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Abstract

The use of the boundary element method (BEM) is explored as an
alternative to the finite element method (FEM) solution methodology for
the elliptic equations used to model the generation and transport of fluo-
rescent light in highly scattering media, without the need for an internal
volume mesh. The method is appropriate for domains where it is rea-
sonable to assume the fluorescent properties are regionally homogeneous,
such as when using highly-specific molecularly targeted fluorescent con-
trast agents in biological tissues. In comparison to analytical results on
a homogeneous sphere, BEM predictions of complex emission fluence are
shown to be more accurate and stable than those of the FEM. Emis-
sion fluence predictions made with the BEM using a 708-node mesh, with
roughly double the internode spacing of boundary nodes as in a 6956-node
FEM mesh, match experimental frequency-domain fluorescence emission
measurements acquired on a 1087 cm3 breast-mimicking phantom as well
as those of the FEM, but require only 1/8 to 1/2 the computation time.
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1 Introduction
Imaging plays a central part of cancer diagnosis, therapy, and prognosis pri-
marily through the detection of anatomically defined abnormalities. With the
wealth of information provided by the now maturing areas of genomics and
proteomics, the identification of molecular markers and targets now promises
contrast-enhanced, diagnostic imaging with specificity and sensitivity that is
not otherwise possible with conventional, anatomical imaging. Molecular imag-
ing promises to improve diagnostic imaging and to impact the quality of cancer
patient care.
Near-infrared (NIR) light between the wavelengths of 700-900 nm propagates

deeply through tissues and provides a unique approach for molecularly-based
diagnostic imaging. In the past decade, significant progress has been made in
developing molecularly targeted fluorescent dyes for molecular imaging [1, 2, 3,
4, 5, 6, 7]. With near-infrared excitable fluorescent contrast agents that can be
conveniently conjugated with a targeting or reporting moiety, there is potential
clinical opportunity for using non-ionizing radiation with these non-radioactive
contrast agents for “homing in” on early metastatic lesions, performing sentinel
lymph node mapping, and following the progress of therapy.
Direct imaging of fluorescence is possible in small animal and near-surface

applications. However, in order to quantify fluorochrome concentrations and/or
to image fluorescent targets deeper into tissues, where the rapid decay of light
renders the diffuse signal weak and noisy, tomographic reconstruction is neces-
sary. Three dimensional fluorescence tomography has recently been demon-
strated in both small volumes [8, 9] and larger, clinically-relevant volumes
[10, 11, 12, 13, 14, 15], from experimentally acquired measurements. However,
especially in large volumes, there remain a number of challenges for obtain-
ing reliably quantitative and highly resolved image reconstructions, as outlined
below.
In NIR fluorescence-enhanced tomography [16], the tissue surface is illumi-

nated with excitation light and measurements of fluorescent light emission are
collected at the tissue surface. A forward model of fluorescent light generation
and transport through tissue is used to predict the observable states (e.g., emis-
sion fluence) at the measurement locations, based on the known excitation light
source and an estimate of spatially distributed optical properties of the tissue
volume. A computational implementation of the forward model is typically used
repeatedly within an inverse (tomography) method, wherein estimates of spa-
tially distributed optical properties of the tissue are iteratively updated until the
predictions match the observations sufficiently well, or some other convergence
criteria is achieved. Consequently, a rapid and accurate implementation of the
forward model is critical for a rapid and accurate tomography code.
In clinically relevant volumes of highly scattering media, the forward problem

of fluorescent light generation and transport can be effectively approximated as
a diffusive process. The generation and propagation of fluorescent light through
highly-scattering media (such as biological tissues) is often modeled by a pair
of second order, elliptic, partial differential equations [17, 18, 19]. The first
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equation represents propagation of excitation light (subscript x) and the sec-
ond models the generation and propagation of fluorescently emitted light (sub-
script m). Herein, we focus on frequency domain measurements using intensity
modulated illumination, because a) these time-dependent measurements permit
the implementation of fluorescence lifetime tomography [15], and b) frequency
domain measurements have some advantages over time domain measurements
approaches, including that ambient light rejection is automatic and does not
require background subtraction. In the frequency domain, the diffusion approx-
imations to the radiative transport equation over a three-dimensional (3-D)
bounded domain Ω are

−∇ · (Dx∇Φx) + kxΦx = Sx (1)

−∇ · (Dm∇Φm) + kmΦm = βΦx (2)

subject to the Robin boundary conditions on the domain boundary ∂Ω of

−→n · (Dx∇Φx) + bxΦx = px (3)

−→n · (Dm∇Φm) + bmΦm = 0 (4)

where∇ is the three dimensional (3×1) grad operator and −→n is the three dimen-
sional (3 × 1) vector normal to the boundary. In fluorescence tomography the
light source is localized on the surface and thus it can be modelled either by an
appropriate definition of excitation light source Sx (Watts/cm3) or as a source
flux px (Watts/cm2) on the surface boundary. Sources are intensity modulated
with sinusoidal frequency ω (rad/s) , and propagate through the media resulting
in the AC component of complex photon fluence at the excitation wavelength
of Φx (Watts/cm2). The diffusion (Dx,m), decay (kx,m) , and emission source
(β) coefficients, as shown below,

(
Dx =

1
3(µaxi+µaxf+µ

0
sx)

Dm =
1

3(µami+µamf+µ
0
sm)

;

½
kx =

iω
c + µaxi + µaxf

km =
iω
c + µami + µamf

; β =
φµaxf
1− iωτ

(5)

are functions of absorption coefficients due to non-fluorescing chromophore (µaxi,
µami), absorption coefficients due to fluorophore (µaxf , µamf ), and isotropic (re-
duced) scattering coefficients (µ

0
sx, µ

0
sm) at the two wavelengths (all in units of

cm−1), fluorescence quantum efficiency (φ), and fluorescence lifetime (τ , in s).
Here, i =

√−1, and c is the speed of light in the media (cm/s). The Robin
boundary coefficients (bx, bm) are governed by the reflection coefficients (Rx,

Rm), which range from 0 (no reflectance) to 1 (total reflectance):

bx =
1−Rx

2 (1 +Rx)
; bm =

1−Rm

2 (1 +Rm)
. (6)
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In diffuse fluorescence tomography, the forward model is commonly com-
putationally implemented using the finite element method (FEM) [20, 12, 21].
Despite the fact that all excitation sources and detected measurements are re-
stricted to the tissue surface, in the FEM the entire volume must be discretized
into nodes and 3D elements. The internal FEM mesh makes it straightforward
to implement the internally distributed emission source term (βΦx). Unfortu-
nately, the internal FEM mesh introduces discretization error that can render
the method unstable, unless a fine enough mesh is employed. In biological tis-
sues, the rate of decay (k, dominated by the absorption coefficients µa) is typi-
cally much larger than the rate of diffusion (D, dominated by the inverse of the
scattering coefficients µ

0
s, where µ

0
s >> µa), so fine internal volume meshes are

required in order to achieve a smooth and stable result. Furthermore, the spatial
resolution of small internal targets is governed by the internal mesh discretiza-
tion in a FEM model. In a tomography algorithm, where the target locations
are unknown in advance, fine target resolution in an FEM-based tomography
code will require either a uniformly fine mesh, or some sort of adaptive mesh-
ing scheme, both of which add to the computational complexity of the model.
If the optical parameters to be estimated in a tomographic reconstruction are
associated with internal nodes or elements, the inverse problem of FEM-based
tomographic reconstruction algorithm will be highly under-determined, since
the number of nodes or elements in an adequately resolved FEM mesh typi-
cally far exceeds the number of surface measurements available for inversion
[11, 13, 14]. In fluorescence tomography applications for large volumes this
problem is exacerbated because a very fine mesh resolution imposes large com-
putational memory and time requirements that may be impractical, and because
the signal-to-noise of fluorescence emission measurements in large volumes is ex-
tremely low and highly spatially-variant [10, 11], thereby rendering the inverse
problem even more ill-posed. There have been a variety of weighting and damp-
ing approaches proposed for regularization of ill-posed FEM tomography codes
[10, 22, 23, 24, 25], as well as methods that explicitly reduce the dimension-
ality of the parameter space in various FEM-based tomographic applications,
including (i) use of a priori structural information from co-registered magnetic
resonance images to reduce the number of uncertain optical parameters [26],
(ii) use of clustering algorithms to dynamically merge spatially adjacent un-
certain parameters based on their evolving estimates between iterations (aka
data-driven zonation) [10, 27, 28], and (iii) use of adaptive mesh refinement to
enable use of a relatively coarse mesh in the background while increasing spatial
resolution inside regions of interest, based on evolving estimates [29]. Although
these regularization approaches have made FEM-based fluorescence tomography
possible, it must be noted that accuracy of FEM-based tomography is sensitive
to the regularization imposed.
These difficulties associated with FEM-based fluorescence tomography moti-

vate us to explore boundary element method (BEM) -based tomography, wherein
the BEM [30] is used as an alternative numerical approach for solving the diffu-
sion approximations to excitation and emission radiative transport (1) and (2).
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In the 3D BEM, the domain is modeled with a finite number of spatially coher-
ent 3D regions, each of which is considered homogeneous. Only the boundaries
of these subdomains must be discretized into nodes and two-dimensional (2D)
elements. Inside each subdomain analytical solutions are employed, with com-
patibility and equilibrium constraints enforced on shared boundaries between
subdomains [30]. For domains in which it is reasonable to assume that parame-
ters can be modeled with a relatively small number of regionally homogeneous
subdomains, the BEM thus requires many fewer nodes and elements than the
FEM, and is subject to less discretization error. In a BEM-based tomography
code, the number of unknowns can be inherently much lower than the number
of measurements, even for large domains, assuming a relatively few number of
internal subdomains. For example, unknowns can be limited to the locations
of nodes on internal boundaries and the uncertain optical parameters inside
the various subdomain regions, as demonstrated in electrical impedance BEM
tomography [31, 32]. Such a BEM-based tomography code would be overde-
termined, and hence should yield more accurate parameter estimates, that are
less sensitive to selection of regularization parameters, than in an FEM-based
tomography code.
One difficulty with a BEM-based tomography code, however, is that one

must predetermine an upper limit on the number of internally distinct subdo-
mains to model. An approach that has proven successful in electrical impedance
tomography using the BEM alternates several generations of a genetic algorithm
with several iterations of a gradient-based local optimizer, to dynamically deter-
mine the number, locations, and geometries of internal subdomains [32]. Other
approaches that may prove effective for providing an initial estimate of target
numbers and locations for subsequent refinement with a BEM tomographic re-
construction include (i) extracting approximate parameter structure from the
result of a small number of iterations of an FEM tomographic reconstruction,
(ii) using an artificial neural network (e.g., a radial basis function neural network
[33]) for rapid initial approximation of parameter structure, or (iii) using a pri-
ori parameter structure estimates from other co-registered imaging modalities,
such as PET or MRI.
As previously stated, the BEM treats optical properties as regionally homo-

geneous. We postulate that this may be appropriate for some biomedical flu-
orescence tomography applications using highly-selective molecularly-targeting
and reporting dyes. When using receptor-targeted fluorescent markers, fluores-
cent properties such as absorption and lifetime will tend to be highly localized
(e.g., on the surface of a discrete tumor) and may therefore be conducive to
BEM modeling. While endogenous optical absorption and scattering will re-
main much more spatially heterogeneous that the distribution of fluorophore,
the change in time-dependent measurements with physiological absorption and
scattering contrast is insignificant in comparison to the change owing to the
fluorescence decay kinetics. Indeed, signal perturbations due to endogenous lev-
els of scattering and absorption contrast can be within the measurement error
of time-dependent measurements. Prior computational studies using synthetic
data have confirmed that tomographic inversion of fluorescence emission fluence
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is relatively insensitive to a wide range of unmodeled variability in background
absorption and scattering [28].
There are reports in the literature of successful applications of the BEM to

the optical excitation equation (1)[34] and to the electrical impedance diffusion
equation [31, 32]. In these applications, implementation of the BEM is relatively
straightforward, since all sources and detectors are located on the surface of the
domain, where the BEM must be discretized in any case. However, modeling
fluorescently generated light, emitted from an internal target, is not straightfor-
ward with the BEM. In this case, the source term for the emission equation (2)
is internally distributed; it is non-zero wherever there is non-zero fluorescence
absorption coefficient (µaxf , µamf ). Modeling this internal source term without
an explicit internal volume mesh makes application of the BEM non-trivial. We
have found no prior references to the BEM for the coupled excitation/emission
equations (1) and (2), or other similarly coupled systems.
Ultimately, we plan to explore various approaches for a practical BEM im-

plementation for 3D fluorescence tomography, as well as BEM-FEM hybrid
approaches. As a first step towards BEM-based fluorescence tomography, we
herein report on the derivation, implemention, and validation of a prototype
BEM forward model of the generation and propagation of fluorescent light
through highly-scattering media.

2 BEM formulation for the Governing Equations
The governing equations (1) and (2) are only coupled in one direction; that is,
the solution to equation (2) depends on the solution to equation (1), but not
vice versa. Consequently, it is possible to solve these equations sequentially.
To predict fluorescence emission fluence Φm at surface detectors (generated in
response to an excitation source Sx also at the tissue surface), one first solves the
excitation equation (1) with the boundary conditions (3), to predict excitation
fluence Φx at all the nodes in the domain volume Ω. The predicted excitation
fluence is subsequently used in the source term (βΦx) for solving the emission
equation (2), subject to boundary conditions (4), for emission fluence Φm. Since
an internal discretization of the entire volume Ω is already a requirement of the
FEM, the internally distributed source term for equation (2) requires no special
accommodation. However, if a sequential solution approach were employed in a
BEM formulation, this would necessitate the creation of an internal mesh for the
BEM in order to represent the internally distributed fluorescent source. This
approach would eliminate many of the potential advantages of the BEM over
the FEM.
Alternatively, one can entirely preclude the need of an internal volume mesh

discretization when using BEM if the governing equations (1) and (2) are solved
simultaneously, rather than sequentially. We recast the governing equations into
the following matrix form

−∇T
¡
D ∇ Φ¢+ k Φ = S on Ω. (7)
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Similarly, the boundary conditions (3) and (4) are represented by the matrix
equation

nT
¡
D∇ Φ¢+ r Φ = p on ∂Ω. (8)

Here, we distinguish vector quantities with a single underbar and matrix quan-
tities with a double underbar and we use the following matrix definitions



∇
(6×2)

=

· ∇ 0
0 ∇

¸
; n
(6×2)

=

· −→n 0
0 −→n

¸
; D
(6×6)

=

·
DxI 0
0 DmI

¸
;

k
(2×2)

=

·
kx 0
−β km

¸
; r
(2×2)

=

·
bx 0
0 bm

¸
;

Φ
(2×1)

=

·
Φx
Φm

¸
; S
(2×1)

=

·
Sx
0

¸
; p
(2×1)

=

·
px
0

¸
.

(9)

where the sizes of each matrix are shown for clarity. Note that in the matrix for-
mulation above we have moved the emission source term (βΦx) to the left hand
side of the emission equation. We first present a BEM solution to system (7)
on homogeneous domains, and then extend this to the case of non-homogeneous
domains.

2.1 Homogenous domains

By assuming a homogenous domain, where the matrices D,k,b are spatially
constant inside the domain Ω, we can rewrite Eqs. (7) as follows

−∇2Φ+K Φ = S on Ω (10)

with

K
(2×2)

=
£
D−1k

¤
, S̃

(2×1)
=
£
D−1S

¤
. (11)

Here, X−1 indicates the inverse of the matrix X.
We now define an arbitrary matrix of functions Ψ

Ψ
(2×2)

=

·
Ψxx Ψxm
Ψmx Ψmm

¸
. (12)

Multiplying equation (10) by the transpose of Ψ and integrating over the entire
domain Ω yields Z

Ω

ΨT
¡−∇2Φ+K Φ

¢
dx =

Z
Ω

ΨT S̃ dx (13)

where superscript T indicates the transpose operator. Integrating by parts twice
and incorporating the boundary conditions (8) gives
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Z
Ω

³
−∇2Ψ+KTΨ

´T
Φ dx+

Z
∂Ω

Ã
−ΨT ∂Φ

∂−→n +
∂ΨT

∂−→n Φ
!
dx =

Z
Ω

ΨT S̃ dx

(14)
We now define the matrixΨ such that the following adjoint equation is satisfied,
that is

−∇2Ψ+KTΨ = ∆j . (15)

We define ρ =
¯̄
x− xj

¯̄
to be the distance for any arbitrary point x in the

domain to the jth node, xj .Then, ∆j is a 2× 2 diagonal matrix of Dirac delta
functions centered at node j.

∆j

(2×2)
=

·
δ(ρ) 0
0 δ(ρ)

¸
. (16)

Hereafter Ψ is called the Green matrix of the 3-D diffusion equations (7) in an
infinite domain (equivalent to the Green’s function for the scalar case).
Equation (14) then simplifies as follows

Φ(xd) +

Z
∂Ω

Ã
−ΨT ∂Φ

∂−→n +
∂ΨT

∂−→n Φ
!
dx =

Z
Ω

ΨT S̃ dx. (17)

A modal decomposition procedure is applied to solve the system (15) (see Ap-
pendix A for details) which yields, for the case of fluorescence photon migration,
the following analytical expression for Ψ

Ψ =

 G
³q
− kx

Dx
ρ
´ G

³q
− kx
Dx

ρ
´
−G

³q
− km
Dm

ρ
´

Dm
β (

kx
Dx
− km
Dm
)

0 G
³q
− km

Dm
ρ
´

 (18)

Note that, for the fluorescence photon migration case, the component Ψmx of
the matrix Ψ is zero, reflecting the asymmetry in the governing equations (1)
and (2); that is, Φx influences Φm, but not vice versa. In equation 18, G

¡√−λρ¢
is the scalar Green’s function satisfying the Helmholtz equation

∇2G− λG+ δ(ρ) = 0, λ =
kx
Dx

,
km
Dm

. (19)

For 3D domains, the function G is defined as:

G(
√−λρ) = 1

4πρ
exp

³
−i√−λρ

´
. (20)

(See Appendix A for the 2D case). The integral equation (17) can be solved by
BEM discretization as follows. We first consider a triangular mesh discretization
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Υh of the boundary ∂Ω. Without loss of generality, we employ linear elements.
Over the boundary ∂Ω, we define the real finite functional space

Vh = {u ∈ C0 (∂Ω) u |K is a linear polynomial} (21)

whereK ∈ Υh is the generic surface triangular element and h = max
K �Υh

diam(K)

is the maximal dimension of the element. We define the global bases for Vh(∂Ω)
as {N1, N2, ......,Nn} where n is the number of nodes. The generic basis elements
are defined such that Ni(xj) = δij with δij the Kronecker symbol. By means of

these bases, Φ, its normal derivative q = ∂Φ
∂n and the boundary flux p can be

approximated as

Φ(x) =
nX

k=1

Nk(x)Φk; q(x) =
nX

k=1

Nk(x)qk; p(x) =
nX

k=1

Nk(x)pk (22)

where Φk,qk and pk indicate values relative to the node k. Using these ap-
proximations and choosing xj to span all the nodes of the surface Υh, i.e.
xj = xi ∀ i = 1, ...n, the equations (17) and (8) give respectively the following
set of algebraic equations

HU +GV = S (23)

V = −R U +P. (24)

The matrix R is block-diagonal of dimension (2n× 2n), with n the number of
nodes, as follows

R
(2n×2n)

=


r
r ...

...
r

 . (25)

with I the (2×2) identity matrix. We define U , V, P and S as the column vectors
of the nodal values of the fluence Φ, its normal derivative q, the prescribed
boundary flux p and the volume source S respectively. These are vectors of
dimension (2n× 1), i.e.

U
(2n×1)

=


Φ1
...
...
Φn

 , V
(2n×1)

=


q
1
...
...
q
n

 , P
(2n×1)

=


p
1
...
...
p
n

 , S
(2n×1)

=


s1
...
...
sn

 (26)

where the (2× 1) vector component sj at each node j is given by

sj
(2×1)

= −
Z
Ω

ΨT (ρ)S(x)dΩ. (27)

In the case of a point source located on the surface of a 3D domain, we effectively
use a lumped mass matrix to concentrate the source at a specific point xs located
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one scattering length inside and normal to the surface beneath the point source,
so the integral in equation (27) disappears as follows:

sj
(2x1)

= −ΨT (
¯̄
xj − xs

¯̄
)S(xs) (28)

By relocating the point source just inside the domain (so xj 6= xs, ∀j, s) we
avoid singularities arising from source locations that coincide with a boundary
node (i.e., xj = x implies G(0) =∞ per equation 20, and therefore Ψ =∞ per
equation 18). The BEM matrices H, G are partitioned as

H
(2n×2n)

=


h
11

h
12

... h
1n

... ...

... h
jk

...

.... h
nn

 , G
(2n×2n)

=


g
11

g
12

... g
1n

... ...

... g
jk

...

.... g
nn

 (29)

where the block elements are computed as follows

h
jk

(2×2)
= I

(2×2)
δjk +

Z
∂Ω

∂ΨT (ρ)

∂−→n Nk(x)dx (30)

g
jk

(2×2)
= −

Z
∂Ω

ΨT (ρ)Nk(x)dx (31)

Remark 1 Note that, since the component Ψmx of the Green matrix Ψ is zero
[ see Eq. (18)], it results that the matrices H and G are 3/4 populated 2n× 2n
matrices, where n is the number of nodes in the BEM mesh. By defining Φx

and Φm as column vectors of the nodal values of the fluences Φx and Φm, the
vectors U and V can be rearranged as follows

U
(2n×1)

=

·
Φx

Φm

¸
, V
(2n×1)

=

·
q
x
q
m

¸
(32)

and one finds that the matrices H and G in Equation (23) have the following
structure

H =

"
Hxx 0

Hxm Hmm

#
,G =

"
Gxx 0

Gxm Gmm

#
. (33)

For a given surface mesh, the size of the BEM matrices is smaller (dimen-
sioned by number of boundary nodes times 2) than the size of the FEM matrices
for the excitation and emission equations (dimensioned by number of nodes in
the FEM volume mesh). The computation of the matrix block element entries
(equations (30) and (31)) can be done using Gauss integration (we used 7 collo-
cation points inside each triangular element) as long as node k does not coincide
with one of the nodes attached to any of the triangular elements attached to
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node xj. In this case the integrals appearing in equations (30) and (31) are reg-
ular. Otherwise the integrals are singular and special computation is required,
as discussed in Appendix B. Substituting equations (24) into (23) yields¡

H −GR¢U = S −GP. (34)

This is a single equation to solve for all boundary nodal values of the light
fluence U (comprising both excitation and emission fluence).

2.2 Inhomogenous domains

2.2.1 Definition of the problem and BEM formulation

Assume that a domain volume Ω, with boundary ∂Ω, comprises an inner subdo-
main Ωi, with boundary ∂Ωi, and outer subdomain Ωo, with boundary ∂Ωo =
∂Ωi∪∂Ω (Figure 1). The internal properties of the volume Ωi are characterized
by the matrices Di,ki whereas the outer volume Ωo is defined by the matrices
Do,ko. The Robin boundary conditions (8) still apply on ∂Ω. Inside each vol-
ume Ωi (inner) and Ωo (outer) we define Φi and Φo as the inner and outer light
fluences defined on the boundary nodes directly touching each domain (note
that nodes defining the boundary of the inner volume Ωi are shared). Equation
(17) still holds since each volume is defined as being internally homogenous and
two integral equations (inner and outer equations respectively) can be defined
as follows

Φi(xd) +

*
−ΨT

i

∂Φi

∂−→n i
+

∂Ψi
T

∂−→n i
Φi

+
∂Ωi

= 0 xd ∈ ∂Ωi (35)

Φo(xd) +

*
−ΨT

o

∂Φo

∂−→n o
+

∂ΨT
o

∂−→n o
Φo

+
∂Ωo

=
D
ΨT
o S
E
Ωo

xd ∈ ∂Ωo. (36)

Here, Ψi and Ψo are the Green matrices relative to the domain Ωi and Ωo,

respectively. Note that according to the inner normal −→n i the flux leaving the
inner volume, through the inner boundary ∂Ωi, is Di

∂Φi
∂−→n i

whereas the flux

entering the outer volume is−Di
∂Φi
∂−→n o

. We can now define the following matching
boundary conditions required at the shared nodes along the internal boundary
∂Ωi

Φi(x) = Φo(x), x ∈ ∂Ωi (37)

Di
∂Φi(x)

∂−→n i
= −Do

∂Φo(x)

∂−→n o
, x ∈ ∂Ωi. (38)

These conditions impose the continuity of the light fluence (37) and the conser-
vation of the light flux (38) at the nodes on the shared boundary ∂Ωi. Consider a
triangular mesh discretization for both the boundaries ∂Ωi and ∂Ωo = ∂Ωi∪∂Ω.
In the following, the subscript I or O indicates quantities relative to the nodes
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of the inner boundary ∂Ωi or the outer boundary ∂Ωo respectively, whereas
the superscript (i) or (o) indicates properties relative to the inner volume Ωi or
outer volume Ωo. We use linear elements as we did for the homogenous case (see
equation (22)) and indicate with nI and nO the number of nodes of the inner
and outer boundaries respectively and nT = nI+nO the total number of nodes.
The BEM discretization of the inner and outer equations are, respectively

H(i)

(2nI×2nI)
U (i)I

(2nI×1)
+ G(i)

(2nI×2nI)
V(i)I

(2nI×1)
= 0
(2nI×1)

(39)

and

H(o)

(2nT×2nT )
U(o)

(2nT×1)
+ G(o)

(2nT×2nT )
V(o)

(2nT×1)
= S(o)
(2nT×1)

. (40)

where the sizes of matrices and vectors are shown for clarity. Here, U (o) and
V(o) and S(o) are defined as follows

U (o)
(2nT×1)

=


U (o)I

(2nI×1)
U (o)O

(2nO×1)

 , V(o)
(2nT×1)

=


V(o)I

(2nI×1)
V(o)O

(2nO×1)

 , S(o)
(2nT×1)

=

 0
(2nI×1)
S(o)O

(2nO×1)

 ,
(41)

and U(i)I and V(i)I refer to the nodal values of the inner fluence Φi and its normal

derivative along the inner boundary ∂Ωi. The vectors U(o)I and V(o)I are relative
to the nodal values of the outer fluence Φo and its normal derivative along the
inner boundary ∂Ωi, respectively, whereas U(o)O and V(o)O are vectors relative to
the nodal values of the outer boundary ∂Ωo. Note that both the elements of the
matrices H(i) and G(i) , as well as the matrices H(o) and G(o), are computed
using equations (30) and (31), with ∂Ωi and ∂Ωo as boundary contours for the
integrations, respectively.
Because of the matching conditions (37) and (38) we need to impose the

nodal conditions

U(o)I = U (i)I (42)

D(o)V(o)I = −D(i)V(i)I . (43)

where D(o) and D(i) are block-diagonal matrices defined as follows

D(o)
(2nI×2nI)

=


Do

...
...

Do

 , D(i)
(2nI×2nI)

=


Di

...
...

Di

 . (44)

From Eq. (39) and the matching conditions (42) and (43) we derive a relation
between the vectors V(o) and U(o) that is equivalent to a discretized Robin

12



boundary condition as in Eq. (24) for the homogenous case. Since the matrix
G(i) is non singular, from equation (39) one obtains

V(i)I = −
³
G(i)

´−1
H(i) U(i)I . (45)

Applying the matching condition (43), equation (45) yields

D(o) V(o)I = D(i)
³
G(i)

´−1
H(i) U(i)I . (46)

Because of the matching condition (42), the following equation holds

V(o)I =
³
D(o)

´−1
D(i)

³
G(i)

´−1
H(i) U(o)I . (47)

This is a relation between the vector V(o)I of the nodal normal derivatives of the

outer fluence Φo and the vector U (o)I of the nodal values of the fluence Φo on
the inner boundary ∂Ωi. The discretization of the Robin boundary condition
on the outer boundary ∂Ω (see equation (8)) is defined the same as in equation
(23) for the homogenous case, that is

V(o)O = −R U (o)O +P. (48)

Using the vector definitions (41), the equations (46) and (48) can be recast
together in the following block form

V(o) = −R U(o) + P (49)

where we have defined

R
( 2nT×2nT )

=

" ¡D(o)¢−1D(i) ¡G(i)
¢−1

H(i) 0
0 R

#
, P

(2nT×1)
=

·
0
P

¸
.

(50)
Substituting equation (49) into equation (40) yields the following system³

H(o) −G(o)R
´
U(o) = S(o) −G(o)P. (51)

Equation (51) has the same matrix structure as the equation (34) for the
homogenous case. Extension to multiple non-overlapping inner domains is
straightforward.

3 Experiments

3.1 Comparison to FEM and Analytical Solution on a Ho-
mogeneous Sphere

Both the proposed BEM formulation and the FEM (see [21] for a detailed de-
scription of our vectorized finite element implementation) were implemented in
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Matlab Version 6.5 [35] on a 2.2 GHz Pentium IV. In order to test the proposed
BEM formulation, we first consider the propagation of light through a homoge-
nous sphere of radius Γ. For the following axisymmetric boundary conditions

Dx
∂Φx
∂−→n = Pη, Dm

∂Φm
∂−→n = 0 (52)

the analytical solution of the coupled equations (10) in scalar form has expres-
sion as follows (see Appendix C for derivation)

Φx =
Pη jη

³q
−kx
Dx

ρ
´

dx j
0
η

³q
−kx
Dx
Γ
´ (53)

Φm = Pη
βDm³

kx
Dx
− km

Dm

´
 jη

³q
−km
Dm

ρ
´

Dm

q
−km
Dm

j 0η

³q
−km
Dm
Γ
´ − jη

³q
−kx
Dx

ρ
´

Dx

q
−kx
Dx

j 0η

³q
−kx
Dx
Γ
´
(54)

Here, Pη are the Legendre polynomials, jη(x) are the spherical Bessel functions
of first kind of order η and j

0
η (x) is the derivative of jη (x).

The case of η = 0 corresponds to a uniform imposed flux on the surface of
the sphere, and hence the analytic solution is also homogenous on the surface
of the sphere, rendering this a good test case for the accuracy and stability of
numerical solutions. We have solved this problem using the BEM formulation
(34) on 10 cm diameter spheres with 9 levels of surface mesh discretization,
using triangular elements with linear basis functions. Specifications for the
coarsest, medium, and finest of these nine sphere meshes are detailed in Table
1 and depicted in Figure 2. For these experiments, we selected optical property
values consistent with the background properties employed in human breast
phantom studies, assuming the presence of low levels of the fluorescent contrast
agent Indocyanine Green [11], as shown in Table 2, and assumed a modulation
frequency of 100 MHz. The FEM discretizations used the same surface meshes
as did the BEM but had additional discretization of the internal volume of the
sphere into tetrahedral elements, also using linear basis functions.
For both the FEM and BEM we define the prediction error as the analytical

solution minus the numerical prediction, at all surface nodes on the sphere, for
both real and imaginary components of the predicted fluence (Φ). Results were
assessed by two metrics: (i) the root mean square error of the prediction error
(RMSE) was used to indicate accuracy — this metric includes residual bias in
the predictions, and (ii) the standard deviation (σ) of the prediction error was
used to indicate smoothness — this metric excludes bias in the predictions.
As previously mentioned, for relatively low diffusion coefficients and high

decay coefficients (as in biological tissues) FEM mesh discretization must be
relatively fine in order to achieve smooth, numerically stable results. In con-
trast, since the BEM employs internal analytic solutions and therefore has no
discretization error associated with an internal volume mesh, we hypothesized
that the BEM would be less sensitive to the relative magnitudes of diffusion
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and decay coefficients. In order to test this, we compared both the BEM and
FEM for accuracy (by RMSE) and smoothness (by σ) of the results, relative to
analytic results on the homogeneous sphere, again using the optical properties
shown in Table 2, but where the resulting diffusion coefficients (Dx, Dm) were
then multiplied by a factor Dfac of 1, 10, and 100.

3.2 Comparison to FEM and Experimental Data from a
Non-homogeneous Breast Phantom

In order to test the BEM on a non-homogeneous domain, we compared pre-
dictions from the BEM formulation (51) to experimentally acquired measure-
ments. In prior work [11, 13, 14, 15], we experimentally collected measurements
of frequency domain fluorescence emission fluence (Φm) from the surface of
a breast shaped tissue-mimicking phantom (a 10 cm diameter hemispherical
"breast" atop a 20 cm diameter cylindrical portion of the "chest wall"). The
instrumentation and data collection protocol is outside the scope of this pa-
per, but is fully described elsewhere [11]. By incorporating a finite element
model [21] of this phantom into the Bayesian approximate extended Kalman
filter [10, 11, 27, 28] image reconstruction algorithm, we have successfully per-
formed 3-D tomographic reconstructions of both fluorescence absorption (µaxf )
[11, 13, 14] and fluorescence lifetime (τ) [15]. Herein, we compare the model
mismatch of the FEM and BEM forward models to an 11-source experimentally
acquired data set [11], with background optical properties as shown in Table
2, and a 1 cc fluorescent target with 100:1 target:background contrast in µaxf ,
with centroid located 1.4 cm from the surface of the phantom breast. This data
set comprised 401 measurements of Φm, selected from 704 measurements at 64
spatially distributed optical collection fibers in response to 11 spatially distrib-
uted sequential point source illuminations (only those measurements above the
noise floor were retained, as described in [11]).
The coarsest FEM mesh that we have found to adequately resolve a 1 cc

target and achieve acceptable model match contains 6956 nodes, and is shown in
Figure 3a. This is the mesh that was used for the image reconstructions reported
in [11, 13, 15]. However, because the BEM requires more memory than the FEM,
we were not able to run the BEM using the surface mesh shown in Figure 3a.
Consequently, we implemented a much coarser 708 node BEM mesh to model
the breast phantom, as shown in Figure 3b, where the inter-node spacing on the
domain surface is approximately double that used in the FEM. Note that the
geometry and location of the cubic target can be very accurately represented in
even a course BEM mesh, because a) the surface mesh of the internal target is
independent of the coarseness of the mesh on the outer domain surface, and b)
the shape of the internal surface is not constrained by the locations of nodes in
an internal volume discretization, as in the FEM. We remind the reader that in
this manuscript we are only addressing the forward problem, where the target
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location, size, and shape are known. In the inverse problem, the locations of
internal target surface nodes could be iteratively estimated, (e.g., as in [32]).
Experimental measurements are referenced, in order to account for instru-

ment effects and unknown source strength. Here, the experimental measure-
ments are referenced by dividing each measurement of emission fluence by the
measurement at a designated reference detector [11], for each source illumina-
tion. Our FEM and BEM predictions were thus similarly referenced for com-
parison to the experimental data. Prediction errors are therefore defined as the
real and imaginary components of the measured minus predicted referenced Φm.
The distribution of the prediction error is an indication of bias and variance in
the combined model and measurement error (aka "model mismatch").

4 Results

4.1 Comparison to Analytical Sphere Solutions

In comparison to the analytical solution on the homogeneous sphere using bi-
ologically realistic optical properties, the BEM outperformed the FEM in both
accuracy (RMSE) and smoothness (σ) of the predictions, and this effect became
increasingly pronounced on finer meshes. On the finest sphere mesh used (Fig-
ure 2c), the BEM was over an order of magnitude more accurate and smoother
than the FEM (Figure 4). Both convergence and stability of the BEM solutions
increase faster than those of the FEM, as the meshes get more refined (Figure
5). These results imply that we may be able to achieve BEM predictions from
coarser meshes that are more accurate than FEM predictions with finer meshes.
When we reran the sphere model with diffusion coefficients that were 10

and 100 times higher than in those in biological tissues, both the accuracy and
smoothness of the FEM improved, and converged on results similar to those of
the BEM. This is exemplified by the results shown in Table 3 for the sphere
with medium discretization shown in Figure 2b. Results for the other sphere
discretizations followed a similar pattern. These results underscore that the
noisy predictions of the FEM on the homogeneous sphere test case (e.g., Figure
5) were not caused by a flaw in our implementation of the FEM, but were
due to numerical instabilities on these FEM meshes for the low diffusion-to-
decay ratios that result from tissue-like optical properties. Since the BEM has
no internal volume mesh, the BEM predictions are smooth and stable. We
infer that the optical properties of biological tissues are such that the resulting
diffusion coefficients (Dx, Dm) are in a range that is challenging for the FEM
and requires a very fine FEM mesh, but may be modeled accurately with the
BEM, even with a relatively coarse mesh.
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4.2 Comparison to Experimental Data from Breast Phan-
tom

The observed frequency distributions of model mismatch between the model
predictions, for both FEM and BEM, and the experimentally acquired data, are
shown in Figure 6, for both real and imaginary components of the fluorescence
emission fluence. Although the inter-node spacing on the domain surface in the
BEM mesh approximately double that of the FEM mesh (Figure 3), the BEM
predictions matched the data at least as well as the FEM data, as shown in
Figure 6, where it can be seen that the magnitudes of bias and variance of the
model mismatch are similar for the two forward models, and in most cases are
slightly lower in the BEM predictions than in the FEM predictions. The FEM
system matrices are large and sparse, while the BEM system matrix is relatively
small but 3

4 dense (see equations 33). In fact, although the BEM breast mesh
had an order of magnitude fewer nodes than the FEM mesh, it had an order of
magnitude more non-zero elements in its system matrix (Table 4), thus requiring
more memory. Despite this, total prediction time for all 11 source illuminations
on these breast models took about half the time with the BEM than with the
FEM. If the portions of the system matrix associated with the outer mesh (H(o)

and G(o)) were pre-computed, the BEM only took one eighth the time of the
FEM (Table 4). Pre-computing the outer mesh may be a practical approach in a
BEM tomography application where the background properties and geometry of
outer domain are held constant, and only the locations, sizes, shapes, and values
of internal targets are estimated. Since this was a prototype implementation of
the BEM and used a direct solver, we anticipate that further implementation
improvements will yield additional speedups for the BEM.

5 Summary and Conclusions
Finite element method (FEM) approaches to fluorescence tomography in clin-
ically relevant volumes have proven feasible [11, 13, 14, 15], but are highly
under-determined. Consequently FEM-based tomographic reconstructions are
dependent on, and sensitive to, regularization schemes. In contrast, boundary
element method (BEM) based tomography may afford high resolution imaging
of internal targets, in the context of an over-determined problem. While FEM
models may be necessary for modeling domains with a large degree of contin-
uously varying heterogeneity, the BEM method is appropriate for applications
in which the domain can be modeled with a small number of homogeneous sub-
domains. One such potential application is when modeling fluorescence from
molecularly-targeting dyes that exhibit highly-localized spatial accumulation
(e.g., on discrete tumors). Using the BEM, only the external boundary and
the internal target boundaries require discretization, and regional solutions are
solved analytically. The BEM can accurately model the geometries of internal
subdomains, independent of the degree of surface discretization, in contrast to
the FEM. Unfortunately, the application of a BEM forward model to the flu-
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orescence diffusion equations is not straight-forward, because of the internally-
distributed fluorescent emission source caused by embedded fluorophore.
In this contribution, we have developed a 3D BEM formulation that al-

lows the simultaneous solution of the excitation and emission equations that
describe the generation and propagation of fluorescent light through turbid me-
dia, without the need for an internal volume mesh. This formulation is based
on a derivation of the fundamental solution to the coupled system of excitation
and emission equations. The BEM is shown to be more accurate and more
stable than the FEM, when compared to an analytic solution on a spherical ho-
mogeneous domain using optical properties consistent with those of biological
tissues, owing to the lower internal discretization error inherent in the BEM.
For a given inter-node spacing in the mesh, the BEM requires more memory
and runtime than the FEM. However, the BEM with a coarser mesh gives more
accurate and stable results, and takes less computer time, than the FEM with a
fine mesh. Emission fluence predictions made with the BEM using a 708-node
boundary mesh, with roughly double the inter-node spacing of boundary nodes
as in a 6956-node FEM volume mesh, match experimental frequency-domain
fluorescence emission measurements acquired on a non-homogeneous 1087 cm3

breast-mimicking phantom as well as those of the FEM, but required only 1/8
to 1/2 the computation time. These encouraging results on the BEM forward
model of fluorescence photon migration motivate us to pursue BEM-based flu-
orescence tomography in future work.

6 Appendix A: Analytical derivation of the Green
matrix Ψ

A modal decomposition procedure is applied to solve for the fundamental solu-
tion (Ψ) of the coupled adjoint system (15), as follows. Set K̃ = KT in equation
(15) as

K̃ =

·
K̃x K̃xm

0 K̃m

¸
where

K̃x =
kx
Dx

, K̃xm = − β

Dm
, K̃m =

km
Dm

.

In order to solve the adjoint system (15), define a generic non singular matrix
V and the variable transformation

Ψ = V U. (55)

The new differential equation satisfied by the transformed variable U is readily
derived from equation (10) as follows

∇2U− (V−1K̃V)U+V−1∆j = 0. (56)
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We now choose V to be the matrix having as column entries the eigenvectors
of the matrix K̃. It follows that V−1K̃V = Λ with Λ the diagonal matrix of
the eigenvalues and equation (56) simplifies

∇2U−ΛU+V−1∆j = 0. (57)

Here,

Λ =

·
K̃x 0

0 K̃m

¸
, V =

·
1 α
0 1

¸
, V−1 =

·
1 −α
0 1

¸
(58)

where

α =
K̃xm

K̃m − K̃x

=

β
Dm

kx
Dx
− km

Dm

(59)

From the matrix equation (57) the following scalar equations for the entries Uij
of the matrix U can be derived

∇2U11 − K̃xU11 + δ(ρ) = 0

∇2U12 − K̃xU12 − α δ(ρ) = 0

∇2U21 + K̃mU21 = 0

∇2U22 − K̃mU22 + δ(ρ) = 0.

(60)

Note that the component U21 is zero and the analytical expression of the matrix
U is readily obtained

U =

 G
³p
−K̃x ρ

´
−α G

³p
−K̃x ρ

´
0 G

³p
−K̃m ρ

´  (61)

where G
¡√−λr¢ satisfies the Helmholtz-type equation

∇2G− λG+ δ(ρ) = 0 λ = K̃x, K̃m. (62)

The following radiation boundary condition at infinity needs to be satisfied in
order to guarantee decay-outgoing solutions from the location x = xj , i.e.

lim
ρ→∞

µ
∂G

∂ρ
− i
√−λG

¶
= 0. (63)

In two dimensions
G(
√−λρ) = i

4
H1
0

³√−λρ´ (64)

where H1
0 (x) is the Hankel function of first kind and order 0, whereas in three

dimensions
G(
√−λρ) = 1

4πρ
exp

³
−i√−λρ

´
. (65)

19



Using the transformation (55) the Green matrix Ψ has the general expression
as follows:

Ψ =

 G
³p
−K̃xρ

´
−α G

³p
−K̃xρ

´
+ α G

³p
−K̃mρ

´
0 G

³p
−K̃mρ

´  . (66)

7 Appendix B: Computation of the matrices H
and G

Equations (30) and (31) are required to compute the element entries of the
matrices H and G (equations (29)), and are repeated below:

h
jk

(2×2)
= I

(2×2)
δjk +

Z
∂Ω

∂ΨT (ρ)

∂−→n Nk(x)dx (67)

g
jk

(2×2)
= −

Z
∂Ω

ΨT (ρ)Nk(x)dx (68)

Special computation is required if the node k coincides with one of the nodes at-
tached to any of the triangular elements attached to node xj . In this case, Gauss
quadrature gives poor approximations. In order to compute these integrals, we
set a polar coordinate system (ρ, θ) at xj . Since ρ =

¯̄
x− xj

¯̄
, equations (67)

and (68), in the polar system, transform to

h
jk

(2×2)
= I

(2×2)
δjk +

Z
∂Ω

ΨT (ρ) Nk(ρ, θ)ρ dρdθ, (69)

g
jk

(2×2)
= −

Z
∂Ω

∂ΨT

∂ρ

∂ρ

∂−→n Nk(ρ, θ)ρ dρdθ. (70)

Here, the integral in (69) is regular, since Ψ ∼ 1
ρ and can be easily computed

by numerical quadrature in the domain (ρ, θ). The integral in (70) is weakly

singular, since
∂Ψ

∂ρ ∼ 1
ρ2 . In order to compute it, we consider an external small

spherical surface ∂Ω� of radius � centered at node xj (Figure 7). The integral
splits into two components, as follows:

g
jk

(2×2)
= −

Z
∂Ω�

∂ΨT

∂ρ

∂ρ

∂−→n Nk(ρ, θ)ρ dρdθ −
Z
∂Ω\∂Ω�

∂ΨT

∂ρ

∂ρ

∂−→n Nk(ρ, θ)ρ dρdθ

(71)
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Note that the second component of (71) vanishes, since ∂ρ
∂−→n = 0 in ∂Ω\∂Ω�.

Consequently, the integral simplifies as follows:

g
jk

(2×2)
= −

Z
∂Ω�

∂ΨT

∂ρ
Nk(ρ, θ)ρ dρdθ (72)

In the limit as �→ 0, it holds that Nk(ρ, θ)→ δjk+ o(�), and (72) simplifies to:

g
jk

(2×2)
= −δjk I

(2x2)

ϑj + o(�). (73)

Here, I is the (2x2) identity matrix and ϑj is the internal solid angle with respect
to the normal direction facing the outside of the boundary ∂Ω at the node xj
(Figure 7). If the surface is flat the solid angle at the node is equal to 1

2 .

8 Appendix C: Analytic Solution to Homoge-
neous Domain

We derived the analytic solution of the coupled system (10) as follows. Using a
similar procedure as applied to derive the Green matrix as described in Appendix
A, one can obtain the following eigenfunction expansion for the equations in
system (10). Using spherical coordinates ρ, φ, and θ,

Φx(ρ, φ, θ) =
X

Aηζ exp(iζθ)P
ζ
η (φ) jη

Ãr
− kx
Dx

ρ

!
(74)

Φm(ρ, φ, θ) =
X

exp(iζθ)P ζ
η (φ)

"
Bηζ jη

Ãr
− km
Dm

ρ

!
− χAηζjη

Ãr
− kx
Dx

ρ

!#
.(75)

Here, Aηζ and Bηζ depend upon the boundary conditions, P ζ
η (φ) are the Legen-

dre functions (for ζ = 0 they become the Legendre polynomials Pη(φ) ), jη(x)
is the spherical Bessel function of first kind of order η

jη(x) =
J(η+ 1

2 )
(x)

√
x

(76)

where Jη(x) is the Bessel function of first kind of order η. The parameter χ is
defined as follows

χ =
βDm³

kx
Dx
− km

Dm

´ .
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The boundary conditions (52) impose axisymmetry, i.e. ζ = 0, and from equa-
tions (74) and (75) the two following equations are obtained

Aη Dx

r
− kx
Dx
j
0
η

Ãr
− kx
Dx

ρ

!
= 1 (77)

Bη

r
− km
Dm

j
0
η

Ãr
− km
Dm

ρ

!
− χAη

r
− kx
Dx
j
0
η

Ãr
− kx
Dx

ρ

!
= 0. (78)

where j
0
η (x) is the derivative of jη (x). Then one can solve for the coefficients Aη

and Bη and the solutions for the homogeneous sphere (53) and (54) are readily
derived.

9 Acknowledgments
This work was supported in part by NIH R01 EB 002763 and the Vermont
Genetics Network through NIH 1 P20 RR16462 from the BRIN program of the
NCRR.

10 References

References
[1] Folli, S., Westerman, P, Braichotte, D., Pelegrin, A., Wagnieres, G., Van

den Berg, H., and Mach., J.P., "Antibody-indocyanin conjugates for im-
munophotodetection of human squamous cell carcinoma in nude mice",
Cancer Res. 54:2643-2649 (1994).

[2] Neri, B., Carnemolla, B, Nissim, A, Leprini, A, Querze, G, Balza, E.,
Pini, A., Tarli, L, Halin, C, Neri, P, Zardi, L, and Winter, G., "Targeting
by affiinity-matured recombinant antibody fragments of an angiogenesis
associated fibronectin isoform", Nat. Biotechnol., 15:1271-1275 (1997).

[3] Schellenberger, E., Bogdanov, A, Petrovsky, A, Ntziachristos, V,
Weissleder, R, and Josephson, L., "Optical imaging of apoptosis as a bio-
marker of tumor response to chemotherapy", Neoplasia 5:187-192 (2003).

[4] Achilefu, S., Dorshow, R.B., Bugah, J.E. and Rajagopalan, R., "Novel
receptor-targeted fluorescent contrast agents for in vivo tumor imaging",
Invest. Radiol. 35:479-485 (2000).

[5] Becker, A, Hessenius, C., Licha, K., Ebert, B., Sukowski, U., Semmler, W.,
Wiedenmann, B., and Grotzinger, C., "Receptor-targeted optical imaging
of tumors with near-infrared fluorescent ligands", Nat. Biotechnol. 19:327-
331 (2001).

22



[6] Weissleder, R., Tung, C.H., Mahmood, U., and Bogdanov, A., "In
vivo imaging of tumors with protease-activated near-infrared fluroescent
probes", Nat. Biotechnol. 17:375-378 (1999).

[7] Tyagi, S., and F.R. Kramer, "Molecular beacons: probes that fluoresce
upon hybridization", Nat. Biotechnol. 14:303-308 (1996).

[8] Ntziachristos, V. and Weissleder, R., "Experimental three-dimensional flu-
orescence reconstruction of diffuse media using normalized Born approxi-
mation", Opt. Lett. 26:893-895 (2001).

[9] Ntziachristos, V., Tung, C., Bremer, C., and Weissleder, R., "Fluorescence-
mediated tomography resolves portease activity in vivo", Nature Med.
8:757-760 (2002).

[10] Eppstein, M.J., Hawrysz, D.J., Godavarty, A., and Sevick-Muraca, E.M.,
"Three-dimensional, Bayesian image reconstruction from sparse and noisy
data sets: Near-infrared fluorescence tomography," Proc. Natl. Acad. Sci.
USA, 99(15):9619-9624, (2002).

[11] Godavarty, A., Eppstein, M.J., Zhang, C., Thompson, A.B., Gurfinkel,
M., Theru, S., and Sevick-Muraca, E.M., "Fluorescence-enhanced optical
imaging in large tissue volumes using a gain modulated ICCD camera,”
Physics in Medicine and Biology, 48:1701-1720, (2003).

[12] R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced
optical tomography using referenced measurements of heterogeneous me-
dia", IEEE Trans. of Med. Imag. 22(7):824-836, (2003).

[13] Godavarty, A., Zhang, C., Eppstein, M.J., and Sevick-Muraca, E.M.,
"Fluorescence-enhanced optical imaging of large phantoms using single and
dual source systems", Medical Physics 31(2):183-190, (2004).

[14] Godavarty, A., Eppstein, M.J., Zhang, C., and Sevick-Muraca, E.M., "De-
tection of multiple targets in breast phantoms using fluorescence-enhanced
optical imaging,” in press, Radiology, (2004).

[15] Godavarty, A., Sevick-Muraca, E.M., and Eppstein, M.J., “Three-
dimensional fluorescence lifetime tomography”, Proc. Natl. Acad. Sci.
USA.(submitted 2004).

[16] M.-A. Mycek, B.W. Pogue, eds., “Handbook of Biomedical Fluorescence”,
(Marcel-Dekker, NY, 2003)

[17] M. S. Patterson and B. W. Pogue, Mathematical model for time-resolved
and frequency-domain fluorescence spectroscopy in biological tissues, Appl.
Opt., 33, 1963 (1994).

[18] E. M. Sevick-Muraca and C. L. Burch, Origin of phosphorescence signals
re-emitted from tissues, Opt. Lett., 19, 1928 (1994).

23



[19] C. L. Hutchinson, T. L. Troy, and E. M. Sevick-Muraca, Fluorescence-
lifetime determination in tissues or other scattering media from measure-
ment of excitation and emission kinetics, Appl. Opt., 35, 2325 (1996).

[20] H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-
element-based algorithm and simulations,” Appl. Opt. 37(22), 5337-5343
(1998).

[21] F. Fedele, J.P. Laible and M.J. Eppstein, “Coupled complex adjoint sensi-
tivities for frequency-domain fluorescence tomography: theory and vector-
ized implementation”, J Comp Phys, 187, 597-619 (2003).

[22] S. R. Arridge, "Optical tomography in medical imaging", Inv. Prob., 15,
R41-R93 (1999).

[23] Pogue, B.W., McBride, T.O., Prewitt, J., Osterberg, U.L, & Paulsen, K.D.
(1999) Appl. Opt., 38, 2950-2961.

[24] Ye, J.C., Webb, K.J., Bouman, C.A., Millane, R.P. , J. Opt. Soc. Am. A,
16, 2400-2412. (1999)

[25] Hielscher, A.H. and Bartel, S., “Use of penalty terms in gradient-based
iterative reconstruction schemes for optical tomography”, J. Biomed. Opt.
6(2):183-192 (2001).

[26] Pogue, B.W. and Paulsen, K.D., "High-resolution near-infrared tomgraphic
imaging simulations of the rat cranium by use of a priori magnetic reso-
nance imaging structural information", Opt. Lett. 23(21):1716 (1998).

[27] M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Bio-
medical optical tomography using dynamic parameterization and Bayesian
conditioning on photon migration measurements. Appl. Opt. 38, 2138-2150
(1999).

[28] Eppstein, M.J., Dougherty, D.E., Hawrysz, D.J., Sevick-Muraca, E.M.,
"3-D Bayesian optical image reconstruction with domain decomposition",
IEEE Transactions on Medical Imaging, 20(3):147-163, 2001.

[29] Joshi, A., Thompson, A.B., Sevick-Muraca, E.M., and Bangerth, W.,
“Adaptive finite element methods for forward modeling in fluorescence en-
hanced frequency domain optical tomography”, OSA Biomedical Topical
Meetings, OSA Technical Digest, Optical Society of America, Washington,
DC, paper WB7, April, (2004).

[30] Brebbia, C., "The boundary element method for engineers", (Penntech
Press, 1978).

[31] J.C. De Munck, T.J.C. Faes, and R.M. Heethaar, “The boundary element
method in the forward and inverse problem of electrical impedence tomog-
raphy”, IEEE Trans. Biomed. Eng., 47, 792-800 (2000).

24



[32] C.-T. Hsiao, G. Chahine, and N. Gumerov, “Application of a hybrid ge-
netic/Powell algorithm and a boundary element method to electrical im-
pedance tomography”, J. Comp. Phys, 173, 433-454, (2001)

[33] Broomhead, D.S., and D. Lowe. Multivariate functional interpolation and
adaptive networks. Complex Systems, 2:321-355 (1988).

[34] J. Heino, S. Arridge, J. Sikora, E. Somersalo, “Anisotropic effects in highly
scattering media”, Phys Rev E, 68, 031908 (8pp) (2003)

[35] The Mathworks, 24 Prime Park Way, Natick, MA 01760-1500..

11 Figure Legends

1. Figure 1. Geometry and notation of inhomogeneous domain showing a)
the outer subdomain Ωo and b) one inner subdomain Ωi (illustrated in
2D, for clarity).

2. Figure 2. The surface mesh for the a) coarsest, b) medium, and c) finest
discretizations of the nine sphere meshes used (see Table 1).

3. Figure 3. Cut-away views of the discretizations used for the breast phan-
tom simulations. a) Finite element mesh, and b) boundary element mesh
showing internal target. See Table 4 for additional specifications.

4. Figure 4. FEM and BEM prediction errors (analytical minus predicted)
using the finest sphere discretization (Figure 2c, Table 1), for the a) real
and b) imaginary components of emission fluence.

5. Figure 5. Error metrics for both FEM and BEM predictions, in compar-
ison to the analytical solution on the homogeneous sphere, as a function
of maximum distance between nodes in each of the nine sphere discretiza-
tions.

6. Figure 6. Observed frequency distribution of model mismatch (measured
— predicted) for the referenced experimental data collected on the non-
homogeneous breast phantom, for the a) real and b) imaginary compo-
nents of referenced emission fluence, using the FEM with the mesh shown
in Figure 3a and the BEM with the mesh shown in Figure 3b. The mean
of the model mismatch is used as an indication of bias.

7. Figure 7. Local geometry of a node, showing the spherical surface ∂Ω�
centered at node xj , and the internal solid angle ϑj , described in Appendix
B.
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12 Table Legends
1. Table 1. Three of the nine mesh discretizations of the 10 cm diameter
sphere.

2. Table 2. Optical parameter values used in all simulations at the excitation
wavelength (λx) and the emission wavelength (λm).

3. Table 3. Error metrics on the mesh shown in the table above as diffu-
sion coefficients increase by a factor of Dfac on the sphere with medium
discretization (Table 1, Figure 2b).

4. Table 4. Computational requirements of two breast meshes used (Figure
3).
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