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Abstract:  Based on the equivalent triangular storm (ETS) model, Boccotti 
(2000) obtained the analytical solutions for the return period of a sea storm in 
which the maximum significant wave height exceeds a fixed threshold, and 
for the mean persistence of the significant wave height above a fixed 
threshold.  
In this paper these analytical solutions have been particularized assuming the 
three parameters Weibull distribution for the significant wave height and the 
exponential regression base-height of the ETS; the latter distributions have 
been estimated by using the data of some NOAA buoys moored off the 
Californian coast.  
In particular the directional distribution of the significant wave height has 
been obtained in order to predict the intensity of severest sea storms for fixed 
wave directions. 
Finally, the prediction based on the ETS model has been compared to the 
prediction obtained by applying the total sample method.  

 
INTRODUCTION 

A bi-parametric analysis of sea storms is undertaken by applying the equivalent 
triangular storm (ETS) model (Boccotti, 2000). According to the ETS model, a triangle 
is associated to each actual sea storm: the triangle height and base represent respectively 
the intensity and the duration of the sea storm. In particular the intensity of the ETS is 
fixed equal to the maximum significant wave height during the actual storm. The 
duration of the ETS is such that the maximum expected wave height during the actual 
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storm (Borgman, 1970, 1973) is equal to the maximum expected wave height during the 
ETS.  

The analytical solutions for the return period of a sea storm in which the 
maximum individual wave exceeds a fixed threshold, have been derived by applying 
ETS model: in particular Boccotti (1986, 2000) obtained the return period  of a 
sea storm in which the maximum wave height exceeds the fixed threshold H.  

)(HR

Recently Arena (2001) derived the non-linear return period  of a sea storm in 
which the maximum crest height exceeds the fixed threshold C (the non-linear  is 
calculated assuming the second-order crest height distribution). These solutions solve 
the problem of the prediction of extreme individual waves. 

)(CR
)(CR

Moreover, Boccotti (2000) obtained the analytical solution for the return period 
 of a sea storm in which the maximum significant wave height ( ) exceeds 

the fixed threshold h , and for the mean persistence  of  above the threshold h 
(in the storms where this threshold is exceeded).  

)( hHR s > sH
)(hD sH

Both the  and the  depend upon two functions: the distribution of 
the significant wave height, and the function 

)( hHR s > )(hD
)(ab ; the latter defines the average value 

of the bases of the triangles (ETS) having height equal to a.  
In this paper we have analyzed the data of some NOAA buoys moored off the 

California. In order to evaluate the values of  and of , the lower-
bounded three parameters Weibull model has been assumed for the significant wave 
height distribution; 

)( hHR s > )(hD

)(ab  is estimated by an exponential regression, according to 
Boccotti (2000).  

Furthermore a directional analysis for the prediction of the extreme storms has 
been done, for the directional NOAA buoy 46042 off the California. For this purpose the 
directional probability of exceedance of the significant wave height 

);( 21 θθθ <<> hHP s  is obtained; the latter is the probability that the significant wave 
height is larger than h when the dominant wave direction is within the range ( 1θ , 2θ ) 
(sectors with 20° amplitude have been considered). Therefore the directional return 
period )2;( 1 θθθ <<> hHR s  is obtained: this is the return period of a sea storm in 
which the maximum significant wave height  exceeds the fixed threshold h when the 
dominant wave direction is within the range  (

sH

1θ , 2θ ). 
Finally we have compared the  to the return period obtained by 

applying the total sample method. It is found that the total sample method overestimates 
the significant wave height for a fixed return period, according to the result of Van 
Vleddler et al. (1993): they obtained that the total sample method over-predicts the 
significant wave height obtained by applying the peaks-over-thresholds method (see 
also Goda, 1999). The total sample method is conservative because it assumes that the 
significant wave height has persistence of the  above the fixed threshold h, equal to 
the sampling rate 

)( hHR s >

sH

sampt∆  (that is 1 hour for the NOAA buoys). In reality  remains 
above a fixed threshold h for many hours and its mean persistence decreases as h 
increases (Graham, 1982; Sobey and Orloff, 1999; Boccotti, 2000). 

sH
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THE PROBABILITY OF EXCEEDANCE  OF THE SIGNIFICANT WAVE 
HEIGHT 

)( hHP s >

The probability of exceedance  of the significant wave height at a fixed 
location is usually obtained from data of buoys, satellites, or hindcast. In particular from 
buoy or hindcast data, the  is obtained respectively at the fixed buoy location 
or at the grid node. 

)( hHP s >

)( hHP s >

From satellite data we can derive the  for a fixed area; the area has to be 
small enough in order to be homogenous and in the same time large enough to contain a 
sufficient cross of the satellite (see Young, 1999; Arena and Barbaro, 1999; Boccotti, 
2000). 

)( hHP s >

The theoretical  distributions used to fit the samples in extreme data analysis 
have been investigated by many authors (some complete reviews were proposed by 
Isaacson and Mackenzie, 1981; Muir and El Shaarawi, 1986; Guedes Soares, 1989).  

)( hHP s >

The Weibull model for the estimation of the extreme significant wave height has been 
widely applied (see Battjes, 1970; Burrows and Salih, 1986; Mathiesen and Bitner-
Gregersen, 1990; Ochi, 1998; Boccotti, 2000; Arena and Barbaro, 1999). 

In this paper the lower-bounded three-parameters Weibull distribution has been 
used: it fits well the extreme significant wave height off the Californian coast. The 
analytical expression of probability of exceedance is therefore given by:  
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which is defined for h . The location parameter h  and the scale parameter  have 
the same units as ; the shape parameter u  is non-dimensional.  

lh≥

s

l w
H

In order to estimate the parameters, an iterative procedure is considered (see Goda, 
1999): for fixed values of the shape parameter u , the values of  and  can be 
evaluated by applying the least square method. We choose the value of u - and 
consequently the values of  and  - which maximizes the correlation coefficient 
between the sample data and the estimate distribution (the closer is the correlation 
coefficient to the unit the better is the fitting). 

lh w

lh w

 
The NOAA buoys data 

We have considered the data of the buoys 46059 and 46006 moored far from the 
coast and the data of the buoys 46022, 46014, 46042, 46023, 46054 moored close to the 
coast as well (see Figure 1). Figure 2 shows the  of two buoys plotted on a 
Weibull paper. 

)( hHP s >

The parameters (u , , h ) of the  have been estimated for each buoy and are 
showed in Table 1. 

w l )( hHP s >

 
THE SEA STORMS: THE EQUIVALENT TRIANGULAR STORM MODEL 

A sea storm is a non-stationary process, with the wave spectrum and the 
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significant wave height variable in time. In particular Boccotti (2000) defined sea storm 
‘a sequence of sea states in which the significant wave height exceeds the fixed 
threshold sH5.1  and does not fall below this threshold for a continuous time interval 
greater than 12 hours’, where sH  is the mean annual significant wave height on the 
examined site.  
The statistical properties of waves in a sea storm have been investigated by Borgman 
(1973). He obtained the expression of the probability of exceedance  of 
the maximum wave height in a sea storm, which is given by: 

)( max HHP >
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Figure 1. NOAA buoys off the California that have been analyzed. 
 

Table 1. The Weibull distribution parameters (see equation 1), and the parameters  
of the equivalent triangular storms for the NOAA buoys showed in Figure 1.  

NOAA  
Buoy 

u w  
[m] 

lh   
[m] 

sH  
[m] 

1K  2K  10a   
[m] 

10b  
[hour] 

46006 1.31 2.12 0.8 2.8 1.335 -.440 9.1 59.5 
46059 1.28 1.76 1.1 2.7 1.161 -.236 7.6 63.6 
46022 1.25 1.47 1.0 2.4 1.398 -.474 6.5 54.7 
46014 1.30 1.45 1.0 2.4 1.379 -.462 5.5 58.9 
46042 1.33 1.28 1.0 2.2 1.409 -.459 5.6 60.6 
46023 1.34 1.30 1.0 2.2 1.021 -.145 5.6 63.3 
46054 1.35 1.21 1.0 2.1 1.681 -.695 5.2 61.8 
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Figure 2. The probability of exceedance  of the NOAA buoys  )( hHP s >
46006 and 46023 plotted on the Weibull paper. Continuous lines: Weibull  

distributions (1) with parameters of Table 1.  
 
where D  is the storm duration,  is the significant wave height at the time t, )(th T h  is 
the mean period (Rice, 1944, 1945) and 

( )
);( hHHP s =  is the probability of exceedance 

of the individual wave height in a sea state having significant wave height . h=H s

The  is given by the Rayleigh law for an infinitely narrow spectrum 
(according to Longuet-Higgins, 1952) and it tends to the Weibull distribution for finite 
bandwidth (according to Boccotti, 1981, 1997, 2000).  

);( hHHP s =

Figure 3 shows some severe storms, recorded by the NOAA buoys moored off the 
Californian coast. For each storm the  is obtained from equation (2). )( max HHP >
 
The “equivalent triangular storm” model 

Following the “equivalent triangular storm” (ETS) model by Boccotti (1986, 
2000), we represent each actual sea storm with an equivalent triangular storm. The 
height a (that is the storm intensity) of the ETS is equal to the maximum significant 
wave height during the actual storm. The base b (that is the storm duration) is defined 
such that the maximum expected wave height of the actual storm is equal to the 
maximum expected wave height of the ETS. The maximum expected wave height 
during a sea storm is obtained by integrating the probability of exceedance 

 [equation (2)] between the limits (0, )( max HHP > ∞ ).   
Figure 3 shows the ETS associated to each actual storm. Furthermore the  
for the actual storm and for the corresponding ETS are compared. According to Boccotti 
(2000) and Arena and Barbaro (1999) these two probabilities are very close to each 
other, and therefore we have a full equivalence between each actual storm and the 
associated ETS.  

)( max HHP >

It is interesting to observe that the base of the equivalent triangular storm depends on the 
peak of the actual storm.  
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Smaller bases are order of few dozens of hours. Figure 3a-b shows two sea storms 
having a small base; let us observe that the smaller ETS duration are usually associated 
to an actual storm having the strongest peak very steep. (For steep peak we mean that 
the absolute value of the gradient of the function , before and after the strongest 
sea state, is very high.) 

)(tH s

 
NOAA buoy 46006 - Storm of 27/10/99

ETS: height 16.3m; base 32.2 hours 
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NOAA buoy 46054 - Storm of 16/02/98
ETS: height 6.8m; base=136.4hours 
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Figure 3. Some severe storms recorded off the Californian coast with the associated 
equivalent triangular storms (ETS). On the right panels are compared the probability 
of exceedance (2) of each actual storm and the  of the associated ETS. )( max HHP >
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Larger bases are order of 100-200 hours: they occur generally for a sea storm having the 
strongest peak with small steepness, or for a sea storm having many peaks with 
intensities very close to each other (see Figure 3c).  
 
Extreme storms recorded off the Californian coast 

The analysis of the sea storm recorded off the Californian coast has been 
performed. In particular, for each actual storm the height and the base of the equivalent 
triangular storm have been calculated. Some examples of ETS are showed in Figure 3. 
The severest storm is showed in Figure 3a: it was recorded by buoy 46006 and it had 
intensity of 16.3m and duration of 32.2hours. 
Finally, the mean height  and the mean base b  of the N’ strongest ETS at the 
examined location are obtained for each buoy (N’ is equal to 10 times the number of 
observation years). The values of  and  are showed in Table 1. As we can see, we 
find the highest values of  (and therefore the strongest storm) for the buoys 46006 
and 46059 far from the coast (see Figure 1).  

10a

10a

10

10a 10b

For the buoys close to the coast,  is generally smaller, as we can see from Table 1. 10a
From Table 1 we can see also that  (that is the mean duration of the strongest storm) 
is more uniform than a .  

10b
10

 
Storm duration  

The storm duration can be estimated by using the exponential base-height 
regression proposed by Boccotti (2000) (see also Arena and Barbaro, 1999):  

 







=

10
2101 exp)(

a
aKbKab  (3) 

where  and  are characteristic parameters of the location (these parameters were 
estimated in the Central Mediterranean Sea, in the Northwest Atlantic Ocean and in the 
Northeast and Central Pacific Ocean – see Boccotti, 2000 and Arena and Barbaro, 
1999). 

1K 2K

Figure 4 shows the relation between the storm duration and the storm intensity for the 
NOAA buoy 46006. Each point in the figure represents an actual storm having intensity 
a and duration b. 
The parameters , ,  and  of 1K 2K 10a 10b )(ab  for the examined locations off the 
Californian coast are showed in Table 1.  
 
Effects of seasonality for the occurrence of severe storms.  

In order to capture seasonal effects in the occurrence of severe storms, the data 
from buoys 46006 and 46059 have been analyzed. In particular by classifying the data 
by month and by season of occurrence, we have calculated the mean height and 
the mean base ( of the N strongest ETS recorded at the examined location during the 
month m (or the season m), being N the years number of observation.  

ma )( 1

mb )1
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Figure 4. NOAA buoy 46006: the storm duration vs. the storm intensity, 
and the exponential regression (3). 

 
Figure 5 shows the parameters (  and (  for the four seasons. Table 2 shows also 
the seasonal average number (per year) of storms having the maximum significant wave 
height greater than 4.5m. As we can see the strongest and more frequent storms occur 
during the winter and the autumn seasons. During the spring season both the intensity 
and the average number (per year) of storms are smaller. We have the smallest (  
value and the smallest mean number of storm (per year) during the summer (let us note 
that (  and  for the summer season have been calculated for a number of storm 
that is smaller than the number N of years of record – compare to Table 2).  

ma )1 mb )1

)1a

ma )1 mb )( 1

The seasonal effects are generally reduced for the storm duration as we can see by 
comparing the values of  for the different seasons. mb )( 1

Finally Figure 6 shows the parameters  and (  for the different months.  ma )( 1 mb )1

 
EXTREME SIGNIFICANT WAVE HEIGHT ANALYSIS: THE ‘EQUIVALENT SEA’ 
MODEL  

The equivalent sea is obtained by substituting an equivalent triangular storm to 
each actual storm (Boccotti, 2000). In particular Boccotti obtained the analytical 
solutions for the return period  of a sea storm in which the maximum 
significant wave height exceeds a fixed threshold h and for the mean persistence 

)( hHR s >

)(hD . 
 
The return period  )( hHR s >

The general analytical expression of the  is (Boccotti, 2000) )( hHR s >

 
)()(
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hHPhHph

hbhHR
ss

s >+=
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where  is the probability density function of the significant wave height. )( hHp s =
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Assuming the three-parameters Weibull distribution (1) for the significant wave height 
and the exponential regression for the )(hb  [equation (3)], the equation (4) may be 
rewritten as 
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Figure 5. The seasonal parameters  and  for the buoys 46006 and 46059. ma )( 1 mb )( 1
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Table 2. The seasonal average number per year of storms having the maximum 
significant wave height greater than 4.5m for the NOAA buoys 46006 and 46059. 

 Autumn Winter Spring Summer 
46006 13.4 16.6 6.5 0.6 
46059 12.0 13.1 6.1 0.7 
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The return periods  for some locations off the Californian coast are 
showed in Figure 7. Table 3 shows also the significant wave heights for fixed values of 
the return period , calculated for the buoys of Figure 1. 

)( hHR s >

)h(HR s >
 
The mean persistence )(hD  

The mean persistence of the significant wave height  above the threshold h in 
the storms where this threshold is exceeded, is given by the general expression 
(Boccotti, 2000): 

sH

 ( ) )()( hHPhHRhD ss >>= . (6) 

Assuming the Weibull model for the  (equation 1) and the expression (5) for 
the , the mean persistence may be rewritten as  

)( hHP s >
)( hHR s >
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Some examples of the mean persistence )(hD  off the Californian coast are showed in 
Figure 8. 
 
PREDICTION OF THE EXTREME SIGNIFICANT WAVE HEIGHT: THE TOTAL 
SAMPLE METHOD  

The prediction of the extreme significant wave height may be obtained by 
applying the total sample method. By analyzing the whole sample of significant wave 
height we obtain an analytic form of the cumulative distribution function (or 
equivalently of the probability of exceedance) that well fits the data. Therefore 
extrapolating the cumulative distribution function, or the , we may estimate 
the significant wave height for any fixed return period.  

)( hHP s >

In particular, fixing a large time interval , the term T samp/)( thHP s ∆>T  defines the 
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number of records during  in which the significant wave height is greater than h.  T
(Rts

14

06

10

Finally the return period  of a sea state in which the significant wave height 
exceeds the threshold h is given by 

)hH s >

 

Figure 7. The return periods  for some buoys moored off the )( hHR s >
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(equation 5). Dashed lines: ‘total sample’ method predictions (equation 8).  
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Table 3. The significant wave height for fixed values of the return period  
(the NOAA buoys of Figure 1 are considered). The predictions  

are obtained by applying either the Equivalent Triangular Storm (ETS) model  
(equation 5) and the total sample method (equation 8). 

 R=10 years R=100 years 
NOAA  
Buoy 

ETS  
model 

Total sample 
method 

ETS  
model 

Total sample 
method 

46006 13.4 m 14.4 m 15.8 m 16.4 m 
46059 11.9 m 12.8 m 13.9 m 14.7 m 
46022 10.7 m 11.3 m 12.6 m 12.9 m 
46014 9.9 m 10.4 m 11.6 m 11.8 m 
46042 8.5 m 9.0 m 9.8 m 10.1 m 
46023 8.3 m 9.0 m 9.7 m 10.1 m 
46054 8.0 m 8.3 m 9.2 m 9.4 m 
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where  is the sampling rate of the  (sampt∆ sH hour1samp =∆t  for the NOAA buoys). 
The return periods  are showed in Figure 7. In Table 3 the significant wave 
heights for fixed values of the return period , obtained from equation (8), 
are compared with the predictions based on the ETS model. 

)( hHR sts >
)( hHR sts >

 
A CRITICAL COMPARISON BETWEEN THE TOTAL SAMPLE METHOD AND THE 
EQUIVALENT TRIANGULAR STORM MODEL  

The return period  (equation 8) is obtained assuming that the mean 
persistence of the  above the fixed threshold h (in the sea storms in which this 
threshold h is exceeded) is equal to 

)( hHR sts >

sH

sampt∆ . In reality, the mean persistence is equal to 

dozens of hours for significant wave height close to the storm threshold sH5.1 , and it 
decreases as h increases, as was pointed out by Graham (1982), Sobey and Orloff (1999) 
and Boccotti (2000).  

As a consequence the total sample method tends to overestimate the extreme 
significant wave height during severe storms, as we can see from Figure 7 and from 
Table 3, where the predictions based on the ETS model have been compared to the total 
sample method predictions (let us note also that for the NOAA buoys, being =1 
hour, the  data are not stochastically independent – see Goda, 1999). 

sampt∆

sH
For this purpose, besides the ETS model proposed in this paper, other models have been 
proposed to predict extreme waves: for example the annual maxima method, that 
analyzes the largest significant wave height in each year (an application was recently 
proposed by Winterstein et al, 2001) and the peak-over-threshold method (see Van 
Vledder et al. , 1993 and Goda, 1999).  
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EFFECTS OF DIRECTIONALITY FOR THE PREDICTION ON EXTREME 
SIGNIFICANT WAVE HEIGHT  

The effects of the wave direction can be investigated by analyzing directional 
data. Firstly we need to estimate the probability of exceedance );( 21 θθθ <<> hHP s  
of the significant wave height for a given direction of the wave propagation [direction 
within the range ( 1θ , 2θ )]. In order to estimate the probability );( 21 θθθ <<> hHP s , 
Boccotti (2000 - see note) proposed the difference between two Weibull distributions as 
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where the parameters  and  depend upon the sector selected, while  and h  are 
the same parameters of the omni-directional . Let us note that, according to 
Boccotti (2000), equation (9) usually well fits the extreme directional significant wave 
height.  

αw βw u l

)( hHP s >

The parameters  and  have to be positive, with αw βw www ≤< αβ  in order to verify 
the condition  

 )();( 21 hHPhHP ss >≤<<> θθθ    for any . (10) lhh >

We have analyzed the data of the directional buoy 46042; the sample of data analyzed 
covers the last ten years, that is June 1991-May 2001.  
Furthermore we have considered sectors with amplitude of 20°, and for each sector we 
have estimated the parameters  and . αw βw
The analysis done reveals that the strongest sea states have dominant direction in a well-
defined range. In particular the 95% of the sea states having  has dominant 
wave direction between 235° and 335°, and the 96% of the sea states having 

 has dominant wave direction between 265° and 305°. 

m5.1>sH

m0.6>sH
Figure 9 shows the parameters  and  for some directional sectors. Let us note that 
the ϕ angle in abscissa is associated to the sector (

αw βw
°+°− 10;10 ϕϕ ).  

As we can see the strongest sea states have dominant direction between 295° and 315° 
( °= 305ϕ ): it is the sector with the highest value of .   αw
 
Note: Boccotti (2000) proposed as fitting distribution for the );( 21 θθθ <<> hHP s

); 21

 the 
difference between two Weibull with two parameters. It is easy to verify that his procedure to 
obtain the parameters  and  may be applied also if αw βw ( θθθ <<>HP s h  assumes the 
more general form (9). 
 
The directional return period );( 21 θθθ <<> hHR s  

The return period );( 21 θθθ <<> hHR s

h
 of a sea storm in which the maximum 

significant wave height exceeds the threshold , with direction of the wave propagation 
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within the range ( 1θ , 2θ ) is defined as  
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By assuming for ); 21 θθθ <<> h  the expression (9) , this yields 
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The return period ); 21 θθθ <<> h  of the NOAA buoy 46042 is shown in Figure 
10. As we can see the strongest sea storms have direction within the sector (295°, 315°) 
(sector having ϕ=305°), according to the data of Figure 9. Furthermore, for fixed values 
of the return period, we obtain different values of  associated to the different sectors. 
For example for a fixed return period R=100years we obtain =9.8m by the omni-
directional analysis. By the directional analysis we obtain the maximum value of  
equal to 9.0m for the sector centred on 305°; for the sectors centred on the angles 265°, 
285° and 325° we obtain significant wave heights equal to 8.2m, 8.2m and 7.3m 
respectively. 

sH
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Figure 9. The parameters  and  of the directional αw βw );( 21 θθθ <<> hHP s  
(equation 9) for the NOAA buoy 46042. To each angle ϕ in abscissa  

is associated the sector ( °+°− 10;10 ϕϕ ). 
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Figure 10. Directional NOAA buoy 46042. The return periods  )( hHR s >
and );( 21 θθθ <<> hHR s  for some 20° sectors. 
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CONCLUSIONS 

In this paper a bi-parametric analysis of sea storms by using the data of some 
NOAA buoys moored off the California is done. The equivalent triangular storm (ETS) 
model (Boccotti, 2000) have been applied. We have estimated the return period 

 of a sea storm in which the maximum wave height exceeds the fixed 
threshold h (Boccotti, 2000), assuming the lower-bounded three parameters Weibull 
distribution for the significant wave height.  

)( hHR s >

Therefore we have compared the ETS model prediction to the total sample method 
predictions finding that the latter tends to overestimate the significant wave height for 
fixed return period.  
Finally in order to predict the direction of the strongest sea storms, a directional analysis 
is done, using the data from the directional NOAA buoy 46042. 
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