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Abstract: The adjoint sensitivity method is applied to the coupled partial differential equations 
approximating complex fluence in fluorescing system.  General equations are derived for Jacobian 
sensitivity matrices of complex fluence, at both excitation and emission wavelengths, with respect 
to arbitrary optical parameters.  Finite element implementations of these equations are found to be 
computationally efficient and accurate.   
2002 Optical Society of America 
OCIS codes: (000.4430) numerical approximation and analysis;  (170.3010) Image reconstruction techniques. 

1. Introduction 

Fluorescence image reconstruction techniques may require computation of a Jacobian sensitivity matrix [1], relating 
changes in observable quantities (such as phase and/or amplitude at excitation and/or emission wavelengths, 
possibly referenced or otherwise transformed) to changes in underlying optical properties (such as absorption, 
scattering, and/or fluorescence lifetime or some transformation of these parameters).  These Jacobian matrices can 
be easily approximated using first [1] (or second [2]) order finite differences, but when the number of parameters is 
large these methods are computationally expensive, as the forward solution must be achieved once (or twice) for 
each unknown parameter.  Lee and Sevick-Muraca [3] describe a computationally efficient method for computing 
the Jacobian of the (log of referenced) emission measurements relative to absorption due to fluorophore, using a 
Green’s function approach and assuming no discontinuity in diffusion at the emission wavelength.  The equations 
we derive here using the adjoint method [4,5] follow a similar approach, but are more general in that they can be 
used for any combination of measurement type and parameter type and they impose no assumptions on the 
continuity of the diffusion field.   

2. Governing equations 

The propagation of excitation (subscript x) and fluorescently generated emission (subscript m) light through highly 
scattering tissues can be modeled by the diffusion approximation to the radiative transport equations. In the 
frequency domain, the coupled elliptic equations describing complex excitation photon fluence (Φx) and emission 
photon fluence (Φm) throughout a 3-D domain (Ω) with Robin boundary conditions at the surface (∂Ω) can be 
represented compactly in matrix notation as: 
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and t is the transpose operator, tzyx ][ ∂∂∂∂∂∂=∇ , I is the 3x3 identity matrix, Dx,m = 1/(3[µa[x,m]i 

+µa[x,m]f+µ’s[x,m]]), kx,m=iω/c+µa[x,m]i +µa[x,m]f, β = φµaxf (1-iωτ)/(1+(ωτ)2), µa[x,m]i is the absorption due to non-
fluorescing chromophore (cm-1), µa[x,m]f is the absorption due to fluorophore (cm-1), µ’s[x,m] is the isotropic scattering 
coefficient (cm-1), ω is the modulation frequency (radians/s), c is the speed of light in the medium (cm/s), τ is the 
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fluorescence lifetime (s-1),  φ is the quantum efficiency, Sx is the excitation source term (W/cm3), n is the direction 
normal to the surface, rx,m =(1-Rx,m)/(2+2Rx,m), and Rx,m are the effective reflection coefficients.  Absorption, 
scattering, lifetime, and quantum efficiency may all be position dependent. 

 
3. Adjoint Sensitivities 

Suppose we are interested in seeing how the fluence Φ varies as some arbitrary parameter p varies (e.g., p may be a 
localized value of absorption, scattering, lifetime, reflection coefficient, etc.).  If we perturb p by a small amount δp, 
it will introduce a variation Φδ  in the fluence.  The perturbed equations, neglecting higher order terms and 
assuming that the excitation source term Sx is independent of the parameter p, are: 
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We multiply equation (3.a) by the transpose of an arbitrary tensor Ψ , integrate over the domain, rearrange terms, 
and apply Green’s Theorem along with the boundary conditions (3.b) to yield: 
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We choose the tensor Ψ  such that 
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and 
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where 
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is the Dirac impulse tensor, ),,( zyx=x is a generic point in the domain, and ),,( detdetdetdet zyx=x is the 
location of a detector on the surface of the domain. Thus, )( detx;xΨ is a Green tensor representing the adjoint field 
variable at all locations in the domain in response to a Dirac impulse at the location of the detector.  Substituting 
equation (6) into equation (4) yields the variation in the fluence in response to a change in the parameter p, as 
follows: 
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By solving equations (6) once for the Green tensor )( detx;xΨ we are able to solve for the sensitivities of fluence at 
the detectors caused by a perturbation in the parameter p by evaluating the integral formula (8), regardless of which 
parameter p is being perturbed. 



 
4. Finite Element Formulation 

Suppose that we have discretized equations (1) over the domain into finite elements with linear basis functions 
],...,,[ 21 Nφφφ=φ , where 
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are functions that create the finite element stiffness, mass, and boundary matrices, respectively, given an arbitrary 
field parameter ρ.  Then it can be shown that the finite element solution equations for the fluence and adjoint field 
variables are: 
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Here, detδ is the discrete Dirac delta; i.e., it is a column vector of all zeros except for a 1 in position det where a 
detector is located (or a matrix of such columns for multiple detectors). Note that mxΨ will be zero by this 
formulation, so that it may be omitted from the computations.  The finite element implementation of the variational 
equation (8) can be used to compute the Jacobian as follows: 
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The computational results of equations (11) were computed for fully distributed p∈{µaxi, µaxf , µ’sf , τ, φ}; in all 
cases the results were identical to those produced by a second order finite difference approximation of the Jacobian.   

5. Conclusions 

We have derived the continuous adjoint sensitivity equations for the coupled frequency domain fluorescence 
diffusion equations and discretized them using a finite element approach. Although not shown here, the same results 
are obtained if one derives the discrete adjoint sensitivity equations directly from the finite element formulation of 
the governing equations.  The adjoint variables can be solved for once, using the same system that is used to solve 
for the fluence itself, and then used to compute the Jacobian sensitivity matrix of the complex fluence with respect 
to any of a number of optical parameters fundamental to the governing equations.  With careful implementation on 
the computer, the computations for computing the Jacobian can be vectorized such that the largest loop is the 
number of the detectors, regardless of whether parameters are discretized by nodes or elements.  When the number 
of detectors is much less than the number of parameters, the adjoint method can be orders of magnitude faster than, 
although just as accurate as, a finite difference method for computing the Jacobian.  This computationally efficient 
and accurate method for computing the Jacobian can be exploited in fluorescence tomography algorithms such as [1] 
that would otherwise not be feasible on large 3-D domains. 
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