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ON THE STATISTICS OF OCEANIC WAVES

Abstract: An analytical model for the crest statistics of oceanic waves
is derived based on the Breitung’s asymptotic formula for the mean
h-upcrossing intensity of second order narrow-band random processes.
Comparisons with a wave data set collected at the Tern platform in the
northern North Sea during an extreme storm are finally presented.
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1 Introduction

Ocean waves, to the leading order of approximation, are Gaussian and for
narrow-band spectra the crest height distribution follows the Rayleigh law with
probability density (Boccotti, 2000)

pR(h) =
h

σ2
exp

µ
− h2

2σ2

¶
, (1)

where h is the crest amplitude and σ2 is the variance of the sea state. In the more
general case of Gaussian waves with finite-band spectra, the Rayleigh distribution
serves as an upper bound for the exceedance probability of crest heights.
In reality, water waves are nonlinear, and the probability density function of the

surface displacement tends to deviate from the Gaussian form. In particular, due to
second order nonlinearities the water surface presents sharper crests and shallower
rounded troughs. Thus, the skewness λ3 of surface elevations is not zero (Longuet-
Higgins 1963). The exact theoretical form of the corresponding distribution of
nonlinear wave crests is not known under general conditions. A series expansion
based on the Edgeworth’s form the Gram-Charlier distribution was proposed by
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Longuet-Higgins (1963). However, this leads to expressions that violate the non-
negativity condition on probability densities, and crest heights of large waves can
be over-predicted unrealistically in steep storm seas in deep or transitional water
depths.
A convenient and simple narrow-band approximation for deep-water waves was

given by Tayfun (1980, 1986, 2006) in the early eighties based upon weakly second
order wave theory. This model is well known as the Tayfun distribution, and
it describes the crest statistics of oceanic waves. Indeed, the recent analysis of
oceanic data by Tayfun & Fedele (2007) and Fedele (2008), and the numerical
simulations of Socquet-Juglard et al. (2005) both show that the Tayfun distribution
explains very well the crest statistics of multidirectional random waves. Moreover,
Gramstad & Trulsen (2007) provided a quantitative criterion for the minimum
degree of multidirectionality for which the Tayfun distribution is a good model.
Thus, for practical engineering applications where realistic oceanic conditions are
characterized by multidirectional spectra, the second order Stokes theory, and thus
the Tayfun model, still offers a valid theoretical framework for the wave statistics.
This paper proposes an alternative model to the Tayfun distribution that stems

from an exact closed form solution of the crest distribution based on the Breitung’s
asymptotic formula for random processes of the average h-upcrossing intensity, h
being a high threshold (Breitung and Richter 1996, Baxevani et al. 2005). The
paper is structured as follows. First, the second order theory for random waves is
briefly discussed in order to introduce the Tayfun model for the statistics of crest
heights. Then, the Breitung’s model is derived for second order narrow-band waves
in deep water. Comparisons based on a wave data set collected at the Tern platform
in the northern North Sea during an extreme storm are finally presented.

2 Crest statistics of second order random waves

Consider weakly nonlinear random waves propagating in deep water. The second
order sea surface displacement ζ (x, t) from the mean sea level at a fixed point x
in time, appropriate to long-crest deep-water waves, is given by (Tayfun 1980,
1986,2006, Fedele & Tayfun 2007, Fedele 2008)

ζ = ζ1 +
μ

2

³
ζ21 − ζ̂

2

1

´
, (2)

where ζ1 (x, t) is the first order Gaussian component, ζ̂1 (x, t) is the Hilbert trans-
form with respect to time of ζ1 and

μ =
λ3
3
=


ζ(x, t)3

®
3σ3

. (3)

Here, μ is the characteristic wave steepness which relates to the skewness coefficient
λ3 of the surface elevation ζ, and h·i means time average. In theory, the validity of
the form assumed for ζ requires that the rms surface gradient be sufficiently small.
Specifically,

μ1 =

rD
|∇ζ1|

2
E
<< 1. (4)
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The spectral density S (k) of the linear ζ1 on the wave number space k is defined
through the Fourier transform of the covariance function ψ(T ) = hζ1 (x, t) ζ1 (x, t+ T )i

ψ(T ) =

Z
S (k) cos (ωt) dk,

where, in deep water, the wave frequency ω is a function of k through the disper-
sion relation k = ω2/g , with g the gravity acceleration coefficient. The spectral
moments are given by mj =

R
ωjS (k) dk. The spectral mean frequency ωm, the

mean frequency ω0 of zero-upcrossings of the underlying linear process ζ1 and the
bandwidth ν of the spectral density S (k) are defined respectively as (Tayfun 1986)

ωm =
m1

m0
, ω0 =

r
m2

m0
, ν =

r
m0m2

m2
1

− 1. (5)

The first moment hζi = 0, and the higher order moments are given, correct to
O(μ1), by 

ζ2
®
= σ2,


ζ3
®
= 3μ,


ζ4
®
= 3σ4,

where σ2 = m0 is the variance of ζ1. For narrow-band waves the steepness μ can
be estimated as (Tayfun 1986, 2006)

μm = σ
ω2m
g

. (6)

Hereafter, the principal interest is in two-dimensional crests of the surface displace-
ment ζ, viz. the largest maxima of a surface time series recorded at a fixed point x.
If quadratic nonlinear effects are neglected in (2), then ζ = ζ1 is a Gaussian process
of the time and the dimensionless crest height ξ = h/σ follows the Rayleigh distri-
bution (1) by virtue of the one-to-one correspondence between each h-upcrossing
point and its nearby maximum of amplitude greater than h. If nonlinear effects are
included, then the amplitude hnl of the largest crest of ζ occurs whenever ζ1 = h

and ζ̂1 = 0 (Tayfun 1980,1986), and it is given, from (2), in the Tayfun form as

ξmax = ξ +
μ

2
ξ2, (7)

where ξmax = hnl/σ is a dimensionless amplitude. Thus, the probability of ex-
ceedance of the crest height ξmax readily follows from the Rayleigh distribution of
ξ as (Tayfun 1980, 1986, 2006)

Pr {ξmax > λ} = exp
µ
−ξ

2
0

2

¶
, (8)

where ξ0 satisfies the quadratic equation (7) with ξmax = λ, that is

ξ0(λ) =
−1 +

√
1 + 2μλ

μ
. (9)

Note that the Tayfun distribution (8) is an exact analytical result for the narrow-
band model (2). In the following, an alternative crest distribution that stems from
the Breitung’s asymptotic theory (Breitung and Richter 1996) will be derived.
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3 Breitung model for crest heights

Drawing on Baxevani et al. (2005), consider a fixed high threshold λ of the
wave surface ζ in (2). Then, define the column vectors

p = (p1, p2, ..., pN ), q = (q1, q2, ..., qN ),

where {pn} and {qn} represent the sets of the spectral components of the linear
surface displacement ζ1 and its Hilbert transform respectively (see Baxevani et al.
2005 for details). The components of the vectors p,q are defined to be indepen-
dent Gaussian variables with zero mean and unit variance. Thus, the nonlinear
hypersurface λ = ζ in the Euclidean space R2N is given by

λ = ζ1(p,q) + ζ2(p,q), (10)

where, for the nonlinear wave model (2)

ζ1(p,q) = z
Tp, ζ2(p,q) =

μ

2

¡
pT zzTp− qTzzTq

¢
.

Here, the column vector z has entries given by the spectral components (z)j =p
2S(kj)dk /σ such that zTz = 1. As λ → ∞, the probability of exceedance for

the crest height ξmax follows as

Pr {ξmax > λ} = exp

⎡⎢⎣−
°°°d̃°°°2
2

⎤⎥⎦ , (11)

where
°°°d̃°°° is the minimal distance between the origin and the point Pmin ∈ R2N

identified by the column vector d̃ = [p̃, q̃] ∈ R2N on the hypersurface (10). Here,°°°d̃°°° = p
p̃T p̃+ q̃T q̃ is the classical Euclidean norm of d̃, and T signifies the

transpose. In general, the solution for d̃ can be obtained numerically by using
standard optimization techniques (Tromans and Vanderschuren, 2004).
In the following, the Lagrange multiplier method is used to derive an exact closed

form solution of the point Pmin of the hypersurface (10), pointed by d̃, which is at
the minimal distance from the origin. Indeed, consider the Lagrangian

L = 1

2

¡
pTp+ qTq

¢
+ χ

h
λ− zTp− μ

2

¡
pT zzTp− qT zzTq

¢i
, (12)

where the multiplier χ is introduced in order to minimize over the hypersurface
(10). In appendix, it is proven that the critical vectors (p̃, q̃) that minimize L are
given by

p̃ = ρξ0z, q̃ = 0, (13)

where ξ0 is the same as in (9), and ρ is expressed as

ρ =
1 +

³
1 + μξ0

2

´2
μξ0
2

1 + μξ0
2

. (14)
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Figure 1 Ratio h/r from Tern in comparison with the Breitung and Tayfun models,
respectively. Here, r = σ

√
−2 lnP is the Rayleigh-distributed crest amplitude, and σ as

the standard deviation of the sea state.

Thus, as λ→∞, the crest exceedance distribution follows as

Pr {ξmax > λ} = exp
∙
− p̃

T p̃+ q̃T q̃

2

¸
= exp

∙
−ξ

2
0

2
ρ2
¸
. (15)

Hereafter, we refer to (15) as the Breitung distribution. Note that

ρ = 1 +
1

2
μ2ξ20 +O

¡
μ3ξ30

¢
,

and, correct to O (μξ0), the Breitung distribution coincides with the Tayfun distri-
bution (8) for average crest heights, because ρ ≈ 1. For large amplitudes λ >> 1,
μξ0 >> 1 and the Breitung model underestimates crest heights if compared to the
exact Tayfun model, since ρ > 1. This possibly suggests that higher order terms in
the Breitung’s asymptotic formula of h-upcrossing intensities need to be taken into
account for more accurate predictions of the crest statistics of narrow-band waves.

4 Data Comparisons

Consider the oceanic data set that comprises 9 hours of measurements gathered
during a severe storm in January, 1993 with a Marex radar from the Tern platform
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located in the northern North Sea in 167 m water depth. The set {yk}k=1,n contains
n = 3157 measurements of crest heights yk. The data, hereafter are simply referred
to as Tern. The spectral properties of Tern are characterized by σ = 3.02 m,
ν = 0.629 and λ3 = 0.174 observed. To account for finite bandwidth effects,
the steepness μ is estimated as μa = μm

¡
1− ν + ν2

¢
= 0.073 (Fedele 2008). To

estimate the probability of exceeding a given crest height, we first rank-order the
set {yj}j=1,n of crest heights as y1 > y2 > ... > yn. Then, the probability P of
exceeding the threshold yj can be estimated as

P =
j

n+ 1
, j = 1, ...n

with an associated error given by (Tayfun & Fedele 2007)

σP =
1

n+ 1

r
j(n− j + 1)

n+ 2
.

Note that the largest error occurs for the largest crest height in the set because, for
j = n, σP is as large as the estimate P . Clearly, the larger the sample population
n, the better are the estimates. In general, the stability of estimates with negligible
bias is indicated with confidence intervals. Here, the upper and lower stability bands
associated with the estimate P ≈ j/(n + 1) are defined as P + σP and P − σP ,
respectively.
In figure 1, the ratio y/r of nonlinear crests y to the corresponding linear

Rayleigh-distributed crests defined as r = σ
√
−2 lnP , is plotted for Tern and com-

pared against the original Tayfun model and finally the Breitung’s approximation
(15). The stability bands P + σP and P − σP are also plotted. Clearly, the largest
five estimates associated to the largest crest heights in the set are poor and thus
can be neglected. It is evident that both the models seem to fit the data, but the
Breitung distribution tends to slightly underestimate the data in comparison with
the Tayfun model.

5 Conclusions

An exact closed form solution for the crest distribution of narrow-band deep-
water waves is derived based on the Breitung’s asymptotic formula of the average h-
upcrossing intensity of random processes. Comparisons with oceanic measurements
gathered from the Tern platform in the northern North Sea (Tern) show that the
Breitung model slightly underestimates data if compared to the Tayfun model.
Thus, this possibly suggests that higher order terms in the Breitung’s asymptotic
formula should be considered for more reliable predictions of oceanic crest heights.
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7 Appendix

The gradients ∂L
∂p and

∂L
∂q of the Lagrangian (12)

∂L
∂p

= p− χz− μ

2
χ z pT z,

∂L
∂q

= q+
μ

2
χ z qT z,

both vanish if the extremal vectors p̃ and q̃ satisfy the following equations

p̃ = χz+
μ

2
χ z p̃Tz, q̃ = −μ

2
χ z q̃Tz. (16)

These can be solved exactly by setting two new scalar parameters α and β such as

α = p̃T z, β = q̃T z. (17)

Then, from (16)

p̃ = χ
³
1 +

μα

2

´
z, q̃ = −μβ

2
χ z, (18)

and (17) yields two linear equations for the unknowns α and β, that is

α = χ
³
1 +

μα

2

´
, β = −χμβ

2
. (19)

Non trivial solutions exist for μχ 6= 2, and they are given by

α =
χ

1− μχ
2

, β = 0 if μχ 6= 2. (20)

Thanks to (20), the critical vectors in (18) are explicitly given by

p̃ = χ

µ
1 +

1

2

μχ

1− μχ
2

¶
z, q̃ = 0; (21)

From (21) and the constraint (10), one obtains the following equation for the mul-
tiplier χ

λ = χ

µ
1 +

1

2

μχ

1− μχ
2

¶
+

μ

2
χ2
µ
1 +

1

2

μχ

1− μχ
2

¶2
. (22)

By setting

w = χ

µ
1 +

1

2

μχ

1− μχ
2

¶
, μχ 6= 2,

(22) becomes

λ = w +
μ

2
w2,

which is identical to the quadratic equation (7) for ξ0. Thus, w = ξ0 and the
multiplier χ is given by

χ =
ξ0

1 + μξ0
2

.

Note that μχ = 2 occurs if μξ0 = −1. Since both ξ0 and μ are positive, the case
μχ = 2 can be ignored without restrictions. The critical vectors are given, in the
final form, by

p̃ = ρξ0z, q̃ = 0, (23)
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where ρ is given in (14). The critical point (p̃, q̃) on the hypersurface (10) is at
minimal distance βmin(λ) = ρξ0 from the origin. Indeed, consider a generic point

p = p̃+ a, q = b, (24)

with a and b as arbitrary vectors. The point (p,q) is on the hypersurface (10) if a
and b satisfy

zTa+ μ

µ
ρξ0z

Ta+
1

2
aT zzTa−1

2
bT zzTb

¶
= 0. (25)

Further, the distance β(λ) of the point (p,q) from the origin is given by

β2(λ) = β2min(λ) + 2ρξ0z
Ta+ bTb+ aTa.

The critical point (p̃, q̃) is optimal if and only if β2(λ) > β2min(λ) and this leads to
the following inequality

2ρξ0z
Ta+ aTa+ bTb >0. (26)

that must be satisfied by any given a,b vectors. To prove that (26) holds, define
first the parameter κ = zTa. If κ º 0, (26) is automatically satisfied. However, κ
can also be negative since, from (25), it satisfies the following quadratic equation

μ

2
κ2 + (1 + μρξ0)κ−

μ

2
2 = 0, (27)

where = zTb; this equation admits a negative real solution given by

κ− =
− (1 + μρξ0)−

q
(1 + μρξ0)

2
+ μ2 2

μ
. (28)

For κ=κ−, the inequality (26) to prove becomes

2ρξ0 |κ−|<aTa+ bTb. (29)

It is easy to show that

2ρξ0 |κ−| < |κ−|
2 + 2 (30)

holds, because substituting (28) in to (30) yields the following inequality

1 + (μρξ0)
2 + μ2 2 > 0,

which is always satisfied. Further, simple algebra shows that

|κ−|2 + 2 = aT zzTa+ bT zzTb < aTa+ bTb (31)

holds for any vectors a and b. Thus, from (30) and (31) the inequality (29) is
always satisfied and the critical point (p̃, q̃) on the hypersurface (10) is at the
minimal distance from the origin.
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