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Abstract. We develop an observational technique for the stereoscopic
reconstruction of the wave form of oceanic sea states via a variational
stereo method. In the context of active surfaces, the shape and radiance
of the wave surface are obtained as minimizers of an energy functional
that combines image observations and smoothness priors. To obey the
quasi Gaussianity of oceanic waves observed in nature, a given statistical
wave law is enforced in the stereo variational framework as a weak con-
straint. Multigrid methods are then used to solve the partial differential
equations derived from the optimality conditions of the augmented en-
ergy functional. An application of the developed method to two sets of
experimental stereo data is finally presented.

1 Introduction

In recent years there has been a growing interest in vision-based remote-sensing
observational technology for the measurement of oceanic sea states [7,2,17,5].
This topic is a major concern in ocean engineering because it has a broad im-
pact: the understanding of space-time dynamics of ocean waves enables better
forecasting of extreme events, improved design of off-shore structures, validation
of theoretical models, etc. Vision systems are non-intrusive, have economical
advantages over traditional instrumentation (wave gauges and ultrasonic instru-
ments or buoys) and provide spatio-temporal data whose statistical content is
richer than that of previous monitoring methods, but they require more process-
ing power to extract information from the observed video data. The application
of vision tools, such as stereography, to oceanography dates back to the first
experiments with stereo cameras mounted on a ship by Schumacher [12] in 1939.
Stereography gained popularity in studying the dynamics of oceanographic phe-
nomena during the 1980s due to advances in hardware. For example, Shemdin
et al. [14] applied stereography for the directional measurement of short ocean
waves. Recently, Benetazzo [2] successfully incorporated epipolar techniques in
the Wave Acquisition Stereo System (WASS) and showed that the accuracy of
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WASS is comparable to the accuracy obtained from traditional instrumentation.
An alternative trinocular imaging system (ATSIS) for measuring the temporal
evolution of 3-D surface waves was proposed in [17].

The three-dimensional reconstruction of an object’s surface from multiple im-
ages is a classical problem in computer vision [10,6,13], and it is still an extremely
active research area. There are many 3-D reconstruction algorithms available in
the literature and they are designed under different assumptions that provide a
variety of trade-offs between speed, accuracy and viability. Traditional image-
based stereo methods typically consist of two steps: first, image points are de-
tected and matched across images to establish local correspondences; then depth
is inferred by back-projection of correspondences. This is the strategy used in re-
cent observational systems [2,17], and it has the advantages of being simple and
fast. However, it also has some major disadvantages that motivated the research
on improved stereo reconstruction methods [4,18,8] based on variational theory.
Firstly, correspondences rely on strong textures and image matching. They can
be poorly estimated if the objects in the scene have a smooth radiance, and
can also suffer from the presence of noise and local minima. Furthermore, each
space point is reconstructed independently. Therefore, the recovered surface of
an object is obtained as a collection of scattered 3-D points. Thus, the hypothe-
sis of the continuity of the surface is not exploited in the reconstruction process.
The breakdown of traditional stereo methods in these situations is evidenced by
“holes” in the reconstructed surface, which correspond to unmatched image re-
gions [10,2]. This phenomenon may be dominant in the case of the ocean surface,
which, by nature, is generally continuous and contains little texture.

Modern object-based computer vision methods that rely on Calculus of Vari-
ations and Partial Differential Equations (PDE), are able to overcome the dis-
advantages of traditional stereo [4,18,1,8]. For instance, unmatched regions are
avoided by building an explicit model of the smooth surface to be estimated
rather than representing it as a collection of scattered 3-D points. Thus, vari-
ational methods provide dense and coherent surface reconstructions. Surface
points are reconstructed by exploiting the continuity (coherence) hypothesis in
the full two-dimensional domain of the surface.

Variational stereo methods combine correspondence establishment and shape
reconstruction into one single step and they are less sensitive to matching prob-
lems of local correspondences. The reconstructed surface is obtained by mini-
mization of an energy functional designed for the stereo problem. The solution
is obtained in the context of active surfaces by deforming an initial surface via
a gradient descent PDE derived from the necessary optimality conditions of the
energy functional, the so-called Euler-Lagrange (EL) equations. In parallel to the
advances in vision tools, the oceanographic community has developed statistical
and spectral models for the characterization of oceanic sea states [9,19,15,16]
that clearly indicate that oceanic waves are quasi-Gaussian in nature.

Up to date, both traditional and variational stereo techniques do not include
in the reconstruction process the prior information of Gaussianity of waves,
which is usually verified a posteriori [2,5]. In this paper, we present a novel
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variational framework in which a statistical distribution is enforced as a prior
into the stereo reconstruction of water waves via a weak constraint. Motivated
by the characteristics of the target object in the scene, i.e., the ocean surface,
we first introduce the graph surface representation in the formulation of the
reconstruction problem. Then, we cast the problem as a variational optimization
problem and show how a priori knowledge of statistical wave height models can
be weakly enforced in the variational framework to aid the recovery of the surface
shape. The performance of the algorithm is validated on experimental data and
the statistics of the reconstructed surface are also analyzed. Concluding remarks
are finally presented.

2 The Variational Framework

2.1 Multi-Image Setup and Graph Surface Representation

Let S be a smooth surface in R
3 with generic local coordinates (u, v) ∈ R

2. Let
{Ii}Nc

i=1 be a set of images of a static scene acquired by cameras with known
calibration parameters {Pi}Nc

i=1. Space points are mapped into image points ac-
cording to the pinhole camera model [6]. A surface point (or, in general a 3-D
point) X = (X, Y, Z)� with homogeneous coordinates X̄ = (X, Y, Z, 1)� is
mapped to point xi = (xi, yi)� in the i-th image with homogeneous coordi-
nates x̄i = (xi, yi, 1)� ∼ PiX̄, where the symbol ∼ means equality up to a
nonzero scale factor and Pi = Ki[Ri | ti] is the 3 × 4 projection matrix with
the intrinsic (Ki) and extrinsic (Ri, ti) calibration parameters of the i-th camera.
Point Ci = (C1

i , C2
i , C3

i )� satisfying PiC̄i = 0 is the optical center of the i-th
camera. Let πi : R

3 → R
2 note the projection maps, xi = πi(X), and Ii(xi) be

the image intensity at xi.
In the variational context of active surfaces, we present a different approach to

the reconstruction problem presented in [18,4] (level set approach) by exploiting
the hypothesis that the surface of the water can be represented in the form of a
graph or elevation map:

Z = Z(X, Y ), (1)

where Z is the height of the surface with respect to a domain plane that is pa-
rameterized by coordinates X and Y . Indeed, slow varying, non-breaking waves
admit this simple representation with respect to a plane orthogonal to grav-
ity direction. The graph representation of the water surface presents some clear
advantages over the more general level set representation of [4,8,18,5]. Surface
evolution is simpler to implement since the surface is not represented in terms
of an auxiliary higher dimensional function (the level set function). The surface
is evolved directly via the height function (1) discretized over a fixed 2-D grid
defined on the X − Y plane. The latter also implies that for the same amount
of physical memory, higher spatial resolution (finer details) can be achieved in
the graph representation than with the level set. The X − Y plane becomes
the natural common domain to parameterize the geometrical and photometric
properties of surfaces. This simple identification does not exist in the level set



Weak Statistical Constraints for Variational Stereo 523

approach [18]. Finally, the graph representation allows for fast numerical solvers
besides gradient descent, like Fast Poisson Solvers, Cyclic Reduction, Multigrid
Methods, Finite-Element Methods (FEM), etc. In the level set framework, the
range of solvers is not as diverse.

However, there are also some minor disadvantages. A world frame properly
oriented with the gravity direction must be defined in advance to represent the
surface as a graph with respect to this plane. This is not trivial a priori and
might pose a problem if only the information from the stereo images is used
[2]. Surface evolution is constrained to be in the form of a graph and this may
differ from the evolution obtained for an unconstrained surface. As a result, more
iterations may be required to evolve the active surface to reach convergence.

2.2 Proposed Energy Functional

Consider the 3-D reconstruction problem from a collection of Nc ≥ 2 images (we
will exemplify with Nc = 2). We investigate a generative model of the images
that allows for the joint estimation of the shape of the surface S and the radiance
function on the surface f as minimizers of an energy functional. Let the energy
functional be the sum of a data fidelity term Edata and two regularizing terms:
a geometry smoothing term Egeom and a radiance smoothing term Erad,

E(S, f) = Edata(S, f) + αEgeom(S) + βErad(f), (2)

where α, β ∈ R
+. The data fidelity term measures the photo-consistency of

the model: the discrepancy between the observed images Ii and the radiance
model f ,

Edata =
Nc∑
i=1

Ei, Ei =
∫

Ωi

φi dxi, (3)

where a possible photometric matching criterion is

φi = 1
2

(
Ii(xi)− f(xi)

)2
. (4)

The region of the image domain where the scene is projected is denoted by Ωi.
Assuming that the surface of the scene is represented as a graph Z = Z(u, v), a
point on the surface has coordinates

X(u, v) =
(
u, v, Z(u, v)

)�
. (5)

The chain of operations to obtain the intensity Ii(xi) given a surface point with
world coordinates X(u) ≡ S(u), u = (u, v)�, is

X(u) �→ X̃i = MiX + pi
4 �→ xi �→ Ii(xi), (6)

where X̃i = (X̃i, Ỹi, Z̃i)� are related to the coordinates of X in the i-th camera
frame, xi = (X̃i/Z̃i, Ỹi/Z̃i)� is the projection of X in the i-th image plane and
Pi = [Mi |pi

4], with Mi = KiRi ≡ (ni
1,n

i
2,n

i
3)

� and pi
4 = Kiti. Also, |Mi| = det(Mi).
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The radiance model f is specified by a function f̂ defined on the surface S.
Then, f in (4) is naturally defined by f(xi) = f̂(π−1

i (X)), where π−1
i denotes the

back-projection operation from a point in the i-th image to the closest surface
point with respect to the camera. By abusing notation, let us use f to denote the
parameterized radiance f(u), understanding that f(xi) in (4) reads the back-
projected value in f̂(X(u)) = f(u).

Motivated by the common parameterizing domain of the shape and radiance of
the surface and to obtain the simplest diffusive terms in the necessary optimality
conditions of the energy (2), let the regularizers be

Egeom =
∫

U

1
2‖∇Z(u)‖2 du, Erad =

∫
U

1
2‖∇f(u)‖2 du, (7)

where ∇Z(u) = (Zu, Zv)�, ∇f(u) = (fu, fv)� and subscripts indicate the
derivative with respect to that variable.

The definition of the data fidelity term as an integral over the image domain
(rather than over the parameter space U) has two advantages: (i) the data term
is independent of the choice of domain for the graph, and (ii) the resulting
optimality conditions for the minimization of (2) lack image derivatives, which
are transferred to the radiance model and can be controlled by the regularizer
Erad. This desirable property is inherited from the modeling and mathematical
principles that we follow from [18]. The resulting algorithm is less sensitive to
image noise than other variational approaches for stereo 3-D reconstruction.

Once all terms in (2) have been specified, they are expressed over a common
domain: the parameter space. The Jacobian of the change of variables between
integration domains for the data term is, by applying the chain rule to (6),

Ji =
∣∣∣∣dxi

du

∣∣∣∣ = −|Mi|Z̃−3
i (X−Ci) · (Xu ×Xv), (8)

where Xu ×Xv is proportional to the outward unit normal N to the surface at
X(u, v), and Z̃i = ni

3 · (X−Ci) > 0 is the depth of the point X with respect to
the i-th camera (located at Ci). With this change, energy (3) becomes

Ei =
∫

Ωi

φi dxi =
∫

U

φiJi du, (9)

where the last integral is over U : the part of the parameter space whose surface
projects on Ωi in the i-th image. Observe that the Jacobian weights the photo-
metric error φi proportionally to the cosine of the angle between the unit normal
to the surface at X and the projection ray (the ray joining the optical center of
the camera and X): (X−Ci) ·(Xu×Xv). After collecting terms (7) and (9), and
noting that the shape X of the surface solely depends on the height (Eqn. (5)),
energy (2) becomes

E(Z, f) =
∫

U

L(Z,∇Z, f,∇f, u, v) du. (10)

where subscripts indicate the derivative with respect to that variable, and the
integrand is the so-called Lagrangian L.
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2.3 Energy Minimization. Optimality Condition

The energy (10) depends on two functions: the shape Z and the radiance f of
the surface. To find a minimizer of such a functional, we derive the necessary op-
timality condition by setting to zero the first variation of the functional, yielding
a coupled system of PDEs (EL equations) along with boundary conditions:

g(Z, f)− αΔZ = 0 in U, (11)

b(Z, f) + α
∂Z

∂ν
= 0 on ∂U, (12)

−∑Nc

i=1(Ii − f)Ji(Z)− βΔf = 0 in U, (13)

β
∂f

∂ν
= 0 on ∂U, (14)

where the non-linear terms due to the data fidelity energy are

g(Z, f)=∇f ·∑Nc

i=1|Mi|Z̃−3
i (Ii − f)(u − C1

i , v − C2
i ), (15)

b(Z, f)=
∑Nc

i=1φi|Mi|Z̃−3
i

(
(u− C1

i )νu + (v − C2
i )νv

)
.

The Laplacians ΔZ and Δf arise from the regularizing terms (7), and ∂ ∗ /∂ν is
the the directional derivative along ν = (νu, νv)�, the normal to the integration
domain U in the parameter space. A simple classification of the PDEs can be
done as follows. For a fixed shape, (13) and (14) form a linear elliptic PDE (of
the inhomogeneous Helmholtz type) with Neumann boundary conditions. On
the other hand, for a fixed radiance, (11) and (12) lead to a nonlinear elliptic
equation in the height Z with nonstandard boundary conditions.

Difficult EL equations, such as (11)-(14), are commonly solved by the steady-
state of gradient descent PDEs that evolve the unknown functions in artificial
time t. This is the context of the so-called active surfaces. Due to the asymmetry
in the complexity of the PDEs, a minimization strategy consisting of a nested
iterative scheme is proposed: an outer loop performs a gradient descent in the
height, and an inner loop implements a direct optimization for the radiance.
Starting from an initial approximate solution, there are two phases within each
iteration: (1) compute the optimal radiance for a fixed shape, and (2) evolve
the shape, leaving the radiance fixed. To simplify the equations, we approximate
the boundary condition (12) by a simpler, homogeneous Neumann boundary
condition. This can be interpreted as if the data fidelity term vanished close to
the boundary and it is a reasonable assumption since the major contribution to
the energy is given by the terms in U , not at the boundary.

Numerical Solution. The optimality PDEs are discretized on a rectangular 2-
D grid in the parameter space and then solved numerically using finite-difference
methods. Direct optimization of the radiance is achieved by using stationary iter-
ative methods (Jacobi or Gauss-Seidel). Forward differences in time and central
differences in space approximate the derivatives in the gradient descent PDE for
the height, yielding an explicit updating scheme. The von Neumann stability
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analysis of the linearized PDE yields a time step Δt ≤ 1/(4α
h2 + 1

2 max |ġ(Z)|),
where ġ(Z) is the derivative of (15) and the maximum is taken over the 2-D
discretized grid at current time t. The time step may change at every iteration.

Both updating schemes (stationary methods for f and the time-stepping
method for Z) are used as relaxation procedures inside a multigrid method [3]
that approximately solves the EL equations. Multigrid methods are the most
efficient numerical tools for solving elliptic boundary value problems.

3 Weak Enforcement of Wave Height Distributions

The flexibility of the variational framework allows us to incorporate properties
of the physics of the waves in the model that would be otherwise difficult to take
into account in image-based stereo methods. For example, we may include global
statistical properties in the form of a weak constraint by considering an extra
energy term that penalizes the deviation of the statistics of the reconstructed
surface with respect to some target statistics derived from a physical model.
In particular, we may penalize the deviation of the height distribution of the
water surface with respect to a physically-justified Gaussian model and drive
the surface evolution toward (weakly) satisfying such a global property.

If Z(u, v) = Z(u) is the height of the surface (wave) and it is interpreted as a
random variable, then its cumulative distribution function (CDF) is

cdfZ(Z0) = P (Z ≤ Z0) =
1
A

∫
U

H(Z0 − Z(u))du,

where H(·) is the Heaviside function and A =
∫

U du is the area of the (fixed)
domain of integration. Suppose (2) is augmented with an extra energy term
γEcdf(S), γ > 0, that measures the discrepancy between a target height CDF
that we wish to enforce, G(Z), and the experimental CDF of the height:

Ecdf(Z) =
∫ ∞

−∞
1
2

(
G(ẑ)− cdfZ(ẑ)

)2
dẑ. (16)

To compute the first variation of (16), we can directly use the definition of the
Gâteaux derivative or augment Z with an artificial time variable, Z = Z(u, t),
so that the energy depends on t, differentiate with respect to this variable and
exploit the relationship between both derivatives. Carrying out operations in the
distributional sense,

d
dt

Ecdf =
d
dt

∫ ∞

−∞
1
2

(
G(ẑ)− 1

A

∫
U

H(ẑ − Z(u))du
)2dẑ

=
∫ ∞

−∞

(
G(ẑ)− cdfZ(ẑ)

)( 1
A

∫
U

δ(ẑ − Z(u))Ztdu
)
dẑ

=
∫

U

1
A

∫ ∞

−∞

(
G(ẑ)− cdfZ(ẑ)

)
δ(ẑ − Z(u))dẑ Ztdu

=
∫

U

∇ZEcdf Ztdu,
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where δ is the Dirac delta function and the gradient of (16) with respect to Z is

∇ZEcdf(Z(u)) =
1
A

(
G(Z(u))− cdfZ(Z(u))

)
. (17)

As a result of the statistical penalty, a new non-linear term of the form (17)
appears in the EL equation (11), while the boundary condition remains un-
changed. It is as if the nonlinear term (15) in the PDEs (11) was replaced by
g(Z) ← g(Z) + γ∇ZEcdf(Z). Multigrid methods are still suitable to efficiently
solve the new non-linear PDE. However, the time-stepping smoother requires an
additional constraint on the time step: the maximum height increment must be
of the order of the bin size used to estimate the experimental CDF so that each
iteration does not drastically change the CDF of the surface height.

Another reasonable energy to measure the statistical discrepancy between
the empirical distribution of the wave field and the one dictated by the physical
model is the L2 difference between probability density functions (PDFs):

Epdf(Z) =
∫ ∞

−∞
1
2

(
Ġ(ẑ)− pdfZ(ẑ)

)2dẑ, (18)

where Ġ(Z) is the target PDF that we wish to enforce. Following similar steps
as before, the EL equation (11) would have instead an extra term of the form

∇ZEpdf(Z(u)) = − 1
A

d
dZ

(
Ġ(Z(u))− pdfZ(Z(u))

)
. (19)

Enforcing the statistical constraint via the L2 difference of characteristic func-
tions (i.e. the Fourier transform of the PDFs) is, by Parseval’s theorem, equiva-
lent to the above PDF approach.

Theoretical probabilistic models that can be used as target physical wave
height distributions are presented in [15,16]. These models are quasi-Gaussian
distributions that capture the asymmetry present in real life water waves, which
have steep crests and shallow troughs.

4 Applications

Experiment 1. Images of ”Canale della Giudecca” in Venice (Italy). Figs. 1 and
2 show an example of a reconstructed water surface from images of the Venice
Canal. Cropped images in Fig. 1 are of size 600×450 pixels and show the region
of interest to be reconstructed. Fig. 1 also displays the modeled images created
by the generative model within our variational method. The data fidelity term
compares the intensities of the original and modeled images in the highlighted
region. As observed, the modeled image is a good match of the original image.
Fig. 2 shows the converged values of the unknowns of the problem: the height and
the radiance of the surface, as well as the 3-D representation of the reconstructed
surface obtained by combining both 2-D functions. In this experiment, the values
of the weights of the regularizers were empirically determined: α = 0.035 and
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Fig. 1. Left: projection on image 1 of the boundary of the estimated graph, which has
been discretized by a grid of 129× 513 points. Center: modeled image (computed form
surface height and radiance) superimposed on original image 1. Right: modeled image
2 superimposed on original image 2.

Fig. 2. Form left to right: (1) estimated height function Z(u, v) (shape of the water
surface) in pseudo-color; (2) height represented by greyscale intensities, from dark (low)
to white (high); (3) estimated radiance function f(u, v) (texture on the surface); (4)
perspective, three-dimensional wire-frame representation of the estimated surface shape
(height) according to grid points; (5) texture-mapped surface obtained by incorporating
the radiance function in the wire-frame model. In (4) and (5) the vertical axis has been
magnified by a factor of 5 with respect to the horizontal axes for visualization purpose.

β = 0.01. At the finest of the 5-level multigrid [3] algorithm, the gradient descent
PDEs are discretized on a 2-D grid with 129× 513 points. The distance between
grid points is h = 5 cm. Therefore, the grid covers an area of 6.45×25.65 m2. An
example of a surface discretized at the finest grid level is also shown in Fig. 2.
The high density of the surface representation is typical of variational methods.
The step size h must be chosen so that it approximately matches the resolution
in the images: a displacement of 1 pixel is observable at the finest grid level
in the multigrid framework and it corresponds to a physical displacement of at
least h. Due to perspective, the maximum value of h is determined by the grid
points closest to the cameras.

Experiment 2. We apply our variational method, with and without statistical
regularizer, to a pair of stereo images acquired at an off-shore platform in the
Black Sea. Two cameras mounted 12 m above the mean sea level and with a
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Fig. 3. Original image (left), modeled image superimposed on original image (center),
error image (right).
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Fig. 4. Pseudo-colored Z(u, v) without statistical regularizer (left). Z(u, v) (center)
and f(u, v) (right) with statistical regularizer.

baseline of 2.5 meters acquire images of size 1624 × 1236 pixels. Fig. 3 (left)
shows a sample image from one of the cameras. A grid with 513×513 points and
resolution h = 2.5 cm, covering an area of 13 × 13 m2, is used to discretize the
graph of the surface. Roughly, 1 image pixel corresponds to a physical displace-
ment of 1.06 cm (1.88 cm) for grid points near (resp. far from) the cameras. Both
displacements are of the same order as h. A 6-level full multigrid method [3] with
400 iterations per level, 2 V-cycles per iteration, and 1 pre- and post-relaxation
sweeps per cycle, is performed on the linearized optimality PDEs to reach a local
solution. The weights of the regularizers used are: α = 0.1 and β = 0.025. Fig. 4
(left) shows the converged height function of the reconstructed surface without
imposing a weak statistical constraint, i.e., γ = 0. Fig. 5 shows the corresponding
observed PDF using normalized height ξ = (Z − μZ)/σZ (zero mean and unit
variance). Note the deviations from Gaussianity with large kurtosis. Further,
the associated omni-directional spectrum S(k) is also shown in Fig. 5 (dashed
line). In a polar-reference frame, S(k) is computed from the two-dimensional
power spectrum Ψ of the wave surface Z as S(k) =

∫ 2π

0 Ψ(k, θ)k dθ, where k is
the wavenumber and θ is the angle. According to the wave turbulence theory of
Zakharov [19], the spectrum tail initially decays as k−2.5 as a result of an energy
cascade from large to small scales up to ∼ 10 rad/m and then switch to a k−3

equilibrium range [11].
Next, 200 V-cycles of multigrid are carried out using the energy augmented by

(16), γEcdf with γ/A = 10−2, to drive the surface toward the target
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Fig. 5. Left: Observed PDF of the reconstructed wave surface Z with (solid line) and
without (dash line) statistical regularization. The Gaussian distribution is plotted for
comparison (dotted line). Right: Observed omni-directional spectrum S(k) of the re-
constructed surface Z with (solid line) and without (dash line) statistical regularizer.

distribution: Gaussian for simplicity, although other distributions could have
been used [15,16]. The converged height and radiance functions are shown in
Fig. 4. Both, Z and f generate the modeled image in Fig. 3. The absolute er-
ror image with respect to the input image is also displayed. There are subtle
differences between height functions with and without the statistical constraint.
Both solutions correctly capture the (almost breaking) wave front moving toward
the camera. Now, two non-linear terms (photometric fidelity and statistical con-
straint) compete to evolve the surface. The regions that change the most due
to the statistical regularizer are those with smooth texture, corresponding to
small photometric error. The statistical regularizer leaves the photometric error
and omni-directional spectrum (Fig. 5, right) almost unchanged while signifi-
cantly modifying the PDF of the height map. The new reconstructed surface is
quasi-Gaussian as clearly shown in Fig. 5.

5 Conclusion

Variational stereo is more powerful, flexible, and rigorous, albeit computation-
ally expensive, than earlier traditional, image-based stereo methods. Therefore,
we follow this research path by developing a variational stereo method for the
case of smooth surfaces representable in the form of a graph supporting a smooth
radiance function. Moreover, we show how global properties of ocean waves, such
as statistical distributions, can be incorporated in the variational stereo recon-
struction framework via a weak constraint. We successfully apply this method
in two experiments to reconstruct a small region of the surface of the ocean.
The variational stereo method developed can be naturally extended in several
ways to process sequences of stereo images to generate a coherent space-time
reconstruction of ocean waves. In future research we plan to investigate new en-
ergy terms to incorporate more global and/or local properties of the dynamics
of ocean waves such as the wave equation, etc.
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