time required 
for an armonic component with frequency α to pass 

its wavelength and N=T/∆t =2π /(α cou ∆x) . Define 
the parameter ξ as 
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for the analytical solution (18), ξ is equal to:  
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and for the numerical solution (18)  ξ is equal to:  
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where  f(cou) is a function defined as (26): 
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For stability analysis, the modules ratio and the 
phase difference between ξap and ξex are important. 
The first one is λ and the second one is   ω+2π. The 
functions λ(α∆x =2π/s) and ω(α∆x =2π/s)+ 2π for 
cou=1.2 and cou=0.1 are plotted in figures 1-2.  
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Figure 1.Graph of the modules ratio of ξap and ξex for cou=1.2 and          
cou=0.1. 
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Figure 2.Graph of the phase difference of ξap and ξex  for cou=1.2 and  
cou=0.1. 
 
 
From  figure 1 it can be observed that the method is 
unconditionally stable: the amplitude of the 
numerical armonic wave λ is always smaller than 
one, even if diffusion grows along with the Courant 
number. From figure 2 it can also be observed that 
the waves with highest frequency are not in phase 
with the analytical solution, but dispersion does not 
occur because the amplitude of these waves is 
strongly diffused. 

2.3 Breaking up the elements into a fixed total 
number of subelements 
In the previous section we have shown that the 
proposed methodology is unconditionally stable, 
simple and robust, not dispersive. By the Fourier 
analysis we have observed that for large courant 
numbers numerical diffusion occurs, especially in 
cases of strong concentration gradients. To improve 
the accuracy of the method we proceed with the 
break up of the elements with stronger concentration 
gradients. Because the method is basically explicit, 
in the sense that the computation proceeds one 
element after the other, the number of subelements 
can be changed according to the diffusion expected 
in each element and to the total number of 
subelements available for the computations. To 
estimate the expected diffusion in each element, the 
concentrations at time level n+1/2 are solved twice; 
a first time without division, a second  one using the 
subelements division estimated with the result of the 
first iteration. Call c

gradients. Because the method is basically explicit, 
in the sense that the computation proceeds one 
element after the other, the number of subelements 
can be changed according to the diffusion expected 
in each element and to the total number of 
subelements available for the computations. To 
estimate the expected diffusion in each element, the 
concentrations at time level n+1/2 are solved twice; 
a first time without division, a second  one using the 
subelements division estimated with the result of the 
first iteration. Call ck

n+1/2 the concentration 
computed at the first time in a generic element. 
The numerical diffusion will be larger in the 
elements where the concentration ck

n+1/2 is very 
different from both the initial value ck

n and the 
asymptotic one cmk

n obtained in (8) using an infinite 
time step. This is because the concentration, 
assumed constant in space due to the zero-order 
approximation, attains in the analytical solution both 
values, the first at the downstream end, the second at 
the upstream end of the element. An empirical way 
to weight the potential diffusion in each element is 

given by the following formula, that also takes into 
account the need of using a larger number of 
subelements in areas with higher concentrations:  
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To use a total fixed number of subelements, a 
density proportional to the above index could be 
reached by setting: 
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where Nel = total number of available subelements, 
Nelk

n+1/2 = number of subelements obtained from 
element k-th and Int = integer part of the argument. 
It is more convenient, to easily reduce or amplify the 
number of subelements in each element, to reduce 
the left hand side of (28) up to  (29): 
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The choice of (29) allows to easily assign the 
concentrations of the subelements defined at time 
level n at the new subelements defined at time level 
n+1/2. This can be done by averaging the 
concentrations of subelements close to each other if 
Nelk

n+1/2<Nelk
n and by assigning the same 

concentration to different subelements if Nelk
n+1/2> 

Nelk
n. 

The new Courant number of the subelements will be 
much larger of the original one and this can limit the 
reduction of the numerical diffusion. It is then 
convenient to reduce, along with the spatial step, 
also the time step. The next results have been 
obtained using for the time step the same division of 
the spatial one. 

3 APPLICATION TO SOME BENCH MARK 
CASES 

We simulate the transport of gaussian concentration 
hill in a one-dimensional  uniform flow, (YEH, 
1990). Different numerical solutions have been 
computed, each one with a different number of total 
subelements Nel in (28). The governing equation (1), 
with upstream and downstream boundary conditions 
c=0 and initial condition given by: 
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has analytical solution   
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The examples velocity, spatial and temporal step are 
equal to U=0.5 m/s, ∆x=200 m, ∆t=96 s (cou=0.24). 

65 elements have been used and the total number of 
time steps is 100. Tests are provided for  D=0 m2/s 
(case1), for D=2 m2/s (case2),  D=50 m2/s (case3).  
Observe, in Figure 3, the results obtained for case1 
using values 435 and 1435 for the Nel parameter. 
The limitation of the pick reduction is, of course, 
less than proportional to the Nel parameter. Observe 
the improved accuracy with respect to the results of 
the up-stream FEM.  
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Figure 3. Examples of simulation. 
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Figure 4. Case1: The subelement distribution for 5200<x<8400 (in 
this zone of domain there are all the elements broken) 
 
 
Also you can observe the results obtained for the 
case2 and the case3. It can be observed that the 
accuracy of the results increases along with the 
dispersion, because a compensation of the numerical 
dispersion obtained in the solution of the convective 
part of the problem is obtained in the solution of the 
dispersive part. Finally you can  observe, in figure 4, 
the distribution of the subelements at the final 
computational time for case1. Note that the 
maximum number of subelements is reached, in the 
case of Nel = 435, in only part of the concentration 
peak. This is because the numerical diffusion has 
already caused, in this case, a flat area of high 
concentration.  
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CONCLUSIONS 

A new algorithm for the solution of the convective 
component of the groundwater transport equations 
has been proposed. The algorithm is unconditionally 
stable, guarantees global mass conservation and  
does not require any backtracking. The numerical 
diffusion associated with the solution is treated by 
dividing each element in several subelements. The 
number of subelements changes, for each element 
and for each time step, according to the location of 
the larger gradients and to the total number of 
available subelements. The application of the 
algorithm to 2D and 3D cases should be facilitated 
by the explicit nature of the algorithm and by its 
semplicity.  
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