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Abstract

In this thesis novel numerical techniques are proposed for application to different
problems in engineering science. Three categories of numerical techniques are inves-
tigated: collocation methods, finite element methods (FEM) and boundary element
methods (BEM).

In the context of collocation methods a new numerical technique called LOCOM
(LOcalized COllocation Method) has been proposed. This method is able to reduce
the degrees of freedom of the classical Hermite collocation to one single degree for each
collocation node, still maintaining higher order accuracy. This new methodology has
been applied to an existing Hermite Collocation Fortran code that solves multiphase
flow problems.

In the context of the Finite Element Method, a special form of the Petrov-
Galerkin method has been formulated for the sub-grid stabilization of advection-
diffusion partial differential equations on triangular meshes. This new method is
able to damp out the spurious oscillations occurring near a sharp front when the
standard finite element method is applied. An adjoint FEM has been developed in
the context of fluorescence tomography and a Galerkin technique has been formulated
to investigate the hydrodynamic stability of pulsatile Poiseuille flow in a pipe.

Finally, a 3D boundary element method is presented for the numerical solution
of general coupled elliptic differential equations. This methodology has application
in some areas of optical tomography where small heterogeneities immersed in a ho-
mogenous domain need to be detected.
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Chapter 1

Introduction

The work presented in this thesis focuses on general numerical techniques that have

been applied to different problems in engineering science. Five different problems have

been solved with different numerical methods, but the philosophy followed in solving

them is similar, in that we push analytical methods as much as possible and then use

numerical methods. Three categories of numerical methods are investigated: colloca-

tion methods, Galerkin Methods and boundary element methods (BEM). These three

methods are special cases of the general method of weighted residuals (MWR) (see

Finlayson, 1972 and Lapidus & Pinder, 1982). In the following, for sake of simplicity

the MWR is briefly introduced for the case of differential equations in one dimen-

sion, but the method is valid in any dimension. Consider the second order operator

L =− d2

dx2
in the interval Ω = [0, L] and the following boundary value problem

Lu = f (1.1)

ux − αu|x=0,L = 0

where f(x) is a given function and α is a coefficient. In the method of weighted

residuals, one seeks approximation solutions û(x) of Eq. (1.1) in the form of a finite

1



series expansion, that is

û(x) =
NX
j=1

anφn(x). (1.2)

Here, the set of functions {φn(x)} are denoted by basis functions or interpolation

functions. The functional space spanned by this function set is denoted hereafter as

V =span{φ1(x), ...φn(x)}. If we now define the residual

R(u) = Lu− f (1.3)

the objective of the MWR is to select the unknown set of coefficients {an} in the

expansion (1.2) such that the residual R(u) is orthogonal to a chosen set of functions

{wj(x)}j=1,...N ∈W , W being the space of the test functions, that isZ
Ω

R(u)wj(x)dx = 0, ∀wj ∈ W, j = 1, ...N (1.4)

Different choices of the space of the test functions W give different numerical formu-

lations. In particular,

i) The collocation method is recovered if one chooses the space W to be the

set of Dirac delta functions centered at each collocation point xj, i.e.

W = {δ(x− x1), ..., δ(x− xj), ...δ(x− xN)} ;

then Eq. (1.4) yields N collocation equations

R(u)|x=xj = 0, j = 1, ...N

Note that each of these equations imposes the vanishing of the residual R(u) at the

collocation point x = xj. The space of the basis functions V must be chosen so

that the basis function φn(x) is second order differentiable at the collocation points,

because the highest order derivative appearing in the operator L is of second order.
2



Thus V is defined by at least a quadratic polynomial. This method is discussed in

section 1.1 and chapter 2.

iii) The Petrov-Galerkin method is obtained when the space of the test

functions W is elementwise continuous and not in the space of the basis functions V ,

that is W ⊇ V . By substituting the series expansion (1.2) in to Eq. (1.4) yields the

set of algebraic equations

NX
n=0

µZ
Ω

wjLφndx
¶

an =

Z
Ω

f wjdx, ∀j = 1, ...N (1.5)

for the unknown coefficients {an}. Based on this definition, one is attempted to

classify the collocation method as a particular case of the Petrov-Galerkin method.

In reality, integration by parts once of Eq. (1.5) allows the space of the basis functions

V to be of lower order in the class of the linear polynomials, whereas in the case of

collocation the basis functions are quadratic polynomials. A complete discussion of

the this approach is given in section 1.2 and chapter 3.

ii) TheGalerkin method is a special case of the Petrov-Galerkin method when

the spaces of the test functions and basis functions are the same, i.e. W = V . In this

case Eq. (1.5) with wj = φj gives the resulting equation

NX
n=0

µZ
Ω

φjLφndx
¶

an =

Z
Ω

f φjdx, ∀j = 1, ...N. (1.6)

This technique has been applied in the context of adjoint methods as discussed in

section 1.3 and chapter 4. Furthermore a Galerkin method is proposed for the study

of the hydrodynamics stability of pulsatile flow in section 1.4 and chapter 5.

iv) TheBoundary element method is recovered when the set of test functions

is chosen equal to

W = {wj(x) = G(x− xj), j = 1, ...N} .
3



Here, G(x− xj) is the Green’s function of L over the infinite domain which satisfies

LG = δ(x− xj). (1.7)

The function G(x − xj) can be interpreted as the response of the physical system

described by the Eq. (1.1) to a Dirac impulse located at x = xj. In this case the

weighted residual formulation given by Eq. (1.4) yields the set of algebraic equationsZ
Ω

Lû G(x− xj)dx =

Z
Ω

f(x) G(x− xj)dx, ∀j = 1, ...N. (1.8)

Integration by parts twice yields

Z
Ω

û LG(x− xj) dx+ [ûx G− û Gx]
1
0 =

Z
Ω

f(x)G(x− xj)dx. (1.9)

By applying the boundary conditions for û, that is (ux − αu)|x=0,L = 0 and using Eq.

(6.18) the following BEM equation is obtained

γû (xj) + [(αG−Gx) û ]10 =

Z
Ω

f(x)G(x− xj)dx. (1.10)

Here, γ = 1 if xj is an interior point of Ω or γ = 1/2 if xj is at the boundary, i.e.

xj = x1 or xN . In the BEM formulation one solves for the boundary values of the

unknown function u. Choosing xj = x1 and xj = xN in Eq. (1.10), two algebraic

equations can be obtained for the two unknowns û (x1) and û (xN). A complete

discussion of the BEM and some applications of this numerical technique are given

in section 1.5 and chapter 6.

1.1 Collocation Methods

The classical collocation approach to the solution of differential equations has been

known since at least the early 1930s (see Frazer et al., 1937). However, the method

4



became popular in the early 1970s when was applied for the solution of second-order

partial-differential equations (see for example De Boor & Schwartz, 1972; Cavendish,

1972; Douglas & Dupont, 1974; Finlayson, 1972 and Prenter, 1975). A number of ex-

cellent papers have been recently published regarding the use of collocation methods

in the solution of partial differential equations. In particular a collocation approach

for linear parabolic problems on rectangles has been proposed by Bialecky & Fernan-

des (1999a). Elliptic boundary value problems have been solved using collocation by

Bialecky (1998a,b,c), Bialecky & Fairweather (1995b). Schrodinger wave equation

problems (Li et al., 1998) and biharmonic problems (Lou et al., 1998), as well as

techniques to efficiently solve the resulting approximating equations have also been

studied by Bialecky & Fairweather (1995a) and Bialecky & Remington (1995). Collo-

cation solutions for parabolic problems have been investigated in Bialecky & Fernan-

des (1999b). A collocation finite element method for potential problems in irregular

domains has been presented by Pinder & Frind (1979) and an Eulerian-Lagrangian

least square collocation method is proposed by Bentley et al. (1990). A groundwater

problem relative to variably saturated flow in two dimensions is solved by Allen &

Murphy (1986) by collocation. A theoretical formulation of the collocation method

can be found in Celia (1983), Allen et al. (1998), Botha & Pinder (1983) and Lapidus

& Pinder (1982).

Here, for sake of simplicity we present the key ingredients of Hermite collocation,

by an application to a well known second order partial differential equation (PDE): the

diffusion-advection equation. Consider the advection-diffusion operator L = −d d2

dx2
+

a d
dx
in the x domain, where d is the diffusivity coefficient and a is a velocity coefficient.

The equation considered is the following
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∂u

∂t
= Lu. (1.11)

On the domain Ω = [0, L] , let ∆x = L/Nx be the space step for discretization,

where Nx is the number of subintervals. We now define a uniform mesh Ωx =

{xj , 0 ≤ j ≤ Nx} where xj = j∆x. In each subinterval Ωj = [xj−1, xj] we select

two collocation points which are located at the abscissa ξ
(j)
k with k = 1, 2. The

Hermite approximation ûH(x) in this interval is given by:

ûH (x) = H0,j−1(x)uj−1 +H1,j(x)uj + H̃0,j−1(x)
du

dx

¯̄̄̄
xj−1

+ H̃1,j(x)
du

dx

¯̄̄̄
xj

x ∈ Ωj

(1.12)

Here, the two pairs of functions (H0,j−1, H1,j) and
³
H̃0,j−1, H̃1,j

´
are the classical

Hermite polynomials (for the exact mathematical formulation of the Hermite poly-

nomials see Botha & Pinder, 1983 and Lapidus & Pinder, 1982). In particular the

first pair (H0,j−1, H1,j) is the Hermite basis relative to the nodal values uj−1 and uj

which satisfy the following conditions½
H0,j−1(xj−1) = 1, H0,j−1(xj) = 0
H1,j(xj−1) = 0, H1,j(xj) = 1

The second pair
³
H̃0,j−1, H̃1,j

´
is the Hermite basis relative to the nodal values of

the spatial derivative du
dx
at the locations x = xj−1 and x = xj and they satisfy the

conditions 
dH̃0,j−1

dx

¯̄̄
xj−1

= 1,
dH̃0,j−1

dx

¯̄̄
xj
= 0

dH̃1,j−1
dx

¯̄̄
xj−1

= 0, dH̃1,j−1
dx

¯̄̄
xj
= 1.

The approximation ûH (x) in the interval Ωj is complete for the class of all the poly-

nomials of third order. This means that any cubic polynomial defined in the interval

6



Ωj can be written in the form (1.12). In the following we shall use the Hermite ap-

proximation to solve for the differential equation (1.11). In this case the Hermite

approximation for u(x, t) is sought in the following form

û (x, t) =
NxX
j=1

H0,j−1(x)Uj−1(t)+H1,j(x)Uj(t)+H̃0,j−1(x)Vj−1(t)+H̃1,j(x)Vj(t) (1.13)

where the coefficients Uj = uj and Vj(t) =
duj
dx
are relative to the nodal values of

the function u and its spatial derivative ux respectively. Moreover, they are assumed

time varying. It is clear that for each nodes two unknowns need to be determined:

the value of the function u and its spatial derivative du
dx
. Thus in total we have 2N

unknowns and we need 2N equations to make the problem well-posed and therefore

solvable. The 2N equations are obtained by imposing the vanishing of the residual

R(û) = ∂û
∂t
− Lû at the 2N collocation points

n
ξ
(j)
k

o
j=1,..N ; k=1,2

located in pairs

inside each interval Ωj. This yields the following collocation equation relative to the

generic collocation point ξ(j)k of the generic subinterval Ωj, that is

PNx

j=1H0,j−1(ξ
(j)
k )

dUj−1
dt

+H1,j(ξ
(j)
k )

dUj
dt
+ H̃0,j−1(ξ

(j)
k )

dVj−1
dt

+ H̃1,j(ξ
(j)
k )

dVj
dt
+(1.14)

−
PNx

j=1 LH0,j−1|ξ(j)k Uj−1 + LH1,j|ξ(j)k Uj + LH̃0,j−1
¯̄̄
ξ
(j)
k

Vj−1 + LH̃1,j

¯̄̄
ξ
(j)
k

Vj = 0

These 2N collocation equations can be recast in the following matrix form

A
du

dt
= Bu (1.15)

where the (2N ×1) vector u contain the nodal values uj, ∂uj∂x
, respectively and A and

B are (2N × 2N) matrices with special structures (see Lapidus & Pinder, 1982 for

more details). This system of first order time varying differential equations can be
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solved numerically by the Runge-Kutta method or other schemes when the boundary

conditions and appropriate initial conditions are imposed.

Note that the classical Hermite-cubic based collocation method generates two

unknowns per node in one dimension, four unknowns per node in two dimensions and

eight unknowns per node in three dimensions. Thus, the exponential increase of the

unknowns as the dimensionality increases makes Hermite collocation computationally

cumbersome.

To overcome this limitation, recently a heuristic collocation technique has been

presented in Wu & Pinder (2002). This method enhances the efficiency of Hermite

collocation through a reduction in the number of degrees of freedom from two in one

dimension, four in two dimensions and eight in three dimensions to one in any number

of dimensions. The new numerical scheme, named LOCOM (LOcalized COllocation

Method), has been successfully applied to simple problems by Wu & Pinder (2002),

but the authors did not investigate the convergence properties of the proposed scheme

and open questions were left regarding the well posedness, the consistency and stabil-

ity of the new scheme. These questions have been addressed in a very detailed manner

in Chapter 2. Here, it is reported the complete version of the paper ’A single-degree

of freedom Hermite Collocation for multi-phase flow and transport in porous media’

published in the International Journal for Numerical methods in fluids (vol. 44 pages

1337-1354). This paper has been written in collaboration with M. Mckay, G. F. Pinder

and J. Guarnaccia.

My contributions to this work are the following:

i) The rigorous formulation of the LOCOM scheme; I have shown that the key

step in the definition of LOCOM is the definition of an appropriate approximant for
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the nodal derivatives, which are unknowns in the classical Hermite collocation, as a

function of the nodal values of the minimal compact stencil relative to each node.

ii) The study of the convergence of LOCOM using the Fourier analysis. I have

shown that reduction in the degrees of freedom can be attained while maintaining

higher accuracy.

iii) The equivalence between the LOCOM scheme and a special form of the

Petrov-Galerkin method (see the section about stabilized Finite Element methods for

a description of this technique).

iv) The application of the LOCOM scheme to the general advection-diffusion

equations [see Eq. (1.11)]. I have shown that optimal approximations for the nodal

derivatives can be chosen such that the truncation error of the discretized operator

has the highest order of convergence.

The theoretical analysis presented in Chapter 1 highlights the optimal proper-

ties of the LOCOM scheme which were unclear from the primal formulation ofWu &

Pinder (2002). The key result of this analysis is that the equivalence between Her-

mite collocation and the Petrov-Galerkin method is established through the LOCOM

formulation.

1.2 Stabilized Finite Element Methods

Consider a bounded domain Ω in the (x, y) space and the initial value problem

∂u

∂t
+ L(u) = f. (1.16)

Here, L = −d∇2 + �c ·∇ is the advection-diffusion operator where d is a diffusivity

coefficient and �c is a divergence-free velocity field, ∂Ω is the exterior boundary and

the source term f : Ω→ < is a given function. Assume that zero boundary conditions
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are imposed, i.e. u|∂Ω = 0 and some initial conditions at time t = 0 are given. We

introduce on Ω a triangulation Υh with polygonal boundary Ω where K is the generic

triangular element and h = max
K �Υh

diam(K). Over the entire domain Ω, we define the

finite functional space of linear elements

Vh = {u ∈ C0 (Ω) , u |K is linear and u|∂Ω = 0}. (1.17)

Assume that a generic basis for Vh is given by the set {vj}j=1,N where N is the number

of nodes of the triangulation Υh. Without loosing generality we choose the space of

the test functionsWh as the space of the C0 (K)-continuous functions over the generic

triangle K, that is

Wh = {w ∈ C0 (K) and w|∂Ω = 0}. (1.18)

Let us define the set {wj}j=1,N as the basis for the space Wh. An approximation

solution û ∈ Vh for the function u in Eq. (1.16) can be expressed as

û(x, y) =
NX
n=1

un(t)vn(x, y)

where un(t) are unknown time-varying functions of the nodal values of the approx-

imation solution û. With this functional setting the Petrov-Galerkin formulation

for the approximation solution û ∈ Vh requires the residual R(û) = ∂û
∂t
+ L(û) −

f to be orthogonal to the zero function within the space of the test functions

Wh =span
³
{wj}j=1,N

´
, that isZ

Ω

R(û)wjdΩ = 0 ∀j = 1, ...N.

This yields the following equationZ
Ω

∂û

∂t
wj dΩ+ d

Z
Ω

∇û ·∇wj dΩ+

Z
Ω

�c ·∇û wj dΩ =

Z
Ω

f wj dΩ ∀j = 1, ...N

(1.19)

10



Note that if one chooses Vh = Wh then the classical Galerkin method is recovered. In

this case Eq. (1.19) transforms toZ
Ω

∂û

∂t
vj dΩ+ d

Z
Ω

∇û ·∇vj dΩ+
Z
Ω

�c ·∇û vj dΩ =

Z
Ω

f vj dΩ ∀j = 1, ...N

(1.20)

In matrix notation both Eqs. (1.19) and (1.20) can be written in the following form

M
du

dt
+Ku = f (1.21)

where we have introduced the (N × 1) column vectors of the nodal values u(t) and

the forcing term f whose (j, 1)-entries are given respectively by

[u]j,1 = uj(t), [f ]j,1 =

Z
Ω

f wj dΩ. (1.22)

The (i, j)-entries of the mass matrix M and the stiffness matrix K of dimension

(N ×N) are given by

[M]i,j =

Z
Ω

viwj dΩ, [K]i,j = d

Z
Ω

∇vi ·∇wj dΩ+

Z
Ω

�c ·∇vi wj dΩ. (1.23)

Observe that for the case of the standard Galerkin method [see Eq. (1.20)] the

matrices M, K and the vector f are computed using wj = vj. The first order time-

varying system can be solved once the boundary conditions and the initial conditions

are imposed.

It is well known that the Galerkin formulation in Eq. (1.20) [or equivalently Eq.

(1.21)] produces poor results when advection is dominant: strong oscillations occur

in regions with sharp interfaces.

A general class of numerical techniques, the so called stabilized methods have

been proposed by Hughes et al. (1998) in order to reduce the oscillatory behavior

of the classical Galerkin solution. The fundamental idea of these techniques is to
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add appropriate numerical diffusion in Eq. (1.20) which damps out the oscillations

without compromising the consistency and stability of the method. As an example

consider the case of pure advection,. i.e. set d = 0 in Eq. (1.20). From a Fourier

analysis prospective, an harmonic component of any wavelength travels with the same

advection velocity. Because of the discretization, the short harmonic components

tend to travel at a different speed than the theoritical advection speed and wave

dispersion occurs. As a consequence, an initial sharp discontinuity, which should

propagate unchanged through the domain, is destroyed near the front. Due to the

wave dispersion of the shortest harmonics, spurious wave packets are generated from

the front discontinuity and they can travel along the opposite direction of the velocity

field with different speed than the theoretical advection velocity. A stabilized method

damps out the shortest harmonics reducing the presence of spurious oscillations.

There are different formulations of stabilized methods. In particular, the Stream-

line Upwinding Petrov Galerkin method proposed by Brooks & Hughes et al. (1982)

adds numerical diffusion along the streamline direction and damps the oscillations.

Another stabilized technique, the so called residual-free bubble method has been pre-

sented by Brezzi et al. (1998). In this case the stabilization of the classical Galerkin

method is achieved by enriching the functional space solution Vh [see Eq. (1.17)] with

extra degrees of freedom (bubble functions). Other stabilized methods are based on

the algebraic theory for boundary methods formulated by Herrera (1984). According

to Herrera’s theory, an optimal space of test functions Wh [see Eq. (1.18)] can be

chosen so that higher order Petrov-Galerkin methods can be derived. The optimal

test function satisfies the local adjoint boundary value problem

L∗(w) = 0 on K (1.24)
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where L∗ = −d∇2 − �c · ∇ is the adjoint operator of L and K is the generic mesh

element. If one defines wj = vj + δwj where vj belongs to the basis of Vh [see Eq.

(1.17)], then the perturbation δwj satisfies the boundary value problem

L∗(δwj) = −L∗(vj) on K δwj|∂K = 0 (1.25)

and it follows that the set {wj} is optimal and complete.

Herrera’s approach has been applied by Celia & Herrera (1987) and Celia et

al. (1989) to solve the advection-diffusion equation on structured grids. Celia et

al. (1989) solved Eq. (1.25) when K is a rectangular element and they proposed

a numerical scheme able to resolve sharp-front problems with minimal numerical

oscillations. This approach is only valid for structured grids.

In chapter 3, we discuss the extension of Herrera’s approach to solve advection-

diffusion problems on unstructured triangular grids. This chapter consists of the

complete version of the paper ”Localized-Adjoint-Finite-Element-Method for Sub-Grid

Stabilization of Convection-dominated Transport on a Triangular Mesh (LAFEM)”

presented at the XIV International Conference on Computational Methods in Water

Resources in Delft, The Netherlands.

In this Chapter, we propose a special form of the Petrov-Galerkin method

[see Eq. (1.19)] named LAFEM (Localized-Adjoint-Finite-Element-Method). This

method is well suited for sub-grid stabilization of advection-diffusion partial differen-

tial equations on triangular meshes, i.e. unstructured grids.

My main contribution in this work is the analytical derivation of the optimal test

functions in the limit of high convection. In this limit, using a multiscale perturbation

technique, I show that the local adjoint boundary value problem defined in Eq. (1.25)

can be solved analytically. From the Petrov-Galerkin formulation in Eq. (1.19),
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setting wj = vj+δwj, where δwj satisfies Eq. (1.25), one can obtain the new equationZ
Ω

∂û

∂t
wj dΩ+

µ
d

Z
Ω

∇û ·∇vj dΩ+
Z
Ω

�c ·∇û vj dΩ

¶
+

(1.26)

+d

Z
Ω

∇û ·∇δwj dΩ+

Z
Ω

�c ·∇û δwj dΩ =

Z
Ω

f wj dΩ.

By inspection of this equation, one realizes that the first three terms are identical

to those of the classical Galerkin formulation in Eq. (1.20) whereas the underlined

terms represent added numerical diffusion. These extra terms are responsible for the

stabilization of the classical Galerkin formulation (1.19) and the reduction of spurious

oscillations in the numerical solution.

1.3 Adjoint Methods

In order to introduce the main idea of the adjoint method, we present an application of

this theory to a toy problem. For the rigorous formulation of the theory seeMarchuck

(1995) and Marchuck et al. (1996). Consider the boundary value problem

d2u

dx2
+ k u = 0 (1.27)

with the boundary conditions

u(1) = 1, u(0) = 0. (1.28)

Here, the parameter k is assumed spatially varying and it is given by

k(x) =
NX
n=1

Knfn(x) (1.29)

where {Kn} is a set of parameters, N is the number of parameters and {fn(x)} is a

set of complete functions, e.g. fn(x) = exp(i2πnx). Assume that we know the value
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of the function u at J locations xj, i.e. u(xj) = ũj, j = 1, ..J . We are interested in

estimating the parameter k, which is assumed to be unknown a priori. Because of the

special form of k(x) defined in Eq. (1.29) we want to estimate the set of parameters

{Kn}. For example, using a simple least squares parameter estimation, we define the

following objective function

F({Kn} , u) =
JX

j=1

[u(xj)− ũj]
2 .

Here, F({Kn} , u) consists of the sum of the square of the mismatch between the data

measurement ũj and the theoretical values u(xj). Then the estimates K̂1, ..K̂N satisfy

the following minimization problem

min
{Kn}

F({Kn} , u)

subject to the constraints [see Eqs. (1.27),(1.28)]

Lu = 0, u(1) = 1, u(0) = 0.

where L = d2

dx2
+ k is the diffusion-decay operator. The key step in solving this

optimization problem is the computation of the gradient δF
δKn
, that is

δF
δKn

= 2
X
j

[u(xj)− ũj ]
δu(xj)

δKn
.

Here, one can see that δF
δKn

depends upon the gradient δu(xj)

δKn
which measures the

sensitivity of the function u at the location x = xj due to variations δKn in the

parameter Kn. Although illustrated here for a simple least squares approach, the

computation of the sensitivities δu(xj)

δKn
is a key step in any optimization algorithm

based on a gradient method.

In order to evaluate δu(xj)

δKn
we proceed in the following way. If Kn changes as

Kn + δKn then u varies as u + δu. We are interested in evaluating the change δu
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which gives a measure of how sensitive u is to variations in the parameter Kn. The

solution u+ δu satisfies Eq. (1.27) with k replaced by k + δk where δk = δKnfn(x),

that is

d2 (u+ δu)

dx2
+ (k + δKnfn(x)) (u+ δu) = 0 (1.30)

and the relative boundary conditions [see Eq. (1.28)] become

u(1) + δu(1) = 1, u(0) + δu(0) = 0. (1.31)

If δKn is small, i.e. |δKn| << 1, by neglecting higher order terms and using Eqs.

(1.27)-(1.28), from Eqs. (1.30) and (1.31) one obtains the following boundary value

problem for the variation δu

d2δu

dx2
+ k δu = −δKnfn(x) u, δu(1) = 0, δu(0) = 0. (1.32)

The solution of this boundary value problem gives the variation δu at the locations

x = xj due to the variation δKn. The limitation of this approach is that Eq. (1.32)

has to be solved any time one chooses different values of the variation δKn, n = 1, ...N .

In order to compute the N × J sensitivities δu(xj)

δKn
, the Eq. (1.32) needs to be solved

N times because its right hand side depends upon the variation δKn. For well-

posed problems, where N << J , the computation of δu(xj)

δKn
through Eq. (1.32) is

efficient. However, if N >> J , the computation of these sensitivities becomes slow

and cumbersome. This is typical of ill-posed inverse problems where the number of

parameters N to be estimated is much larger than the number J of available data.

The adjoint method speeds up the computation of these sensitivities for the case of

N >> J . The basic idea behind this method is the concept of the Green’s function

of the differential operator L. In order to apply the adjoint method, Eq. (1.32) is
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recast in the following form

Lδu = −δKnfn(x) u, δu(1) = 0, δu(0) = 0. (1.33)

The Green’s function of L is then defined as follows

LG = δ(x− xj), G(1) = 0, G(0) = 0. (1.34)

The function G(x) can be interpreted as the response of the physical system described

by the Eq. (1.27) to a Dirac impulse located at x = xj. By multiplying both members

of Eq. (1.33) by the function G and integrating over the domain [0, 1] one getsZ 1

0

G Lδu dx = −δKn

Z 1

0

fn(x)u dx. (1.35)

Integrating by parts twice yieldsZ 1

0

δu LG dx+

·
dδu

dx
G− δu

dG

dx

¸1
0

= −δKn

Z 1

0

fn(x)u dx. (1.36)

In this equation if the boundary conditions for both the function G and u are imposed

[see Eqs. (1.33-1.34)] then the term between square brackets on the lefthand side

vanishes and using Eq. (1.34) the solution of δu(xj) can be expressed in the following

integral form

δu(xj) = −δKn

Z 1

0

fn(x) G(x− xj)u(x)dx. (1.37)

This is the key equation in the adjoint formulation for the computation of the varia-

tions δu(xj). The adjoint method is more efficient than the standard method based

on the direct solution of the sensitivites through Eq. (1.32) if N >> J . In this

case, the adjoint technique requires only J solutions of the boundary value problem

(1.34) in order to obtain the Green’s function relative to the different locations xj.

Then the computation of the variation δu(xj) using Eq. (1.37) reduces to a simple
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integration any time one chooses the N different values of δKn. The computation

of the variations δu(xj) through the direct solution of Eq. (1.32) instead requires

N numerical solutions of the latter equation and this makes the computation slower

than in the case of the adjoint approach because N >> J .

Chapter 4 consists of an excerpt of from the paper ’Coupled complex adjoint

sensitivities for frequency-domain fluorescence tomography: Theory and vectorized

implementation’ published in the Journal of Computational physics (Vol. 187, Issue 2,

pp. 597-619). This paper is the result of the work with both my advisors Jeffrey Laible

and Margaret Eppstein. In this chapter, we present an application of the adjoint

method in the context of fluorescence tomography for breast cancer imaging. In this

case, the set of equations we are dealing with, are those governing the propagation of

the light through a homogenous media Ω, that is

−Dx∇2Φx + kxΦx = Sx (1.38)

−Dm∇2Φm + kmΦm = βΦx. (1.39)

subject to the Robin-type boundary conditions on the domain boundary ∂Ω. The ex-

citation light source Sx (Watts/cm3) is intensity modulated with sinusoidal frequency

ω (rad/s) , and propagates through the media resulting in the complex photon fluence

at the excitation wavelength of Φx (Watts/cm2). Some of this excitation light may

be absorbed by fluorophore in the media and reemitted, resulting in complex photon

fluence at the emission wavelength Φm.

Most approaches to fluorescence tomography use the coupled equations (1.38)-

(1.39) in the context of a regularized nonlinear least-squares optimization, such as

the Levenberg-Marquardt method (Lee & Sevick-Muraca, 2002) or the Bayesian ap-

proximate extended Kalman filter (Eppstein & Dougherty, 1999). All these methods
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require the repeated computation of Jacobian sensitivity matrices quantifying the

effects of local changes in optical properties on the detected light fluence. First-

order finite difference (Eppstein & Dougherty, 1999) or second-order finite difference

(Eppstein et al., 2001) approaches have been used for the computation of these sen-

sitivities, but they are slow, especially when a large finite element forward model is

employed. To speed up the sensitivities computations, Arridge (1999) applied the ad-

joint method to the single excitation scalar differential equation (1.38), whereas Lee

& Sevick-Muraca (2002) proposed an approximate adjoint method for the coupled

equations (1.38)-(1.39).

My main contribution to this chapter is the mathematical formulation of an

exact adjoint method for the coupled photon migration equations (1.38)-(1.39). I

derived the mathematical expressions of both the sensitivities δΦx
δµ
and δΦm

δµ
, where µ

is a generic parameter, by means of an integral formulation based on the concept of

the Green’s matrix of the coupled equations (1.38)-(1.39). The analytical expression

for δΦm
δµ

is a new result. I also modified an existing MatLab finite element code for

the computation of these sensitivites by the adjoint formulation.

Although additional vectorization of the code and subsequent timing studies

were included in the published version of chapter 4, I have omitted them in this

dissertation since this was the work of my co-authors.

The main achievement of this work is that the exact adjoint formulation for

the coupled equations (1.38)-(1.39) allows for a rapid and accurate computation of

the sensitivities as compared to the classical approaches such as the finite difference

methods (Eppstein et al. 2001; Eppstein & Dougherty, 1999) or the approximate

adjoint approach of Lee & Sevick-Muraca (2002).
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1.4 Galerkin Methods for hydrodynamics stability
problems

Consider a general one dimensional linear operator L of second order or higher and

the following partial differential equation

∂u

∂t
= Lu+ q on Ω = [0, L] u(0) = u(L) = 0 (1.40)

where Ω = [0, L] is a bounded domain of < and the source term q : Ω → < is a

given function. The operator L can be split as L = LH+LSH where the operator LH

is hermitian and LSH is skew-hermitian. Let us consider the set of functions {fn(x)}

as the eigenfunctions of LH , that is

LHfn = λnfn, fn(0) = fn(L) = 0 (1.41)

with λn the eigenvalue of fn. Because LH is hermitian, then the set {fn(x)} is

orthogonal, i.e. hfn, fmi = δnm , with respect to the following scalar product

hfn, fmi =
Z L

0

fnf
∗
mdx

and δnm is the Kronecker symbol and the superscript ’∗’ indicates the complex con-

jugate. Moreover the set {fn(x)} is complete in the functional space of the squared

integrable functions L2(Ω). This means that any function f(x) ∈ L2(Ω) can be ex-

panded as follows

f(x) =
∞X
n=1

anfn(x)

where the coefficient an = hf, fni. If the eigenvalue problem defined in Eq. (1.41) has

an analytical solution, then the complete set {fn(x)} can be used to solve the more

general problem defined in Eq. (1.40). Owing to the completeness of the set {fn(x)},
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the general solution u of Eq. (1.40) can be sought in the following form

u(x, t) =
NX
n=1

bn(t) fn(x) (1.42)

where the time-varying coefficients bn(t) are unknowns and N is the number of the

terms used in the series expansion. To determine them, one imposes the residual

R(u)

R(u) = ∂u

∂t
− Lu− q

to be orthogonal to the zero function, that is

hR(u), fni = 0, n = 1, ...N. (1.43)

The completeness of the set {fn(x)} implies that as the number of terms N used in

the expansion (1.42) approaches infinity, then the residual R(u) tends to zero and

Eq. (1.40) is satisfied exactly. From Eq. (1.43) the following set of time-varying first

order differential equations is then derived, that is

dbn
dt
= λnbn +

NX
m=1

cnmbm − qn, n = 1, ...N. (1.44)

Here, the coefficients cnm and qn are given by

cnm = hLSHfn, fni , qn = hq, fni .

The first order system of differential equations can be solved in time by the Runge-

Kutta method and from Eq. (1.42) a semi-analytical solution of Eq. (1.41) is pro-

vided.

In chapter 5, we use the Galerkin technique described above to revisit the linear

stability of pulsatile pipe flow. This chapter is the full version of the paper ’Revisiting

the stability of Pulsatile pipe flow ’ accepted for publication to the European Journal
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of Mechanics - B/Fluids (2004). In this chapter the hydrodynamics of pulsatile flow

pipes has been investigated in great details. The study of pulsatile tube flow appears

to have been first considered in the context of arterial hemodynamics in the mid-

1950s. Womersley and co-workers obtained an exact solution of the Navier-Stokes

equations for the fully-developed velocity profile of an oscillatory, incompressible flow

in a circular tube (Womersley, 1955). Pulsatile flow has also recently found re-

newed significance in its application to MEMS microfluidic engineering applications.

A common feature of many of the microfluidic devices described in the literature that

incorporate micro-scale pumping is that the flow is a pulsatile one. Therefore the

stability properties of the pulsatile flow are relevant for engineering applications.

The linear stability of the limiting case of the steady Poiseuille flow in a pipe

has been investigated extensively by Davey & Drazin (1969) and Grosch & Salwen

(1972). They showed that the flow is stable to infinitesimal perturbances, although

an initial energy growth of the flow perturbation can occur ( see Reddy & Trefethen,

1994; Schmid & Henningson, 1994).

My main contributions to the linear stability of pulsatile Poiseuille flow are the

following:

i) We formulated a Galerkin technique for the fourth-order Orr-Sommerfeld

equation which governs the dynamics of axisymmetric flow perturbations (Drazin,

1981). In contrast to the earlier approach used in Tozzi & Von Kerczek (1986) where

a Chebyshev expansion was used, I considered a spatial discretization based on the

eigenfunctions derived from the long-wave limit of the Orr-Sommerfeld equation (see

Grosch & Salwen, 1972 and Dolph & Lewis, 1958 for similar analysis).

ii) We showed that for smaller number of terms N ∼ 15 − 20 in the Galerkin
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expansion, the Orr-Sommerfeld eigenbasis gives smaller relative error then the Cheby-

shev basis, although it is well known that the Chebyshev basis gives smaller error than

any power of N−1 asympotically for N →∞.

iii) We showed that the use of the Orr-Sommerfeld basis seems to be a very

good candidate for the construction of lower order models by the Galerkin method:

fewer eigenmodes would be sufficient to retain relatively greater accuracy than the

Chebyshev basis.

iv) We proved that the flow structures giving the largest energy growth are

toroidal vortex tubes. These axisymmetric flow structures are important for under-

standing the transition to turbulence.

We believe that the Galerkin technique presented here provides a framework for

examining the nonlinear space-time evolution of non-axisymmetric perturbations in

pulsatile pipe flows. This approach highlights the possibility of constructing Galerkin

lower order models for pipe flows using fewer eigenmodes yet retaining greater accu-

racy.

1.5 Boundary Element Methods

In chapter 6, we present the application of the boundary element method (BEM ) to

the solution of a general coupled elliptic differential equations given by

−∇2φ+Kφ = f on Ω (1.45)

where K is a (2× 2) constant matrix, f is a (2× 1) source vector and φ is the (2× 1)

unknown vector function. The boundary conditions considered are of Robin type, i.e.

∂φ/∂n|∂Ω −A φ|∂Ω = 0
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where A is a given (2× 2) constant matrix and n is the normal to the boundary. A

theoretical formulation of the BEM is given in Brebbia (1978) and Lapidus & Pinder

(1982). Here, we shall introduce the key ingredients of the BEM by considering the

toy problem

−∇2φ+ k φ = f on Ω (1.46)

with Robin boundary conditions on ∂Ω, i.e. ∂φ
∂n

¯̄
∂Ω
− a φ|∂Ω = 0. This is the scalar

version of Eq. (1.45). The main idea of the BEM is to transform the partial differential

equation (1.46) in to an equivalent integral equation which can be solved numerically

by an appropriate discretization. Multiplying equation (1.46) by a generic function

G to be specified later and integrating over the entire domain Ω yields

Z
Ω

G
¡
−∇2φ+ k φ

¢
dΩ =

Z
Ω

G f dΩ. (1.47)

Integrating by parts twice gives

Z
Ω

¡
−∇2G+ k G

¢
φ dΩ+

Z
∂Ω

µ
−G∂φ

∂n
+

∂G

∂n
φ

¶
dx =

Z
Ω

G f dΩ (1.48)

and if the boundary conditions ∂φ
∂n

¯̄
∂Ω
− a φ|∂Ω = 0 are imposed thenZ

Ω

¡
−∇2G+ k G

¢
φ dΩ+

Z
∂Ω

µ
−aG+ ∂G

∂n

¶
φ dx =

Z
Ω

G f dΩ. (1.49)

We can now define the function G such that the following equation is satisfied, that

is

−∇2G+ k G = δ(|x− xj|) (1.50)

where |x− xj| is the distance from any arbitrary point x in the domain to the location

xj of the Dirac source δ(|x− xj|). The function G is the Green’s function of the
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equation (1.46) in an infinite domain; this can be interpreted as the response of the

physical system described by the Eq. (1.46) to a Dirac impulse located at x = xj.

Using Eq. (1.50), Eq. (1.49) then simplifies to

γφ(xj) +

Z
∂Ω

µ
−aG+ ∂G

∂n

¶
φ dΩ =

Z
Ω

G f dΩ. (1.51)

where γ = 1 if the point xj is in the interior of the volume Ω or γ = 1/2 if xj

is on the boundary ∂Ω. This is an integral equation for φ(x) and it can be solved

numerically by an appropriate discretization as follows. We first consider a triangular

mesh discretization Υh of the boundary ∂Ω. Without loss of generality, we employ

linear elements. Over the boundary ∂Ω, we define the real finite functional space

Vh = {u ∈ C0 (∂Ω) u |K is a linear polynomial} (1.52)

where K ∈ Υh is the generic surface triangular element and h = max
K �Υh

diam(K)

is the maximal dimension of the element. We define the global basis for Vh(∂Ω) as

{N1, N2, ......, Nn} where n is the number of nodes. The generic basis elements are

defined such that Ni(xj) = δij with δij the Kronecker symbol. By means of these

bases, the function φ is approximated as

φ(x) =
nX

k=1

Nk(x)φk (1.53)

where φk indicates values relative to the node k. Using these approximations in Eq.

(6.17) and choosing xj to span all the nodes of the surfaceΥh, i.e. xj = xi ∀ i = 1, ...n,

a set of n algebraic equations is obtained which can be recast in the following matrix

form

Hu = f . (1.54)
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Here, u and f are (n × 1) column vectors of the nodal values of the function φ and

the source f respectively, that is

u
(n×1)

=


φ1
...
...
φn

 , f
(n×1)

=


R
Ω
G (|x− x1|) f dΩ

...

...R
Ω
G (|x− xn|) f dΩ

 . (1.55)

The entry (i, j) of the (n× n) matrix H is given by

(H)ij =
1

2
φj +

Z
∂Ω

µ
−aG (|xi − xj|) +

∂G (|xi − xj|)
∂n

¶
dΩ.

Once the values of the function φ are known on the boundary, one can compute the

value of φ in any interior points of Ω by using Eq. (6.17) with γ = 1 since the integral

appearing in the latter equation depends only upon the surface values of function φ.

One of the advantage of BEM is that the matrixH of the system (1.54) has lower

dimensionality if compared to the FEM matrices. If h is the maximal dimension of an

element in a quasi-uniform mesh then the size of the BEM matrix is of order O(h−2)

whereas the size of a FEM matrix is of order O(h−3). However the BEM matrices

are fully populated in contrast to the sparsity of the FEM matrices. Nevertheless for

fixed mesh size h, the accuracy of the BEM solution is superior to the FEM solution,

because no internal numerical mesh discretization error occurs in the case of the BEM.

In chapter 6, the BEM formulation of the coupled equations (1.45) is given. A

particular case of these equations are those used in fluorescence tomography to model

the propagation of the light through a homogenous domain Ω (see also section 1.3

and chapter 4)

−Dx∇2Φx + kxΦx = Sx (1.56)

−Dm∇2Φm + kmΦm = βΦx. (1.57)
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subject to Robin-type boundary conditions on the domain boundary ∂Ω. As discussed

in chapter 4, these equations are used as a forward model in the formulation of an

inverse problem for the detection of heterogeneities. In this case the related inverse

problem is highly ill posed when, in the context of the finite element method, the

parameters are associated with elements or nodes. In order to detect a small mass

heterogeneity, a very refined mesh of the domain tissue is required and a large number

of parameters must be estimated as compared to the number of available data. The

advantage of BEM in the context of optical tomography is that one can define generic

subregions Ωj with constant kj (with different values for different regions) without the

need of internal mesh discretizations; only mesh surfaces are necessary to characterize

the subdomains and their interconnections. Using the FEM one could also define

domains with regionally constant parameters but internal meshes cannot be avoided

and this make the computation combursome. Therefore BEM can be more efficient

than FEM in cases where hetereogeneities occur highly localized in space. When

incorporated into an inverse code, one needs only to estimate a relatively few number

of parameters in the BEM, such as the optical properties and/or locations of discrete

internal targets, thereby rendering the inverse problem over-determined. This BEM

approach has been applied in the context of electrical impedance tomography by

Munck et al. (2000) and Hsiao et al. (2001). In the context of optical tomography

Heino et al. (2003) applied BEM to solve for the scalar excitation equation (1.56) but

to the best of our knowledge, the application of the BEM to the full coupled equations

(1.56)-(1.57) has not been investigated yet. Thus, in chapter 6 we present the BEM

formulation of these coupled equations exploring the advantages and disadvantages

of BEM as compared to the FEM approach.
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A naive application of BEM to the coupled equations (1.56)-(1.57) suggests the

following sequential solution methodology: Eq. (1.56) depends only upon Φx and then

it can be solved by the following scalar BEM formulation [see Eq. (6.17)]

1

2
Φx(xj) +

Z
∂Ω

µ
bx
Dx

G(x) +
∂G(x)

∂n

¶
Φx dΩ =

Z
Ω

G(x) Sx dΩ. (1.58)

Here, G(x)(x) is the Green function satisfying Eq. (1.50) for k = kx
Dx
. Once Φx is

known on the surface boundary, one can compute Φx at any point xj ∈ Ω inside the

volume Ω by means of Eq. (6.17) as follows

Φx(xj) = −
Z
∂Ω

µ
bx
Dx

G(x) +
∂G(x)

∂n

¶
Φx dΩ+

Z
Ω

G(x) Sx dΩ, xj ∈ Ω,xj /∈ ∂Ω

(1.59)

Then one can solve for the function Φm by treating the term βΦx in Eq. (1.57) as a

known source term. This allows the following BEM formulation for Φm, that is

1

2
Φm(xj) +

Z
∂Ω

µ
bm
Dm

G(m) +
∂G(m)

∂n

¶
Φm dΩ =

Z
Ω

G(m) βΦx dΩ. (1.60)

Here, G(m)(x) is the Green function satisfying Eq. (1.50) for k = km
Dm
. The inefficiency

of this sequential approach is that a volume discretization of Ω is needed in order to

compute the volume integral in the righthand side of Eq. (1.60) nullyfing the major

advantage of BEM of only using surface mesh discretizations. We wish to define a

BEM approach that solves for the boundary values of Φx and Φm and does not need

an internal volume mesh. This can be achieved by looking at the equations (1.56)-

(1.57), not as if they are sequentially-solved equations, but as simultaneously-solved

equations. In this case they can be recast in the matrix form (1.45) and now two

different BEM formulations can be proposed based on a modal approach or an adjoint

approach.

28



Owing to the classical frequency-eigenvalue analysis to compute vibration modes

in structural engineering, the modal approach uncouples the Eq. (1.45) by means of

the following matrix transformation

ψ = Q−1φ. (1.61)

Here, Q is the matrix whose columns are the eigenvectors of the matrix K and

K = QΛQ−1 where Λ is the diagonal matrix of the eigenvalues. From Eq. (1.45) the

equation satisfied by the new variable ψ is given by

−∇2ψ +Λψ = Q−1f . (1.62)

Observe that since Λ is a diagonal matrix, Eq.(1.62) is the vector form of two uncou-

pled scalar equations which can be solved separately by means of the BEM approach.

The solution φ can be then computed through the transformation (1.61).

The adjoint approach, instead is based on the concept of the Green’s matrix G

of the vector equation (1.45). The Green matrix G is defined to satisfy the matrix

equation

−∇2G+KTG =∆(x− xj) (1.63)

where the superscript T is the transpose operator and∆(x− xj) is a (2×2) diagonal

matrix of Dirac delta centered at x = xj, that is

∆(x− xj) =
·
δ(x− xj) 0

0 δ(x− xj)

¸
. (1.64)

The Green matrix G is interpreted as the response of the physical system described

by the vector equation (1.45) to a ’Dirac impulse’ ∆(x− xj). By means of the Green

matrix G, we can apply the standard BEM protocol to solve the vector equations
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(1.45) as if they are scalar equations. By left-multiplying both members of Eq. (1.45)

by the transpose of G and integrating over the boundary ∂Ω yields

Z
∂Ω

GT
¡
−∇2φ+Kφ

¢
dx =

Z
∂Ω

GT f dx. (1.65)

Integrating by parts twice and applying the boundary conditions ∂φ/∂n|∂Ω−A φ|∂Ω =

0 gives

Z
∂Ω

¡
−∇2G+KG

¢T
φ dx+

Z
∂Ω

µ
−GTA+

∂G

∂n

¶
φ dx =

Z
∂Ω

GT f dx (1.66)

and substituting the Eq. (1.63) yields the final BEM equation

γφ(xj)+

Z
∂Ω

µ
−GTA+

∂G

∂n

¶
φ dx =

Z
∂Ω

GT f dx. (1.67)

where γ = 1 if xj is an interior point or γ = 1/2 if xj lies on the boundary ∂Ω.

In chapter 6 we present the BEM formulation of the vector equation (1.45)

based on the adjoint approach, because this approach is more easily extended to

include multiple subdomains, as compared to the modal approach.

My contributions to this work are the following:

i) The analytical derivation of the Green matrix G [see Eq. (1.63)] using the

matrix transformation in Eq. (1.61).

ii) The rigorous formulation of the BEM equations for Eq. (1.45) for homoge-

nous domains;

iii) The rigorous formulation of the BEM equations for Eq. (1.45) for a homoge-

nous domain embedded with small uniform heterogeneiteis.

iv) A numerical implementation (non-vectorized) of the BEM equations.

The non-vectorized BEM implementation however, runs slowly for large mesh

problems and out-of-memory problems can occur for very large meshes. Intensive
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computation is necessary to compute the fully populated BEM matrices. When these

computational challenges have been sufficiently addressed, we anticipate that the

BEM formulation presented here may facilate rapid, accurate fluorescence tomogra-

phy for molecular imaging with highly targeted fluorophore.
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Chapter 2

Single-degree of freedom Hermite
collocation for multiphase flow and
transport in porous media

Francesco Fedele, Melissa McKay, George F. Pinder and Joseph F.

Guarnaccia

(International Journal for Numerical Methods in Fluids 44:1337-1354,

2004)

Abstract

The classical collocation method using Hermite polynomials is computationally ex-

pensive as the dimensionality of the problem increases. Because of the use of a

C1-continuous basis, the method generates two, four and eight unknowns per node

for one, two and three dimensional problems respectively. In this paper we propose

a numerical strategy to reduce the nodal unknowns to a single degree of freedom at

each node. The reduction of the unknowns is due to the use of Lagrangian poly-

nomials to approximate the first order derivatives over the minimal compact stencil

surrounding each node. For the solvability of the problem the reduction of the num-
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ber of collocation equations is done by a nodal weighting strategy. We have applied

the proposed approach to enhance the efficiency of a collocation-based multi-phase

flow and transport simulator. Benchmark cases illustrate the higher performance of

the new methodology when compared to classical Hermite collocation.

2.1 Introduction

The classical collocation approach to the solution of differential equations has been

known since at least 1937 [1]. However, it was largely through work conducted in the

early 1970s (see for example [37],[29],[39],[48],[107]) that the method was popularized

for the solution of second-order partial-differential equations. While it was evident

that the inherent simplicity of the approach held promise as a computationally effi-

cient algorithm, the popularity of the method was limited, largely by the necessity of

using C1 continuous functions as a basis.

Recently there has been renewed interest in the collocation approach. Bialecky

et al. [13], formulated a collocation approach for linear parabolic problems on rect-

angles and Li et al. [79] studied the problem of transverse vibrations of a clamped

square plate. Elliptic boundary value problems [14], Schrodinger wave equation prob-

lems [80] and biharmonic problems [84], as well as techniques to efficiently solve the

resulting approximating equations have also been studied by this group of researchers

[15]. For more references about collocation methods see ([16],[17],[18],[19],[20],[51],

[9],[30],[5],[4],[21],[85]).

In Wu and Pinder [129] a new numerical approach that builds upon the clas-

sical collocation approach was introduced. The method provides enhanced efficiency

through a reduction in the number of degrees of freedom from two in one dimension,

33



four in two dimensions and eight in three dimensions to one in any number of di-

mensions. In this current paper we extend this earlier work to consider several open

theoretical questions and we also apply the method to two example problems.

In the first part of the paper we present the theoretical formulation of the

new numerical methodology for the one dimensional case. A Fourier-based analysis

gives the order of convergence of the error of the derived numerical scheme. In the

second part of the paper we present the application of the proposed technique to the

dissolution of residual saturations of non-aqueous phase fluids in flowing groundwater.

2.2 Theoretical Formulation

Let us consider a general linear differential operator L and a boundary operator

B which can be of Neumann, Dirichlet or Robin type. In the N dimensional bounded

domain Ω ⊂ <N , the following boundary value problem is considered Lu = f

Bu = g
(2.1)

where f, g : <N → < are given functions. Hereafter, we assume that the solution u

of (2.1) is regular enough and many times differentiable as we need, i.e. u ∈ C∞.

To present the key ingredients of the proposed method we initially consider

the one-dimensional case N = 1 for clarity in presentation, but we consider higher

dimensions in the application. On the domain Ω = [0, L] , let ∆x = L/Nx be the

space step for discretization, where Nx is the number of subintervals. We now define

a uniform mesh Ωx = {xj, 0 ≤ j ≤ Nx} where xj = j∆x.
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2.2.1 LOcalized COllocation Method (LOCOM)

Let us refer to the minimum compact stencil of the generic node (j) Ωj ≡ [xj−1, xj+1].

As indicated in Fig. 2.1, the stencil embeds a two-subinterval element neighborhood

and has a size of 2∆x, that is

Ωj = Ωj,L ∪ Ωj,R (2.2)

where Ωj,L ≡ [xj−1, xj] , Ωj,R ≡ [xj, xj+1] are respectively the left and right interval

with respect to the node j.

In each stencil we have four collocation points which are located at the abscissa

ξ
(j)
k with k = 1, 2, 3, 4 (two collocation points for each subinterval). The Hermite

approximation ûH is the following:

ûH

Ã
x; {uq} ,

(
du

dx

¯̄̄̄
xq

)!
(2.3)

=


H0,j−1(x)uj−1 +H1,j(x)uj + H̃0,j−1(x) du

dx

¯̄
xj−1

+ H̃1,j(x)
du
dx

¯̄
xj

x ∈ [xj−1, xj ]

H0,j(x)uj +H1,j+1(x)uj+1 + H̃0,j(x)
du
dx

¯̄
xj
+ H̃1,j+1(x)

du
dx

¯̄
xj+1

x ∈ [xj, xj+1]

where the generic set {aq} collects the elements {aj−1, aj , aj+1} with the index q

spanning j − 1, j, j + 1 and H0,j and H̃1,j are the classical Hermite polynomials (for

the exact mathematical formulation of the Hermite polynomials see [85],[21]). The

collocation equations are generated by imposing the vanishing of the residual Lu− f

at the collocation points. We denote these residual equations as

R(j)
k

Ã
{uq} ,

(
du

dx

¯̄̄̄
xq

)!
= LûH(ξ(j)k )− f(ξ

(j)
k ) = 0 (2.4)

From the collocation points belonging to the template identified with node j we

have available 2×2 = 4 residual equations of type (2.4) and 2×3 = 6 unknowns (two
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for each of the three nodes in the stencil). The problem is under-determined (more

unknowns than available equations).

We want to derive a single residual equation for the node xj which depends

only on the surrounding nodal values of the function for the selected stencil, i.e.

uj−1, uj , uj+1. By proceeding in this way we can get one equation for each node and

the well-posedness of the solution is satisfied.

2.2.2 Approximation of Derivatives

In the following we shall address a way to approximate the Hermite nodal derivatives

in Eq. (2.4) as function of the nodal values uj−1, uj, uj+1. Let us set

du

dx

¯̄̄̄
xq

≈ dûL
dx

¯̄̄̄
xq

+ Sq q = j − 1, j, j + 1 (2.5)

where ûL is the Lagrangian approximation over the stencil Ωj, i.e. ûL (x) =
Pj+1

h=j−1 Lh−j+2 (x) uh

with Ls (x) s = 1, 2, 3 the Lagrangian polynomials and

Sq =

j+1X
h=j−1

Sq,h(∆x) uh (2.6)

are unknown coefficients to be determined linearly dependent upon the nodal values.

In the following we shall present a consistence-based criteria which allows to select

optimal values for Sq,h(∆x) so that the convergence of the proposed scheme is optimal.

Note that for the consistency of Eq. 2.5) as the space step ∆x tends to zero, Sq must

approach zero, i.e. in Eq. (6.39) we need to have Sq,h(∆x) → 0, as ∆x → 0.

By substituting the approximations (2.5) for the derivatives into the four residual

equations (2.4) one gets four new residual equations which depend upon the nodal

values of the stencil centered at the node j

R̃(j)
k ({uq} ; {Sq}) = 0 k = 1, 2, 3, 4 (2.7)
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where

R̃(j)
k ({uq} ; {Sq}) = R(j)

k

Ã
{uq} ,

(
dûL
dx

¯̄̄̄
xq

+ Sq

)!
= 0.

2.2.3 Reduction of the Residual Equations

Until now for each node we have four residual equations and one unknown, therefore

the problem is over-determinated (more equations available than unknowns). To

make it solvable we consider the following averaging strategy. Within each template

Ωi we define the weighting factors for the left and right intervals as wL, wR with

wL + wR = 1. Since there are potentially four collocated residual equations of the

type described in Eq. (2.7), we derive an average collocation equation for the node j

as

Rj ({uq} ; {Sq}) = wL
R̃(j)
1 + R̃(j)

2

2
+ wR

R̃(j)
3 + R̃(j)

4

2
= 0 (2.9)

The problem now is well posed because, for each nodal unknown, we can have an

averaged collocation equation. Let us specify that Equation Rj defines an approxi-

mation L̂u for the operator Lu at the jth node. In order to complete the formulation

of the scheme, the coefficients Sj−1, Sj , Sj+1 must be given as linearly dependent upon

the unknown nodal values uj−1, uj, uj+1. In the following we shall address a way to

determine them based on a consistency analysis.

2.2.4 Consistency-based Hermite derivative approximations

The Hermite approximation ûH(x) defined in Eq. (2.3) can be split into two parts

dependent, respectively, on the nodal function values and nodal derivative values as:
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ûH

Ã
x; {uq} ,

(
du

dx

¯̄̄̄
xq

)!
= û

(1)
H (x; {uq}) + û

(2)
H

Ã
x;

(
du

dx

¯̄̄̄
xq

)!
(2.10)

where we have split the approximating polynomial into the two components û(1)H which

is only dependent upon (uj−1, uj , uj+1) and û
(2)
H which is only dependent on

³
du
dx

¯̄
xj−1

, du
dx

¯̄
xj
, du
dx

¯̄
xj+1

By means of the approximations (2.5), the Hermite approximation ûH [see Eq. (2.10)

] can be expressed as the following

ûH

Ã
x; {uq} ,

(
du

dx

¯̄̄̄
xq

)!
= û

(1)
H (x; {uq}) + û

(2)
H

Ã
x,

(
dûL
dx

¯̄̄̄
xq

)!
+ û

(2)
H (x; {Sq})

(2.11)

By some algebra one can prove that the sum of the first two terms in Eq. (2.11) gives

the Lagrangian approximation ûL(x) since the Lagrangian derivatives set
n

dûL
dx

¯̄
xq

o
is

forced as nodal derivatives in the Hermite approximation; now ûH is of the form

ûH

Ã
x; {uq} ,

(
du

dx

¯̄̄̄
xq

)!
= ûL(x) + û

(2)
H (x; {Sq}). (2.12)

We now define the discrete operator LûH to be consistent, for any solution u (x) in

C∞, if the difference between the L(u) and L̂(u) vanishes as the space step approaches

zero, that is

lim
∆x→0

[L (ûH)− L(u)] = 0. (2.13)

The order of convergence of this limit gives us the order of consistency of L̂. Because

of Eq. (2.12) the limit (2.13) is

lim
∆x→0

h
L (ûL)− L(u) + L

³
û
(2)
H (x; {Sq})

´i
= 0. (2.14)

In general we can choose the set of parameters {Sq} such that the order of convergence

is the highest possible. The limit (2.14) tells us that we can choose the parameters
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{Sq} so that the term L
³
û
(2)
H (x; {Sq})

´
can balance the residual error L (ûL)−L(u)

due to the Lagrange approximation ûL of the exact solution u. The numerical scheme

thereby derived is a compact based Hermite collocation. Further studies are needed

in order to determine the optimal choice of the parameters {Sq} following the outline

described above. In the following we shall show that the choice of {Sq = 0} gives

optimal rates of convergence for the case of advection-diffusion operators.

2.3 The advection-diffusion equation

We now restrict the operator L in Eq. (2.1) to be the advection-diffusion operator

defined as

Lu = ∂u

∂t
+ c

∂u

∂x
−D∂2u

∂x2
(2.15)

Here, the velocity c and the diffusion coefficient D are assumed spatially constant. In

Eq. (2.5) we set Sq = 0. We choose as weighting factors, wL ≡ β, wR ≡ (1− β) with

0 ≤ β ≤ 1. The parameter β is of an up-winding type. By applying the procedure

defined above, ∀u ∈ C∞ we get the averaged collocation equation relative to the node

j as

Rj (uj−1, uj , uj+1) = (2.16)

(2.17)

L̂xu = a1
duj−1
dt

+ a2
duj
dt
+ a3

duj+1
dt

+ b1uj−1 + b2uj + b3uj+1
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where

a1 =
4β − 1 + w2

8
a2 =

3− w2

4
a3 =

3− 4β + w2

8
(2.18)

b1 = − c

∆x

µ
β +

1

Pe

¶
b2 =

c

∆x

µ
2β − 1 + 2

Pe

¶
b3 =

c

∆x

µ
1− β − 1

Pe

¶
where we have defined the cell Peclet number as Pe = c∆x/D and L̂x is the semi-

discrete operator. The time derivatives in equation (2.16) can be approximated by

a finite difference treatment. On the time interval [0, T ], let ∆t = T/Nt. At the

(n+1)th time level, based on the mesh Ωx , the discrete operator L̂ can be written as

L̂u = A1u
n+1
j−1 +A2u

n+1
j +A3u

n+1
j+1 +B1u

n
j−1 +B2u

n
j +B3u

n
j+1 (2.19)

where

Ap =
ap
∆t
+ γbp Bp = −

ap
∆t
+ (1− γ)b p = 1, 2, 3 (2.20)

in which γ is the location of the spatial operator L̂x in the time interval ∆t.

When Equation (2.19) is written for each nodal location xj , j = 1, ....Nx−1, one

obtains Nx − 2 equations in Nx unknowns. The imposition of boundary conditions

provides the required additional two equations. While first-type conditions are accom-

modated in the standard way by simply replacing the value of the unknown function

at the boundary node, second type boundary conditions can be treated somewhat

differently. Recall that we have yet to define an equation for the node at x0 and at

node xNx. While no equation is needed for the case of the first-type condition, in the

case of a second-type condition the term ∂û
∂x
|x0 is replaced prior to the approxima-

tion of the derivatives. While this is not especially interesting in a one-dimensional
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problem because of its simplicity, the implications for multidimensional problems are

quite important. Recalling that in a two dimensional problem there are four degrees

of freedom per node, it becomes apparent that there are two conditions imposed on

each side node of the domain, and three conditions imposed at corner nodes. This is

unique to the collocation approach.

2.3.1 The optimal scheme

In the formulation of the numerical scheme described by Equation (2.19) we have

defined three parameters which are respectively the time-weighting factor γ, the

collocation point location w and the up-wind factor β. In the following we shall

choose γ = 1/2 to get a Crank-Nicolson scheme in time. We shall derive expres-

sions for the coefficients w, β which gives an optimal rate of convergence of the error

E (∆x,∆t) = u(x, t) − û (x, t) with u ∈ C∞ the exact analytical solution and û its

numerical approximation. The analytical solution u satisfies the following initial

boundary value problem

 Lu = 0

u (x, 0) = u0 (x) , u0 ∈ C∞
(2.21)

and

u (x, t) =
∞X

k=−∞
Uk, Uk = vke

−Dω2kteiωk(x−ct) (2.22)

where Uk is the generic harmonic and the set of coefficients {vk}k∈Z is the set of

Fourier coefficients of the function u0 (x) . The approximating function û satisfies the

corresponding discrete problem :

41



 L̂û = 0

û (x = xj , 0) = u0 (x = xj) .
(2.23)

An exact analytical expression for the approximant û can be derived since the problem

here considered is one-dimensional and the velocity c and the diffusion coefficient D

are assumed spatially constant.

Let x = xj and t = tn be fixed. By imposing the requirement that L̂û = 0 at

the nodes, the following difference equation is obtained

A1û
n+1
j−1 +A2û

n+1
j +A3û

n+1
j+1 +B1û

n
j−1 + B2û

n
j +B3û

n
j+1 = 0. (2.24)

The general solution of this difference equation is

û (xj, tn) = ûnj =
∞X

k=−∞
Ûk Ûk = hk exp (iωkxj) (ρk)

n (2.25)

where Ûk is the generic harmonic and

ρk = −
B3e

iωk +B2 +B1e
−iωk

A3eiωk +A2 +A1e−iωk
. (2.26)

After application of the initial condition for the problems defined in Equations (2.21)

and (2.23) we can easily obtain {hk}∞k=−∞ = {vk}
∞
k=−∞. In general the coefficients ρk

in Eq. (2.26) do depend upon the Peclet number and Courant number respectively

defined as

Pe =
c∆x

D Cou =
c∆t

∆x
.

For stability of the numerical scheme, from Eq. (2.25), numerical investigation yields

that for every frequency ωk → |ρ| ≤ 1 [see Eq. (2.26) ] if and only if β ≥ 1/2,

whatever the value of Pe and Courant number Cou. The method is also stable for all

collocation point locations, that is for all w ∈ [0, 1] .
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The stability constraint on β is understood more clearly when one observes that

β controls an up-winding phenomenon. As would be expected, when the equivalent

of down-stream weighting is used the scheme is not stable.

To derive the rate of convergence of the error E (∆x,∆t), we consider the limit

of the difference between the analytical solution and the approximate solution as

∆x → 0 and ∆t → 0. For fixed (x, t), ∆x → 0, ∆t → 0 is equivalent to letting

j → ∞, and n → ∞. By using Eqs. (2.22) and (2.25) one obtains for the error

E (∆x,∆t) the representation as follows:

E (∆x,∆t) =
∞X

k=−∞

³
Uk − Ûk

´
=

∞X
k=−∞

Uk (1− µk) (2.27)

where

µk =
(ρk)

n

e−Dω2kte−iωkct
(2.28)

depends upon ∆x and ∆t. When (x, t) is fixed, the McLauren expansion for µk has

the following form

µk = 1 + tiω3kχ3 − tω4kχ4 + tiω5kχ5 + o
¡
∆t3 +∆x4

¢
(2.29)

where the coefficients χ3,χ4, and χ5 depend only upon D, c,∆x,∆t, w, and γ. Thus

the error E [see Eq. (2.27) ] can be simplified as

E (∆x,∆t) = χ3t
∂3u

∂x3
+ χ4t

∂4u

∂x4
+ χ5t

∂5u

∂x5
+ o

¡
∆x4 +∆t3

¢
(2.30)

because of the uniform convergence of both the Fourier series of u0 (x) and all of its

derivatives of every order (since u0 (x) is assumed C∞). The coefficients χ3, χ4, and
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χ5 are bounded for finite values of D, c,∆x,∆t, w, therefore when both ∆x and ∆t

approach zero the error terms vanishes.

For the case of nonzero diffusion the dominant coefficients are the following

χ3 =
1

12
c3∆t2 +

1− 2β
2

D∆x+
1

24
c∆x2

¡
1− 3w2

¢
(2.31)

χ4 = −1
4
Dc2∆t2 − 1

24
D∆x2

£
5 + 24 (−1 + β)β − 3w2

¤
+
1

16
c∆x3(−1 + w2)(1− 2β)

and the convergence rate depends upon the values of β and w. For any values of β

and w, the rate of convergence with respect to ∆t is quadratic as we have expected

by choosing γ = 1/2. The order of convergence with respect to ∆x depends upon the

choice of collocation points and the magnitude of the upwinding parameter β. In par-

ticular, if one selects β > 1/2, the order of convergence is O (∆x+∆t2) irrespective

of the location of the collocation points. The reason for this is the fact that under

these circumstances the coefficient of ∆x in the definition of χ3 is always non-zero.

On the other hand, if β = 1/2, which corresponds to no upstream weighting, the

coefficients χ3 and χ4 reduce to the expressions

χ3 =
1

2
c3∆t2 +

1

24
c∆x2

¡
1− 3w2

¢
(2.32)

χ4 = −1
4
Dc2∆t2 +

1

24
D∆x2

¡
1 + 3w2

¢
and the order of convergence is O (∆x2 +∆t2) whatever the choice of the collocation

points. Finally we have

(D 6= 0) E (x, t) ≈

 O (∆x2 +∆t2) if β = 1/2 ∀w ∈ [0, 1]

O (∆x+∆t2) if β 6= 1/2 ∀w ∈ [0, 1]
(2.33)

For pure advection problems (D = 0) , the expressions of the dominant coefficients
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in E are the following

χ3 =
1

12
c3∆t2 +

1− 3w2
24

c∆x2 (2.34)

χ4 = −(−1 + w2) (−1 + 2β)
16

c∆x3

χ5 =
1

80
c5∆t4 − −1 + 3w

2

96
c3∆x2∆t2 +

A
960

c∆x4

A = 23− 120β + 120β2 − 30 (1− 2β)2w2 + 15w4

If one chooses non-Gaussian collocation points, i.e. w2 6= 1/3, we can impose the

vanishing χ3 term by choosing

w2 =
1 + 2C2

ou

3

gettingO (∆x3 +∆t4) with up-winding (β > 1/2) andO (∆x4 +∆t4) for β = 1/2. Other

collocation points (except Gaussian) imply an order of convergence of O (∆x2 +∆t2) .

If the Gaussian points are selected as collocation points the expressions for

χ3, χ4, and χ5 reduce to the form

χ3 =
1

12
c3∆t2 (2.35)

χ4 =
−1 + 2β
24

c∆x3

χ5 =
1

80
c5∆t4 +

11− 60β + 60β2
720

c∆x4

and if up-winding is considered (β > 1/2) the coefficient χ4 is non-zero and the order

of convergence is O (∆x3 +∆t2) . If one uses no up-stream weighting (β = 1/2) χ4 is

zero and because χ5 does not vanish, the convergence rate is O (∆x4 +∆t2) . Finally,

if the collocation points are not Gaussian and we consider pure convection (D = 0) the

convergence rate is O (∆x2) irrespective of the value of β.When Gaussian collocation
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points are used one gets a convergence rate greater than one obtains when non-

Gaussian points are employed, viz

(D = 0) E (x, t) =



w2 6= 1
3
, 1+2C

2
ou

3
O (∆x2 +∆t2) ∀β ≥ 1/2

w2 = 1+2C2ou
3

 O (∆x3 +∆t4)

O (∆x4 +∆t4)

β > 1/2

β = 1/2

w2 = 1/3

 O (∆x2 +∆t2)

O (∆x4 +∆t2)

β > 1/2

β = 1/2

(2.36)

The rates of convergence obtained, are identical to the rates of a special form of the

Petrov Galerkin method ([119],[33],[120]). Indeed, for this special case, (see the paper

of Bouloutas and Celia [33]), the equivalent coefficients as expressed in Eq. (2.18) for

Petrov Galerkin are the following

(a1)PG =
1

6
+

η

12
+

α

4
(a2)PG =

2

3
− η

6
(a3)PG =

1

6
+

η

12
− α

4
(2.37)

(b1)PG = − c

∆x

µ
1 + α

2
+
1

Pe

¶
(b2)PG =

c

∆x

µ
α+

2

Pe

¶
(b3)PG =

c

∆x

µ
1− α

2
− 1

Pe

¶
where the parameters α, η control the distortion of the linear weight basis by cubic

or quadratic functions respectively. Some algebra yields the relationship between the

Petrov Galerkin parameters α, η and the LOCOM parameters β,w as

β =
1 + α

2
w2 =

1 + 2η

3
.

2.4 Computational Examples

2.4.1 Transport of a Gaussian hill

We first consider the transport of a Gaussian hill to test the order of convergence of

the error of the proposed method. The very challenging case of pure convection of an
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initial square pulse is considered in order to compare the accuracy of the proposed

methods against the widely used Eulerian based finite-difference and finite-element

methods. The boundary value problem defined via the operator defined in Eq. (2.15)

with zero boundary conditions and initial conditions as

u (x, 0) = u0 (x) = exp

"
−(x− x0)

2

2σ2

#
(2.38)

has a simple analytical solution which is

u (x, t) =
σ√

σ2 + 2Dt
exp

"
−(x− x0 − ct)2

2 (σ2 + 2Dt)

#
(2.39)

Both the case of dominant diffusion (D 6= 0) and pure convection (D = 0) were exam-

ined using the sup-norm of the error as the measure. In the following we shall refer

as first order and second order collocation points for the case of respectively w = 0

and w2 = 1/3. The sup-norm is given by

E (t) = sup
x∈R

|u (x, t)− û (x, t)| ∼ O (∆x)λ (2.40)

in which u is the exact solution and û is the numerical solution and λ is the rate

of convergence. We consider decreasing values of the spatial step as ∆xk = 2
−k for

different values of the integer k. In the first example we assume σ2 = 0.002 m2,

c = 0.25 m/s, x0 = 0.5 m, ∆t = 1/400 s and the length of the domain is L = 1 m.

In the relationship ∆xk = 2
−k, k = 4, 5, 6, 7 and 8. The numerical error is evaluated

at the 200th time step. The diffusion coefficient is given as D = 10−5m2/s and

D = 0.01m2/s. First order collocation points are used, i.e. w = 0.

The plots of Fig. 6.1 show that the order of convergence of the error depends

upon the choice of β. When β = 1 the convergence rate is O (∆x) and for β = 1/2
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the rate is O (∆x2) . This result is consistent with the theoretical results presented in

Equation (2.33).

Consider the case of pure advection, when Gauss points are chosen as the collo-

cation points. Fig. 6.2 shows the results of a calculation wherein c = 0.25 m/s, ∆t =

1/200 s, ∆x = 2n m n = 3, 4, 5, 6, σ2 = 0.02 m2, L = 5 m and x0 = 2 m.

The left-hand panel of this figure shows the rate of convergence with first-order and

second-order collocation points and no up-winding. In the right-hand panel the same

information is provided for the case of full up-winding. The numerical results confirm

the earlier theoretical estimates which state that if Gauss points are not used as the

collocation points, in the pure advection case the order of convergence is O (∆x2)

irrespective of the up-stream weight selected. If Gauss points are used as the colloca-

tion points, O (∆x3) convergence is achieved with up-stream weighting and O (∆x4)

without upstream weighting. For some examples of numerical simulations the reader

is referred to [129].

2.4.2 Multiphase Flow and Transport

The LOCOMmethod was implemented into an existing multiphase flow and transport

code (see [93]) that solves three phase and two transport equations. The general form

of the equations are as follows:

Water Phase Equation

ε
∂SW
∂t

+∇ · qW = QW +
EW
n − EG

n/W − ES
n/W

ρNr

+

µ
1− ρWr

ρNr

¶(
εSWκWn ρWn

ρWr
−
∇ ·

£
εSWDW ·∇ρWn

¤
ρW

)

Gas Phase Equation
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ε
∂SG
∂t

+∇ · qG = QG +
EG
n + EG

n/W

ρNr

+

µ
1− ρGr

ρNr

¶(
εSGκ

G
n ρ

G
n

ρGr
−
∇ ·

£
εSGD

G ·∇ρGn
¤

ρG

)

NAPL Phase Equation

ε
∂SN
∂t

+∇ · qN = QN − EG
n + EG

n

ρNr

NAPL Contaminant Species in Water Transport

εSW
∂ρWn
∂t

+

µ
ρW

ρWr

¶
εSWκWn ρWn

+ qW ·∇ρWn −∇
£¡
εSWDW

¢
·∇ρWn

¤
=
¡eρWn − ρWn

¢
QW +

µ
1− ρWn

ρNr

¶£
EW
n − EG

n/W − ES
n/W

¤
NAPL Contaminant Species in Gas Transport

εSG
∂ρGn
∂t

+ qG ·∇ρGn −∇
£¡
εSGD

G
¢
·∇ρGn

¤
+

εSGρ
GκGn

ρGr
ρGn

=
¡eρGn − ρGn

¢
QG +

µ
1− ρGn

ρNr

¶£
EG
n + EG

n/W

¤
where:

ε is the porosity of the porous medium

Sα is the saturation of the α-phase where α = W (water), N (NAPL), G (gas)

qα is the α-phase flux vector [L3/T ]
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Qα is the point source(+) or sink (-) α-phase mass [1/T ]

EW
n is the mass exchange of NAPL from the NAPL phase to the water phase (disso-

lution) [M/TL3]

EG
n/W is the mass exchange of NAPL contaminant species from the aqueous phase to

the gas phase (evaporation) [M/TL3]

ES
n/W is the mass exchange of NAPL contaminant species from the aqueous phase to

the solid phase (adsorption) [M/TL3]

EG
n is the mass exchange of NAPL from the NAPL phase to the gas phase (volatiliza-

tion) [M/TL3]

ραr is the mass density of the pure α-phase [M/L3]

καn is the decay coefficient for species i in the α-phase [1/T ]

ραn is the mass concentration of the NAPL contaminant species in the α-phase [M/L3]

Dα is the dispersion coefficient for the α-phase, a symmetric second-order tensor

[L2/T ]

eραn is the concentration of the injected or extracted water from source Q [M/L3]

The multiphase code used in this comparison employs a classical collocation

method applied to the linearized equations([106],[104],[105]). The code was modified

to employ LOCOM. No upwinding was considered and collocation equations were

written at the Gauss points. The two methods were compared in terms of accuracy

and computational efficiency.
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Dissolution Problem Setup

The problem setup is as seen in Figure 6.3. The domain of interest is a 50x100x30cm

box. The box has an initial water saturation (Sw) of 1.0, with the exception of a

30x40x10cm box located approximately in the center of the domain, where a residual

saturation of non-aqueous phase liquid (NAPL) of 0.2 (Sw = 0.8) is imposed. The

NAPL is considered to be at its residual saturation and is thereby an immobile phase

(note that this is not a limitation of the method). A 2.5cm water gradient is imposed

from left to right across the box, with no flow conditions present on the top, bottom,

front and back. A Dirichlet condition of zero concentration of aqueous NAPL con-

taminant species is imposed on the left and top of the box, with zero-flux Neumann

conditions defined elsewhere. A zero NAPL saturation condition is imposed on the

left and right of the box and a zero flux of NAPL elsewhere.

The NAPL contaminant species is then allowed to dissolve into the water phase

for 800, 000s. The problem was run using four different grid spacings, ∆x = ∆y =

∆z = 10, 5, 2.5 and 1.25 cm. Visual comparisons of the results for saturation of

NAPL (Sn) and concentration of NAPL contaminant species in water (ρwn ) were then

examined and computational time was recorded. A representative slice of the domain,

as shown in Figure 6.4, was taken to view the results.

Visual Comparison of Results

A comparison of the two methods depicting the saturation of NAPL at time t =

256000s is found in Figures 6.5 and 6.6. The solutions appear to be similar in the

amount of residual NAPL remaining in the domain, although the shape of the curves

are slightly different. The results for the two methods are very similar, though the
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LOCOM solution is slightly more diffused than the classical method.

Error Analysis

A similar problem to that shown in Figure 5 was run in two dimensions and an error

analysis was performed on the results. The classical collocation method at the least

grid spacing was used as the ”exact” solution. The grid spacings of ∆x = ∆y = ∆z =

10, 5, 2.5 and 1.25 cm were then analyzed and the results can be seen in Figure 6.7.

2.5 Conclusion

We propose a new numerical technique which enhances the performance of the classi-

cal Hermite collocation method. Reduction in the degrees of freedom can be obtained

while maintaining higher accuracy. The nodal derivatives which are unknowns in

classical Hermite collocation are approximated as function of the nodal values of the

minimal compact stencil relative to each node. Optimal approximations for the nodal

derivatives can be chosen such that the truncation error of the discretized operator

has the highest order of convergence. The new numerical technique has been applied

to an existing Multi-phase transport code based on Hermite collocation.
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Figure 2.1: Template for the collocation scheme.
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Figure 2.2: Convergence obtained for the case of advective-diffusive transport of a
Gauss cone using D = 1.0×10−5 m2/s and D = 1.0×10−2 m2/s, c = 0.25 m/s, ∆t =
1/400 s, ∆x = 2n m, n = 4, 5, 6, 7, 8, σ2 = 0.002 m2, and x0 = 0.5 m. First-order
collocation points have been used.
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Figure 2.3: Convergence obtained for the case of advection of a Gauss cone using
D = 0 m2/s, c = 0.25 m/s, ∆t = 2−nm, n = 3, 4, 5, 6, σ2 = 0.02 m2, L = 5 m, and
x0 = 2 m.
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Figure 2.5: Representative slice taken of the domain to show the results from the
sample problem.
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a

b

Figure 2.6: The results of the concentration of NAPL contaminant species in the
water phase for (a) the classical collocation method and (b) LOCOM, at time =
256,000s.

a

b

Figure 2.7: The results of the concentration of NAPL contaminant species in the
water phase for (a) the classical collocation method and (b) LOCOM, at time =
256,000s.
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Chapter 3

Localized-Adjoint-Finite-Element-
Method (LAFEM) for sub-grid
stabilization of
advection-dominated transport on
a triangular mesh

Francesco Fedele, Jeffrey P. Laible and George F. Pinder

(XIV Internat. Conf. on Comput. Methods in Water Resources June

23-28, 2002 Delft University of Technology The Netherlands )

Abstract

The advection-diffusion equation is notoriously difficult to solve for higher Peclet

number when using standard Galerkin methods. Strong oscillations occur in regions

of higher gradient. In order to improve the Galerkin solution two successful sta-

bilized methods have been considered in the last decade, which are the Streamline

Upwinding Petrov Galerkin method and the residual-free bubbles method. Moreover

Herrera, in the context of his algebraic theory for boundary methods, has shown

that optimal schemes can be derived by using optimal test functions satisfying a lo-
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cal adjoint boundary value problem. In this paper we apply Herrera’s approach to

consider unstructured triangular meshes. In order make the residual error vanish

locally at each element an adjoint integro-differential boundary-value problem has

been derived and solved under the hypothesis of dominant advection by the meth-

ods of successive approximations and multiple-scale perturbation. We have applied

the proposed approach to the linear and quadratic elements, thereby showing that

the stabilized quadratic Galerkin elements perform better than the stabilized linear

Galerkin elements. Comparison with other stabilization methods is also illustrated.

3.1 INTRODUCTION

The advection-diffusion equation is notoriously difficult to solve for higher Peclet num-

bers Pe when using standard Galerkin methods. Strong oscillations occur in regions

of higher gradient. Many numerical approaches have been proposed to reduce the os-

cillatory behavior of the Galerkin solution. In particular, the Streamline Upwinding

Petrov Galerkin method of Hughes [27] adds numerical diffusion along the stream-

line direction damping the oscillations. Brezzi et al.[23] have proposed a residual-free

bubble method. Both the above mentioned approaches belong to the general class of

stabilized methods [73]. Herrera,([69][31]), in the context of his algebraic theory for

boundary methods, has shown how to choose optimal test functions to derive an op-

timal numerical scheme with higher order convergence. According to his theory, the

optimal test function satisfies a local adjoint boundary value problem. Celia et al.[32]

applied this approach for structured grids, leading to an Eulerian-based numerical

scheme that is able to resolve sharp-front problems with minimal numerical oscilla-

tions. In this paper we apply Herrera’s approach to consider unstructured triangular
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grids. We first introduce a Petrov-Galerkin formulation for the advection-diffusion

equation and choose the space of the test functions such that the equation of the

residual error solution is identically zero. In order to achieve this condition, an ad-

joint integro-differential boundary-value problem has to be satisfied locally at each

triangular element of the mesh. An exact analytical solution over the entire range of

Peclet numbers of the latter boundary-value problem is difficult; therefore we have

applied the methods of successive approximations and multiple-scale perturbation to

obtain an asymptotic solution valid for higher Peclet numbers (dominant advection).

Finally some benchmark problems are considered in order to show that the stabilized

quadratic Galerkin elements perform better than the stabilized linear elements.

3.2 THE PETROV-GALERKIN METHOD

Let us consider the advection-diffusion operator L = −∇ · (D ∇ ) + �c · ∇ in a

bounded domain Ω in the (x, y) space, where D is a 2x2 diffusivity tensor and �c is a

divergence-free velocity field. The boundary value problem considered is the following

L(u) = f on Ω u|∂Ω1 = g (D ∇u− u�c) · �n
¯̄
∂Ω2

= r (3.1)

where ∂Ω = ∂Ω1∪∂Ω2 is the exterior boundary and g : ∂Ω1 → < and r : ∂Ω2 → < as

well as the source term f : Ω → < are given functions. For the sake of simplicity

we shall assume that Ω is a polygonal domain. We introduce on Ω a triangulation

Υh with polygonal boundary Ω where K is the generic triangular element and h =

max
K �Υh

diam(K). Over the entire domain Ω, we define the finite functional space

V s
h = {u ∈ Cs (Ω) , u |K is a polynomial of order s : u = g on ∂Ω1} (3.2)
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Without loosing generality we choose the space of the test functions Wh as the space

of the C0 (K)-continuous functions over the generic triangle K

Wh = {w ∈ C0 (K) : w = 0 on ∂Ω1}

With this functional setting the Petrov-Galerkin formulation for the approximate

solution û ∈ V s
h is defined as the following

A(û, w) +B(û, w) = L(w) ∀w ∈Wh (3.3)

Where
A(p, q) =

R
Ω

£
(D∇p) ·∇q +∇ · (�cp)q

¤
dΩ

B(p, q) = −
R
∂Ω2

�c · �n pq dS L(q) =
R
Ω
fq dΩ+

R
∂Ω2

rq dS

The exact solution u satisfies the variational equation

A(u,w) +B(u, w) = L(w) ∀w ∈Wh (3.5)

From eqs. 5.31 and 5.36 the residual equation for e = u− û is A(e, w) +B(e,w) = 0

or in explicit form

X
K

Z
K

L(e)w dΩ+
X

K∩∂Ω=φ

Z
∂K

(D∇e)·�n wdS+

Z
∂Ω2

£
(D∇e) · �n− e�c · �n

¤
w dS = 0 (3.6)

where in the second sum, only the internal triangular elements K are considered.

Equation 3.6 reveals that the sum of the internal element-wise residualR(û) = [L(û)−

f ] = −L(e), the jumps of the gradient of û across the elements as well as the flux

error at the boundary ∂Ω2 are in an average sense equal to zero. At this level we are

free to choose the space Wh so that the residual error e vanishes. In order to do this

we consider the following Green formulaR
Ω

[wL(e)− eL∗(w)] dΩ = −
R
∂Ω

w(D ∇e) · �n dS+ (3.7)

+
R
∂Ω

e[(D ∇w) · �n+ w�c · �n ]dS +
P

K∩∂Ω=φ

R
∂K

£
−w(D ∇e) + e (D ∇w)

¤
· �n dS
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where L∗(w) = −∇ · (D ∇w)− �c ·∇w is the adjoint operator of L. The formulas 3.6

and 3.7 yield the dual residual equation of the form

P
K

R
K

eL∗(w) dΩ+
P

K∩∂Ω=φ

R
∂K

e(D∇w) · �n dS +
R

∂Ω2

e(D∇w) · �n dS = 0 (3.8)

in which we have set e = 0 and w = 0 on ∂Ω1 by definition. The residual equation

3.8 defines a dual velocity field w. The choice of a test function w satisfying the

local adjoint equation L∗(w) = 0, the dual flux (D ∇w) · �n continuous across the

internal boundaries ∂K and zero at the external boundary ∂Ω2, make the residual

error to vanish. The third term in eq. 3.8 can be considered as the condition that

the contribution from the dual flux (D ∇w) · �n along the boundary ∂K vanishes

in an average sense locally at each element K. The total boundary flux is f (K)tot =R
∂K
(D∇w) · �ndS and can be considered as an uniform source flux distributed over

the element K as f (K)tot /AK where AK is the element area. We shall impose instead

that the latter uniform source flux f
(K)
tot /AK in an average sense is zero, getting the

new dual residual equation as

P
K

R
K
eL∗(w) dΩ+

P
K

R
K
e

f
(K)
tot

AK
dΩ = 0 (3.9)

Eq. 3.9 is identically zero if, over the triangle element K, the test function w satisfies

the following integro-differential equation

L∗(w) + 1
AK

R
∂K
(D∇w) · �n dS = 0 (3.10)

With this choice of the space Wh, the residual equation is identically zero over K for

every choice of the approximate space V s
h ; hence the approximate solution û is the

projection of the exact solution u onto the space V s
h . In other words, for this choice

ofWh, eq. 5.31 is satisfied by both the approximate solution û and the exact solution
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u. For the case of dominant advection, we expect that the the interfacial flux error is

negligible if compared to the element residual error. In the following we shall consider

only linear and quadratic elements (s = 1, 2); hence we shall build the test functions

such that they form a basis for Wh by choosing

Wh(Ωh) = {w ∈ C0 (K) , w = φ+ δw with δw |∂K = 0, φ ∈ V s
h } (3.11)

where we require that the correction δw vanishes at the boundary of the triangular

element K for the completeness of the basis. Consequently we solve for the correction

δw as

L∗(δw) +
R
∂K
(D∇δw) · �n dS

AK

= F (x, y) δw|∂K = 0 (3.12)

where F (x, y) = −L∗(φ) − 1
AK

R
∂K
(D∇φ) · �n dS is the generic source term which

depends upon the choice of the approximation functional space V s
h . Let us split the

Petrov-Galerkin formulation 5.31 as follows:

[A(û, φ) +B(û, φ)− L(φ)]GAL +A(û, δw) +B(û, δw)− L(δw) = 0 (3.13)

The first three terms in square brackets in eq. 3.13 represent the standard Galerkin

formulation and the other terms are the sub-grid corrections. The element-wise sub-

grid correction has the form

A(û, δw) = Ia(û, δw) + Ib(û, δw) (3.14)

where

Ia =
R
Ω
�c ·∇û δw dΩ, Ib =

R
Ω
(D∇û) ·∇δw dΩ (3.15)

The added sub-grid corrections in 3.15 stabilize the standard Galerkin formulation.

We shall particularize the expressions of the sub-grid corrections for linear and quadratic

elements. For linear elements (s = 1) we shall show that the stabilization is enforced
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by adding numerical diffusion along the streamline and cross-wind directions. For

dominant convection the cross-wind sub-grid correction is negligible if compared to

the streamline sub-grid correction and the method reduces down to the residual free-

bubble method of Brezzi [23]. For quadratic elements (s = 2) in the case of dominant

advection, the major contribution for the stabilization comes from the added numeri-

cal diffusion and dispersion along the streamline direction. In the following we assume

D = �I where I is the 2x2 identity matrix and � is the diffusion coefficient.

3.2.1 Linear elements

Let us consider the space V 1
h (Ωh) consisting of linear polynomials over the element

K. In this case L∗(φ) = −�c ·∇φ and it is constant over the element; therefore we can

solve eq. 3.12 with unitary source as L∗(W ) + 1
Ae
�
R
∂K

∂W
∂n

dS = 1 and (see appendix

for further details in the solution of eq. 3.12)

δw = −W
h
L∗(φ) + 1

AK
�
R
∂K

∂φ
∂n

dS
i

It is an easy task to recognize the nature of the sub-grid corrections; regarding the

correction Ia

Ia(û, δw) = R (Pe) (�c ·∇û) �c ·∇φ− � R (Pe) (�c ·∇û) 1
AK

R
∂K

∂φ
∂n

dS (3.16)

where R (Pe) =
R
K
W dΩ = AKL0

c
f0 (Pe) and f0 (Pe) = − 1

Pe
+
R 1
0
t2 coth

¡
Pe

t
2

¢
dt with

Pe =
c L0
�
the local Peclet number and L0 the maximum length of the elementK along

the direction of the velocity. The sub-grid correction Ia adds numerical diffusion along

the streamline direction. Let us observe that the second sub-grid correction in eq.

3.16 due to the jump fluxes is of O(�) and therefore negligible for dominant convection

(�→ 0) as we expect. The sub-grid correction Ib can be expressed as

Ib(û, δw) =
³
�
c

R
K

∂W
∂η

dΩ
´
c∂û
∂η

∂φ
∂ξ
+O(�2) (3.17)
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in which higher terms of O(�2) have been neglected and a local orthogonal system of

axes ξ, η respectively parallel and perpendicular to the velocity field has been con-

sidered (see appendix). The sub-grid correction Ib adds numerical diffusion along

the cross-wind direction. It results in Ia ∼ O(1) and Ib ∼ O(�); therefore for dom-

inant advection (� → 0) the contribution from the cross-wind correction is negli-

gible as compared to the streamline correction. Furthermore let us note that as

Pe →∞, f0 → 1/3. In this case the streamline correction Ia reduces to the residual-

free bubble method of Brezzi et al. [23].

3.2.2 Quadratic elements

Let us consider the space V 2
h (Ωh) consisting of quadratic polynomials over the triangu-

lar elementK. In this case, for solving eq. 3.12, we consider F (ξ, η) = −L∗(φ) neglecting

the contribution from the jump fluxes. In this case F (ξ, η) has linear variation over

the triangle K and the solution of the optimal test function has expression as

δw(ξ, η) =
∂φ

∂ξ

¯̄̄̄
ξ−,η

g1 (ξ, η) +
∂2φ

∂ξ2

¯̄̄̄
ξ−,η

g2 (ξ, η)

where the functions g1 (ξ, η) , g2 (ξ, η) are reported in the appendix. For this case we

consider only the correction Ia which is of O(1) as �→ 0, expressed as:

Ia(û, δw) =

Z
K

c
∂û

∂ξ

∂φ

∂ξ

¯̄̄̄
ξ−,η

g1 (ξ, η) dΩ+ β

Z
K

c
∂û

∂ξ

∂2φ

∂ξ2

¯̄̄̄
ξ−,η

g2 (ξ, η) dΩ (3.18)

The first integral in eq. 3.18 adds numerical diffusion along the streamline direction;

the second integral represents the variational formulation of a third order derivative

∂3u
∂ξ3

and therefore it adds numerical dispersion along the wind direction. In order to

understand the effect of the second sub-grid correction in eq. 3.18, we have introduced

a generic parameter β ∈ [0, 1]. Numerical investigation shows that optimal solutions

can be obtained with β = 1/3 as we shall show in the next section.
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3.3 BENCHMARK PROBLEMS

In order to test the stabilized linear and quadratic elements we have considered two

benchmark problems. The first problem is introduced for studying a downstream

boundary layer and a characteristic internal layer that propagates along the char-

acteristic when inflow boundary conditions are discontinuous. The domain is de-

fined as Ω = {(x, y) : 0 < x < 1, 0 < y < 1} and the velocity field is �c =

(1, 10/3) m/s; the size of the mesh used is h = 0.06 m with a mean Peclet num-

ber P̄e = 800 (596 < Pe < 962). The inflow boundary conditions are defined at y=0

as u(x, y = 0) = H(x) − H(x − 1/3) where H(x) is the step function. The figures

6.1 and 6.2 show the numerical solutions respectively for the linear and quadratic

elements. As one can see the quadratic elements produce a sharper front with less

overshoot than the linear elements. In this case the linear elements give the same

solution as the residual-free bubble method. Regarding the second problem, let us

consider for the domain Ω an L-shaped geometry where the velocity field is a vortex

defined as �c = (−x, y) m/s; the size of the mesh used is h = 0.058 m with a mean

Peclet number P̄e = 100 (256 < Pe < 20). The inflow boundary conditions are defined

at y=0 as u(x, y = 0) = H(x−1/2)−H(x−1) where H(x) is the step function. The

figures 6.3 and 6.4 show that the quadratic elements produce an enhanced numerical

solution with sharper fronts and minimal oscillations.
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Boundary layer - Linear FE Boundary layer - Quadratic FE

Variable flow field - linear FE Variable flow field - quadratic FE

3.4 CONCLUSIONS

We have derived a stabilization of the standard Galerkin FEM by choosing the space

of the test function Wh such that the residual error equation is identically zero. The

optimal test function w ∈ Wh satisfies an adjoint integro-differential boundary value

problem which is solved by the methods of successive approximations and multiple-

scale perturbation, under the hypothesis of dominant convection. We recognize that

the contribution from the interfacial errors is negligible for high Peclet number as

one expects. Both the linear and quadratic elements have been considered. The

application of the proposed approach for some benchmark cases shows that the stabi-
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lized quadratic Galerkin elements have better performance than the stabilized linear

Galerkin elements.

3.5 APPENDIX

In order to solve the boundary value problem 3.12 we first refer to a local orthogonal

coordinate axes system ξ,η that is parallel and perpendicular to the velocity field.

Let us assume for the diffusivity tensor the form D = �I where I is the 2x2 identity

matrix and � is the diffusion coefficient; in this new frame we apply the method of

successive approximations as

L∗ξη
¡
Q(n+1)

¢
+ (1− δn0)�

R
∂K

∂Q(n)

∂n
dS

AK
= F (ξ, η) Q(n+1)

¯̄
∂K
= 0 (n = 0, 1, 2, ..)

(3.19)

where δjk is the Kronecker symbol, L∗ξη = −�
³

∂2

∂ξ2
+ ∂2

∂η2

´
−c ∂

∂ξ
and ∂

∂n
are respectively

the adjoint and the normal derivative operators and c =
p
c2x + c2y, (cx, cy) = x and y

velocities for the element K. Here F (ξ, η) = −L∗(φ)− 1
AK

�
R
∂K

∂φ
∂n

dS. We shall solve

only for the leading term Q(1) by applying the multiple-scale perturbation method.

Let us define the inflow and outflow boundaries of the triangle element K as

∂K+ = {ξ = ξ+(η) : �c · �n > 0} ∂K− = {ξ = ξ−(η) : �c · �n < 0}

As � → 0, the adjoint solution Q(1) has a boundary layer localized at the inflow

boundary ∂K− (the velocity field is reversed for the adjoint problem) where the

solution changes rapidly. In the following, for the leading solution Q(1), we shall

drop the superscript. The diffusion flux �∂Q
∂ξ
and advection flux cQ are of the same

order inside the boundary layer. Far from the boundary layer the advection becomes

dominant and the diffusion flux can be neglected. Moreover inside the boundary layer
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we expect that the contribution of the cross-wind diffusion flux �∂Q
∂η
is negligible if

compared to the streamline diffusion flux �∂Q
∂ξ
, as advection becomes dominant. By

defining the change of variable ξ−ξ−(η) = �ζ eq. 3.19 (in this case n = 0) transforms

as follows

−∂2Q
∂ζ2
− c∂Q

∂ζ
= �F

£
ξ− (η) + �ζ, η

¤
+ �2 ∂

2Q
∂η2

(3.20)

From eq. 3.20 one can recognize that the advection and streamline diffusion fluxes

have the same order; furthermore the cross-wind diffusive flux �∂Q
∂η
is of order O(�)

compared to the streamline diffusion flux ∂Q
∂ζ
which is of order O(1). Now we can apply

the method of multiple-scale perturbation only for the variable ζ by introducing an

auxiliary scale Z = �ζ (ζ is the fast scale and Z is the slow scale). We define the

following pertubation expansion for Q as:

Q(ζ, η) = Q0 (ζ, Z; η) + �Q1 (ζ, Z; η) + ...... (3.21)

For the presence of the two scales, the partial derivatives of Q with respect to the

variable ζ operate as ∂
∂ζ
→ ∂

∂ζ
+ � ∂

∂Z
, ∂2

∂ζ2
→ ∂2

∂ζ2
+ 2� ∂2

∂ζ∂Z
+ �2 ∂2

∂Z2
. Plugging eq. 3.21

into eq. 3.20 one gets

−
³
∂2Q0
∂ζ2

+ 2� ∂
2Q0

∂ζ∂Z
+ �∂

2Q1
∂ζ2

´
− c

³
∂Q0
∂ζ
+ �∂Q0

∂Z
+ �∂Q1

∂ζ

´
= �

µ
F |ξ−,η +

∂F
∂ξ

¯̄̄
ξ−,η

Z

¶
+O(�2)

We therefore obtain to O(�), the following hierarchy of perturbation equations :

O(1) Lζ(Q0) = 0 O(�) Lζ(Q1) = S1(ζ, Z, η) (3.22)

where Lζ = − ∂2

∂ζ2
− c ∂

∂ζ
, S1(ζ, Z, η) = 2

∂2Q0
∂ζ∂Z

+ c∂Q0
∂Z
+ F |ξ−,η +

∂F
∂ξ

¯̄̄
ξ−,η

Z and the zero

boundary condition has to be satisfied by all the perturbational terms. The solution

of the leading term Q0 (see eq. 3.22) is

Q0(ζ, Z, η) = A0(Z, η)z0 (ζ) +B0(Z, η)z1 (ζ) (3.23)
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where z0 (ζ) = 1, z1 (ζ) = exp [−cζ] are the fundamental solutions of Lζ(z) = 0 and

A0(Z, η), B0(Z, η) are undetermined functions. Now let us solve for the Q1 term.

Plugging eq. 3.23 into the expression of the source term S1 one gets

S1(ζ, Z, η) = H0(Z, η) z0 (ζ) +H1(Z, η) z1 (ζ)

Where H0(Z, η) = c∂A0
∂Z
+ F |ξ−,η +

∂F
∂ξ

¯̄̄
ξ−,η

Z, H1(Z, η) = −c∂B0∂Z
. The source term

S1 contains resonant forcing terms because it is a combination of the fundamental

solutions z0 (ζ) and z1 (ζ). ThereforeQ1 admits particular solutions of the form ζz0 (ζ)

and ζz1 (ζ) which are not admissible for the boundary layer. Thus in order to avoid

non physical solutions, one has to impose the vanishing of the components of S1

proportional to z0 (ζ) and z1 (ζ). Proceeding in this way, one gets two equations to

solve for A0,B0 which are H0(Z, η) = 0 and H1(Z, η) = 0. By imposing zero values

at the boundary ∂K as Q0(ξ−, η) = 0 and Q0(ξ+, η) = 0, the O(1) solution Q0 as

function of the ξ,η coordinates is

Q0(ξ, η) =
1
c
F |ξ−(η),η g1 (ξ, η) +

1
c

∂F
∂ξ

¯̄̄
ξ−(η),η

g2 (ξ, η) (3.24)

where

g1 (ξ, η) = −
¡
ξ − ξ−

¢
+ L (η) P (ξ, η) g2 (ξ, η) = −(

ξ−ξ−)
2

2
+ L(η)2

2
P (ξ, η)

with L (η) = ξ+ (η)−ξ− (η) and P (ξ, η) =
µ
exp

·
− c(ξ−ξ−)

�

¸
− 1
¶
/
³
exp

h
− cL(η)

�

i
− 1
´
.

One could continue with deriving the higher order terms Q1, Q2,..., but we stop at

the leading term for the sake of simplicity.
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Chapter 4

Coupled complex adjoint
sensitivities for frequency-domain
fluorescence tomography: Theory

(Excerpted from "Coupled complex adjoint sensitivities for

frequency-domain fluorescence tomography: Theory and

vectorized implementation" by F. Fedele, J.P. Laible and M.

Eppstein in Journal of Computational physics Vol. 187,

Issue 2, pp. 597-619)

Abstract

We present a computationally efficient and accurate adjoint method for calculating

coupled sensitivities of complex frequency domain excitation and emission fluence to

any underlying optical parameters in highly scattering media. The method is shown

to be general and equally accurate as, but several orders of magnitude faster than,

a finite difference approach to computing sensitivities. Novel vectorized implementa-

tions for finite element global matrix assembly and adjoint sensitivity calculations are

shown to further speed up calculations by orders of magnitude over traditional loop
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implementations, thereby making fluorescence tomography computationally practical.

4.1 Introduction

Over the past decade there has been considerable progress made in near infrared

(NIR) optical tomography of biological tissues as a means of imaging endogenous

differences in tissue properties such as absorption and scattering [7], particularly for

breast cancer imaging [102, 112]. The hope is that optical methods will provide func-

tional information regarding local biochemical environments that will complement

structural information already achievable by other imaging modalities, such as x-ray

and magnetic resonance imaging. Recently, there has been a growing appreciation for

the potential benefits of using exogenously introduced fluorescing dyes as an efficient

means to improve contrast in order to discern small inclusions of disease in thick tis-

sues [64]. A variety of receptor-mediated fluorescent dyes under development offer the

potential of highly selective targeting of diseased tissues that will then fluoresce when

excited by impinging NIR light [3, 8, 83]. In NIR fluorescence tomography, the goal is

to successfully reconstruct the source of these fluorescent emissions and thereby char-

acterize the size and location of diseased tissues. Frequency-domain methods offer

some potential advantages over time-domain or continuous wave approaches for fluo-

rescence imaging, including the potential for fluorescence lifetime imaging and greater

reliability in detection and measurement of low intensity emissions. We therefore re-

strict our discussions to frequency-domain techniques, although our results are readily

translated into the time domain via Fourier transforms.

In frequency-domain photon migration through tissues, sinusoidally intensity-

modulated NIR “excitation” light is launched into the tissue at the surface. During
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transit through the tissues, photons are absorbed and scattered owing to the local

tissue optical properties and their spatial variations. The intensity wave that is de-

tected at a number of positions on the tissue surface is therefore phase-delayed (θ) and

amplitude attenuated (α) relative to the incident light. In the near-infrared range

(700-900nm) there exists a so-called "therapeutic window" where optical absorption,

due mainly to water and hemoglobin, is relatively low, and the photon density wave

can travel several centimeters before it is completely attenuated, although it is still

highly scattered. When light is absorbed by fluorophore that is present in the tissue,

the fluorophore is elevated to an excited state and remains there for some period of

time (the fluorescence lifetime, τ). Some proportion of the excited molecules (the

fluorescence quantum efficiency, φ) will ultimately release their excess energy by emit-

ting a photon as they drop back to the ground state. This creates an "emission"

photon density wave that is also scattered and absorbed before it reaches the de-

tectors on the tissue surface, where it can be separated from the excitation photon

density wave via interference filters.

In addition to an accurate forward model of coupled excitation and emission

light propagation through highly scattering media, frequency-domain fluorescence

tomography in tissues requires an inverse method for using noisy measurements of

excitation and/or emission phase-delays and/or amplitude attenuation to reconstruct

interior optical property maps of the tissues. Because of the high degree of scattering,

most approaches to fluorescence tomography in large tissue volumes are based on

regularized nonlinear least-squares optimization, such as the Levenberg-Marquardt

method [82] or the Bayesian approximate extended Kalman filter [44]. Central to these

methods is the repeated computation of Jacobian sensitivity matrices quantifying the

80



effects of local changes in optical properties on the detected fluence. The focus of

this paper is on development of a rapid and accurate methodology for computation

of these sensitivities.

Previous approaches to computing emission sensitivities include first-order finite

differences [42], second-order finite differences [43]. The finite difference approaches

are flexible and accurate but slow, especially when a large finite element forward

model is employed. In this paper, we use an adjoint approach [88, 89] to derive

the exact adjoint equations for the Jacobian sensitivities of the coupled complex

frequency-domain excitation and emission fluence relative to any of the underlying

optical properties. We develop computational forms of the adjoint sensitivity equa-

tions using the Galerkin finite element method, and propose a novel computational

implementation of these equations that is highly vectorized and manages memory

requirements through domain decomposition. Computational results validate the ac-

curacy and computational efficiency of our approach. Finally, we mention other

physical problems modeled with coupled elliptic partial differential equations that

could benefit from a similar approach.

4.2 Governing equations

The generation and propagation of fluorescent light through highly-scattering media

(such as biological tissues) is often modeled by a pair of second order, coupled, elliptic,

partial differential equations [115, 101, 67]. The first equation represents propagation

of excitation light (subscript x) and the second models the generation and propagation

of fluorescently emitted light (subscript m). In the frequency domain, these diffusion

approximations to the coupled radiative transport equation over a three-dimensional
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(3-D) bounded domain Ω are

½
−∇ · (Dx∇Φx) + kxΦx = Sx
−∇ · (Dm∇Φm) + kmΦm = βΦx

on Ω (4.1)

subject to the Robin boundary conditions on the domain boundary ∂Ω of

½ −→n · (Dx∇Φx) + bxΦx = 0−→n · (Dm∇Φm) + bmΦm = 0
on ∂Ω (4.2)

where ∇ is the 3 × 1 grad operator and −→n is the 3 × 1 vector normal to

the boundary. The excitation light source Sx (Watts/cm3) is intensity modulated

with sinusoidal frequency ω (rad/s) , and propagates through the media resulting in

the AC component of complex photon fluence at the excitation wavelength of Φx

(Watts/cm2), where Φx = αxe
iθx. Some of this excitation light may be absorbed by

fluorophore in the media and reemitted, resulting in complex photon fluence at the

emission wavelength Φm = αme
iθm. The diffusion (Dx,m), decay (kx,m) , and emission

source (β) coefficients, as shown below,

(
Dx =

1

3(µaxi+µaxf+µ
0
sx)

Dm =
1

3(µami+µamf+µ
0
sm)

;

½
kx =

iω
c
+ µaxi + µaxf

km =
iω
c
+ µami + µamf

; β =
φµaxf
1− iωτ

(4.3)

are functions of absorption due to non-fluorescing chromophore (µaxi, µami), ab-

sorption due to fluorophore (µaxf , µamf), and isotropic (reduced) scattering (µ
0
sx, µ

0
sm)

at the two wavelengths (all in units of cm−1) , fluorescence quantum efficiency (φ),

and fluorescence lifetime (τ , in s). Here, i =
√
−1, and c is the speed of light in the

media (cm/s). The Robin boundary coefficients (bx, bm) are governed by the reflection

coefficients (Rx,Rm), which range from 0 (no reflectance) to 1 (total reflectance):
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bx =
1−Rx

2 (1 +Rx)
; bm =

1−Rm

2 (1 +Rm)
. (4.4)

In NIR fluorescence imaging, where excitation and emission wavelengths are

relatively close to one another, the absorption and scattering at emission wavelengths

can be approximated as linear functions of absorption and scattering at excitation

wavelengths. Although not explicitly shown in these equations, all optical properties

and field variables are understood to be potentially variable in Cartesian space.

4.3 Adjoint sensitivity formulation

In finite difference approximations to the Jacobian, an optical parameter p is per-

turbed by some small amount δp and the resulting perturbed fluence (Φ+ δΦ) is

explicitly evaluated by 6.1 subject to 6.3. For example, a first order finite difference

approximation is computed by

∂Φ

∂p

1st order≈ Φ(p+ δp)− Φ(p)

δp
(4.5)

If the size of the perturbation is chosen carefully, finite difference approxima-

tions can be very accurate, but in either case if the parameter p has been spatially

discretized (e.g., into nodes or elements), then equation 4.5 must be recalculated

for each discrete location in the domain. For large, 3-D domains this is computa-

tionally impractical. Nonetheless, finite difference approaches are very flexible and

easily implemented for any optical property and any (directly or indirectly) mea-

surable quantity, and they have been used for estimating the sensitivities of various

components (e.g., phase and/or amplitude) of fluence at excitation and/or emission

wavelengths, relative to absorption, scattering, fluorescence lifetime, and fluorescence
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quantum efficiency [42]. In this contest we propose an adjoint method to be applied

for accelerating the evaluation of the jacobian matrix.

4.3.1 Matrix notation for the coupled equations

For brevity, we represent the coupled governing equations 6.1 with the following single

matrix equation

−∇T
¡
D ∇ Φ

¢
+ k Φ = S on Ω. (4.6)

Similarly, the boundary conditions 6.3 are represented by the matrix equation

nT
¡
D ∇ Φ

¢
+ b Φ = 0 on ∂Ω. (4.7)

In 6.7 and 6.8, we use the following matrix definitions (sizes of each matrix are

shown for clarity):



∇
(6×2)

=

·
∇ 0
0 ∇

¸
; n
(6×2)

=

· −→n 0
0 −→n

¸
; D
(6×6)

=

·
DxI 0
0 DmI

¸
;

k
(2×2)

=

·
kx 0
−β km

¸
; b
(2×2)

=

·
bx 0
0 bm

¸
;

Φ
(2×1)

=

·
Φx

Φm

¸
; S
(2×1)

=

·
Sx
0

¸
.

(4.8)

4.3.2 Perturbation equations

Consider that p is any optical property either directly or indirectly embedded in

equations 6.7 or 6.8. E.g.,

p ∈
n
µaxf , µaxi, µ

0
sx, µamf , µami, µ

0
sm, τ , φ, Rx, Rm, ...

o
. (4.9)
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An infinitesimally small perturbation of the parameter δp will cause a corre-

sponding variation in fluence δΦ

p→ p+ δp =⇒ Φ→ Φ+ δΦ (4.10)

such that the system

−∇T
¡
D (p+ δp)∇ (Φ+ δΦ)

¢
+ k (p+ δp) (Φ+ δΦ) = S on Ω (4.11)

nT
¡
D (p+ δp)∇ (Φ+ δΦ)

¢
+ b (p+ δp) (Φ+ δΦ) = 0 on ∂Ω (4.12)

is satisfied. Using a Taylor series expansion of all terms in 4.11 and 4.12 yields

the following first order perturbation equations governing the variation δΦ, where we

have ignored higher order terms O(δp2) :

−∇T
¡
D ∇ δΦ

¢
+ k δΦ = ∇T

µ
∂D

∂p
δp∇ Φ

¶
−

∂k

∂p
δpΦ on Ω (4.13)

nT
¡
D ∇ δΦ

¢
+ b δΦ = −nT

µ
∂D

∂p
δp∇ Φ

¶
−

∂b

∂p
δpΦ on ∂Ω. (4.14)

One could solve the system 4.13 subject to 4.14 in order to get a first-order

approximation of the sensitivity of Φ with respect to p. As with the finite difference

approach, if p has been spatially discretized this would require solving system 4.13

once for each locally discrete region of p.We will now apply the adjoint method [88, 89]

in order to reduce the number and size of the systems of equations that must be solved.

4.3.3 Analytical Adjoint sensitivities

In order to derive the sensitivities by an adjoint method, we first define a matrix of

functions Ψ as
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Ψ
(2×2)

=

·
Ψxx Ψxm

Ψmx Ψmm

¸
, (4.15)

We multiply the system 4.13 by ΨT and integrate over the entire domain Ω to

get:

Z
Ω

ΨT
¡
−∇T

¡
D ∇ δΦ

¢
+ k δΦ

¢
=

Z
Ω

ΨT

µ
∇T

µ
∂D

∂p
δp∇ Φ

¶
−

∂k

∂p
δpΦ

¶
. (4.16)

Integrating by parts twice, applying the boundary conditions 4.14, and rear-

ranging terms, we get

Z
Ω

∆dz }| {¡
−∇T

¡
DT∇ Ψ

¢
+ kTΨ

¢T
δΦ (4.17)

=

Z
Ω

ΨT

µ
∇T

µ
∂D

∂p
δp∇ Φ

¶¶
−
Z
Ω

ΨT
∂k

∂p
δpΦ

+

Z
∂Ω

ΨT

µ
−nT

µ
∂D

∂p
δp∇ Φ

¶¶
−
Z
∂Ω

ΨT
∂b

∂p
δpΦ

−
Z
∂Ω

0z }| {
nT
¡
DT∇ Ψ

¢
+ bTΨ δΦ.

if we choose Ψ such that it satisfies the system of equations (which we will refer

as the adjoint system of 6.7)

(
−∇T

¡
DT∇ Ψ

¢
+ kTΨ = ∆d on Ω

nT
¡
DT∇ Ψ

¢
+ bTΨ = 0 on ∂Ω

where ∆d

(2×2)
=

·
∆d 0
0 ∆d

¸
. (4.18)

this yields the following simplified equation:
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δΦ =

Z
Ω

ΨT

µ
∇T

µ
∂D

∂p
δp∇ Φ

¶¶
−
Z
Ω

ΨT
∂k

∂p
δpΦ (4.19)

+

Z
∂Ω

ΨT

µ
−nT

µ
∂D

∂p
δp∇ Φ

¶¶
−
Z
∂Ω

ΨT
∂b

∂p
δpΦ.

Integrating the first term of equation 4.19 by parts once more, rearranging, and

canceling terms, we are left with the following three terms:

δΦ = −
Z
Ω

¡
∇ Ψ

¢Tµ∂D
∂p

δp∇ Φ

¶
−
Z
Ω

ΨT

µ
∂k

∂p
δpΦ

¶
−
Z
∂Ω

ΨT

µ
∂b

∂p
δpΦ

¶
. (4.20)

Since the solution to the Green matrix by system 4.18 depends on p, but not on

the variation δp, this system only needs to be solved once for Ψ for a given set of

parameter values. Equation 4.20 can then be used to compute desired sensitivities to

any underlying optical properties. The matrix Ψ thus represents the solutions to the

adjoint system 4.18, in response to a Dirac source located at each of the detectors d.

We refer to Ψ as the adjoint or Green matrix of the coupled system.

Now, let us take a closer look at the matrix Ψ. The matrix system 4.18 is a

simply compact representation of the following four boundary value problems :
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½
−∇ · (Dx∇Ψxx) + kxΨxx − βΨmx = ∆d on Ω

�n · (Dx∇Ψxx) + bxΨxx = 0 on ∂Ω
(4.21)

½
−∇ · (Dx∇Ψxm) + kxΨxm = βΨmm on Ω

�n · (Dx∇Ψxm) + bxΨxm = 0 on ∂Ω
(4.22)

½
−∇ · (Dm∇Ψmx) + kmΨmx = 0 on Ω
�n · (Dm∇Ψmx) + bmΨmx = 0 on ∂Ω

(4.23)

½
−∇ · (Dm∇Ψmm) + kmΨmm = ∆d on Ω
�n · (Dm∇Ψmm) + bmΨmm = 0 on ∂Ω

(4.24)

However, note that equation 4.23 admits only the trivial solution; that is, Ψmx = 0.

It can admit non vanishing solution if and only if the coefficient km is an eigenvalue

λ of the equation, i.e. −∇ · (Dm∇Ψmx) + λΨmx = 0. The latter equation admits

real positive eigenvalues since it represents wave phenomena where resonance can

occur. Since we are dealing with a diffusion process km is a complex number and

cannot be an eigenvalue, therefore only the trivial solution is admissible. The fact

that Ψmx = 0 reflects the asymmetry in the coupled governing equations 6.1; that

is, Φx affects Φm, but not vice versa.

The adjoint sensitivities represented in equation 4.20 can be decomposed into the

sensitivity equations for excitation and emission fluence. For example, the sensitivity

of excitation fluence is

δΦx = −
Z
Ω

∇Ψxx
∂Dx

∂p
δp∇Φx −

Z
Ω

Ψxx
∂kx
∂p

δpΦx −
Z
∂Ω

Ψxx
∂bx
∂p

δpΦx, (4.25)

which is identical to the adjoint formulation for excitation fluence reported else-

where (where ∂bx
∂p
= 0) [7]. The sensitivity for emission fluence in the coupled system

is a new result, as follows:

88



δΦm = −
Z
Ω

∇Ψmm
∂Dm

∂p
δp∇Φm −

Z
Ω

Ψmm
∂km
∂p

δpΦm −
Z
∂Ω

Ψmm
∂bm
∂p

δpΦm

−
Z
Ω

∇Ψxm
∂Dx

∂p
δp∇Φx −

Z
Ω

Ψxm
∂kx
∂p

δpΦx −
Z
∂Ω

Ψxm

µ
∂bx
∂p

δpΦx

¶

+

Z
Ω

Ψmm
∂β

∂p
δpΦx. (4.26)

The magnitude of each term depends on which parameter p is selected and on

the current parameter values. We later shall examine the case p = µaxf . We shall

refer to the sensitivies 4.25,4.26, as analytical adjoint sensitivities becuase they are the

exact analytical sensitivities as long as the analytical solution of the Green matrix is

known. The latter is only available for simplified geometries and constant coefficients,

therefore a finite element formulation is adopted in order to derive approximants to

the Green matrix and sensitivities as well.

4.4 Finite Element Formulation

4.4.1 FEM for Governing Equations of Excitation and Flo-
rescence

The method of weighted residuals is used as the basis for the finite element method

(FEM ). The Galerkin Finite Element Method (GFEM) is a particular form of the

method of weighted residuals, in which the weight functions are equivalent to the

approximating functions for the residual. We introduce on Ω a three-dimensional

grid Υh with boundary ∂Ω. We use thetraedral element. Over the entire domain

Ω, we define the real finite functional space

Vh = {u ∈ C0 (Ω) u |K is a linear polynomial}
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whereK ∈ Υh is the generic thetraedral element and h = max
K �Υh

diam(K) is the maxi-

mal dimension of the element. Let define a basis for Vh(Ω) as [N] = [N1, N2, ......, Nn] (n number

of nodes). The generic basis elements are defined such that Ni (xj, yj, zj) = δij .

By means of these basis, the generic function u ∈ Vh can be put in the form

u =
P

Nj uj = [N] [u], where [u] is a column vector of the nodal values of the

function u ∈ Vh. We choose the space of the test functions Wh = Vh .With this func-

tional setting the field variables Φx and Φm are approximated by basis functions [N]

(functions of spatial dimensions x, y, z) and nodal values [Φx,m] as

Φx ≈ Φ̂x = [N] [Φx] (4.27)

Φm ≈ Φ̂m = [N] [Φm]

In the GFEM , the weight functions are [N]T , and hence the weighted residual form

of the governing equations 6.1 is:

R
Ω

[N]T
³
−∇ ·

³
Dx∇Φ̂x

´
+ kxΦ̂x

´
=
R
Ω

[N]T SxR
Ω

[N]T
³
−∇ ·

³
Dm∇Φ̂m

´
+ kmΦ̂m

´
=
R
Ω

[N]T βΦ̂x.
(4.28)

Integration by parts of the second order terms yields:

R
Ω

(∇ [N])T Dx∇Φ̂x +
R
Ω

[N]T kxΦ̂x −
R
∂Ω

[N]T
³−→n · ³Dx∇Φ̂x

´´
=
R
Ω

[N]T SxR
Ω

(∇ [N])T Dm∇Φ̂m +
R
Ω

[N]T kmΦ̂m −
R
∂Ω

[N]T
³−→n · ³Dm∇Φ̂m

´´
=
R
Ω

[N]T βΦ̂x.

(4.29)

Introducing the Robin Boundary conditions of equation 6.3, yields:

R
Ω

(∇ [N])T Dx∇Φ̂x +
R
Ω

[N]T kxΦ̂x +
R
∂Ω

[N]T bxΦ̂x =
R
Ω

[N]T SxR
Ω

(∇ [N])T Dm∇Φ̂m +
R
Ω

[N]T kmΦ̂m +
R
∂Ω

[N]T bmΦ̂m =
R
Ω

[N]T βΦ̂x.
(4.30)
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Introducing the approximations 4.27 and Sx = [N] [Sx] (where [Sx] represents nodal

values of Sx) after collecting common terms we finally have in block form :

[A] [Φ] = [S] (4.31)

where we have defined the block vectors

[Φ] =

·
[Φx]
[Φm]

¸
[S] =

·
[M] [Sx]
[0]

¸
(4.32)

and block matrix

[A] =

·
[Ax] [0]
− [Mβ] [Am]

¸
(4.33)

and

[Ax(Dx, kx, bx)] =

Z
Ω

(∇ [N])T Dx∇ [N]

+
Z
Ω

[N]T kx [N]

+
Z
∂Ω

[N]T bx [N]

(4.34)
[Am(Dm, km, bm)] =

Z
Ω

(∇ [N])T Dm∇ [N]

+
Z
Ω

[N]T km [N]

+
Z
∂Ω

[N]T bm [N]

(4.35)

[M] =

Z
Ω

[N]T [N]

 [Mβ(β)] =

Z
Ω

[N]T β [N]

 (4.36)

These equations are general in the sense that any type of finite element can be used.

In order to model tissue domains that are three dimensional and irregular in shape,

we employ tetrahedral elements each of which have 4 nodes. At the element level,

the explicit matrices have the following dimensions:

[N]
(1×4)

=
£
N1 N2 N3 N4

¤
, ∇ [N]

(3×4)
=

 ∂N1
∂x

∂N2
∂x

∂N3
∂x

∂N4
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

∂N4
∂y

∂N1
∂z

∂N2
∂z

∂N3
∂z

∂N4
∂z

 (4.37)

In general, any of the nodally-discretized coefficients (Dx,m, kx,m, bx,m, and β)

can have directional dependency and are thus properly represented by 3× 3 matrices
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(second order tensors). For our application we assume isotropic (but not homoge-

neous) conditions. As such, we implement nodal values of Dx,m, kx,m, bx,m, and β as

scalars. The inhomogeneity of optical properties means that even the scalar repre-

sentations of Dx,m, kx,m, bx,m, and β can vary over an element. If these coefficients

are represented by nodal values, then it is customary to use the same basis function

expansions Ni to represent the value of the coefficients at any point in the element,

e.g. Dx = [N] [Dx] , where [Dx] is a 4× 1 vector of nodal values for the tetrahedral

element.

4.4.2 FEM for Adjoint Equations of Excitation and Flores-
cence

We again employ theGFEM method, this time to the adjoint equations 4.21,4.22,4.23,4.24.

We use the approximation for the Green matrix Ψ as

Ψ ≈
·

Ψ̂xx Ψ̂xm

Ψ̂mx Ψ̂mm

¸
=

·
[N] [0]
[0] [N]

¸ ·
[Ψxx] [Ψxm]
[Ψmx] [Ψmm]

¸
(4.38)

where [Ψxx] , [Ψxm] , [Ψmx] , [Ψmm] are the nodal values of the respective field approx-

imants Ψ̂xx,Ψ̂xm,Ψ̂mx,Ψ̂mm; they give the following cascade of discretized equations:

[Ax] [Ψxx] = [∆d] (4.39)

[Ax] [Ψxm] = [Mβ] [Ψmm] (4.40)

[Am] [Ψmx] = [0] (4.41)

[Am] [Ψmm] = [∆d] (4.42)

or in block form h
Ã
i
[Ψ] = [∆] (4.43)

where we have defined the block matrices
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h
Ã
i
=

·
[Ax] − [Mβ]
[0] [Am]

¸
(4.44)

and

[Ψ] =

·
[Ψxx] [Ψxm]
[Ψmx] [Ψmm]

¸
[∆] =

[∆d]
[0]

[0]
[∆d]

(4.45)

Let us observe that [Ψmx] = [0] in agreement with the continuous equation

4.23 for which Ψmx = 0 . Let us observe that becuase the finite element matrices are

symmetric this implies that the kernal
h
Ã
i
of the adjoint system 4.43 is the transpose

of the kernal [A] of the forward system 4.31, that is

h
Ã
i
= [A]T (4.46)

This property holds becuase each individual partial differential equation of the coupled

system 6.1 is self-adjoint.

4.4.3 Finite Element formulation of the analytical Sensitivity
of Φx and Φm

Again by applying GFEM to eq. 4.20 this yields

[δΦ] = = − [Ψ]T [δA] [Φ] (4.47)

in which

[δΦ] =

·
[δΦx]d
[δΦm]d

¸
[δA] =

·
[Ax (δDx, δkx, δbx)] [0]
− [Mβ (δβ)] [Am (δDm, δkm, δbm)]

¸
(4.48)

where

δDx,m =
∂Dx,m

∂p
δp δkx,m =

∂kx,m
∂p

δp δbx,m =
∂bx,m
∂p

δp δβ =
∂β

∂p
δp
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In equation 4.47 the analytic expressions for
∂D

∂p
,
∂k

∂p
,
∂b

∂p
are employed. For example,

the analytic expression for ∂Dx

∂µaxf
as it appears in

∂D

∂p
is:

∂Dx

∂µaxf
=

∂

∂µaxf

Ã
1

3
¡
µaxi + µaxf + µ0sx

¢! = − 1

3
¡
µaxi + µaxf + µ0sx

¢2 . (4.49)

4.4.4 Discrete adjoint sensitivities

Let us note that the expression 4.47 has been obtained by applying GFEM to the

continuous equation 4.20 of the analytical variation δΦ where a finite element ap-

proximant of the analytical Green matrix Ψ has been used. We can also apply the

adjoint method directly to the discretized forward equations 4.31. If the continu-

ous operators we are dealing with are not self-adjoint the latter sensitivities do not

coincide with the sensitivities [δΦ] derived from the discretization of the analytical

equations. But even if the operators are self-adjoint a non appropriate choice of the

numerical scheme does not imply equality between the two sensitivities. In this case a

carefully discretization of the boundary conditions has to be done in order to mantain

simmetry in discretized equations as we shall show below.

The finite element matrices depend upon the generic parameter p; if we vary p

as p + δp so does [Φ] as [Φ] +
hfδΦi and the latter has to still satisfy eq. 4.31; by

Taylor-expanding the latter with respect to the parameter p and neglecting higher

order terms one gets

([A] + [δA])
³
[Φ] +

hfδΦi´ = [S] +o(δp) (4.50)

where [δA] is expressed as in eq. 4.48. This gives up to first order in δp

[A]
hfδΦi= − [δA] [Φ] (4.51)
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Multiplying by the transpose of an arbitrary block matrix
h
Ψ̃
i
one gets

h
Ψ̃
iT
[A]

hfδΦi= − hΨ̃iT [δA] [Φ] (4.52)

which can be rewritten as

hfδΦiT [A]T hΨ̃i = − hΨ̃iT [δA] [Φ] (4.53)

By choosing

[A]T
h
Ψ̃
i
= [∆] (4.54)

where [∆] is the discrete delta dirac matrix as in eq. 4.45, gives

hfδΦi= − hΨ̃iT [δA] [Φ] (4.55)

Let us observe that becuase property 4.46 holds, this implies from 4.54 that

Ψ̃ = Ψ

and consequently from eq. 4.55

fδΦ = δΦ (4.56)

which means that the sensitivity δΦ derived from discretization of the continuous

variation 4.20 by means of an approximant Green matrix, coincides with the sensi-

tivity fδΦ derived directly from the discretized finite element forward equations. The

equality of the two sensitivities holds because the kernal of the discretized equations

of the analytical Green matrix,i.e. the matrix
h
Ã
i
, coincides with the kernal of 4.54,

i.e. [A]T . Let us note that property 4.46 holds because the finite element matrices

forming the block matrix [A] are symmetric for the self-adjointness of the opera-

tor. In fact by using GFEM to self-adjoint operators the stiffness, mass matrices

along with the boundary matrix are symmetric matrices. By using finite difference
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method instead, the boundary matrix could be not symmetric depending upon how

the boundary conditions are discretized and the two sensitivities will not identical.

For example let us consider a 1d problem on the domain Ω = [0, L] ; let ∆x =

L/Nx, where Nx is the number of sub-intervals. We now define a uniform mesh

Ωx = {xi, 0 ≤ i ≤ Nx} where xi = i∆x. The finite difference approximation of the

Robin boundary conditions df
dx
+ rf

¯̄
0,L
= 0 gives the following boundary matrix (we

have considered first order finite difference formula)
− 1

∆x
+ r 1

∆x
0 ....... 0 0

0 0 0 ....... 0 0
.... ..... .....
.... ..... .....

0 0 0 ....... − 1
∆x

1
∆x
+ r

 (4.57)

which is clearly non symmetric implying the breakdown of the property 4.46.

4.5 Summary

In order for fluorescence tomography using nonlinear least-squares approaches to be-

come a practical modality for imaging tissues, there must be an accurate and compu-

tationally efficient means of computing coupled sensitivities of excitation and emission

fluence with respect to various optical properties that are to be estimated. In this

paper, we develop full adjoint solutions for the coupled complex sensitivities of excita-

tion and emission fluence with respect to any arbitrary optical parameters of interest.

We develop a finite element discretization of the adjoint sensitivity equations. While

the methodologies proposed in this paper are developed in the context of fluorescence

tomography, they are easily generalized for computing sensitivities of other coupled

elliptic equations. For example, in the context of steady state transport, the ze-

roth order terms in our general equations can represent the production and decay of

chemicals. Similarly, the equations for groundwater flow of immiscible fluids can be

96



modeled by these equations, as can solid mechanics problems of connected materials

with different properties. The coupling of heat transport and electric potential also

have their basic form described by these equations. We envision numerous applica-

tions of our methodology, with only minor changes to the present code, that can be

useful in a broad range of physical phenomena.
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Chapter 5

Revisiting the stability of pulsatile
pipe flows

Francesco Fedele, Darren L. Hitt and R. D. Prabhu

(European J. of Mech. - B/Fluids, 2004, in press )

Abstract

We revisit the problem of the stability of pulsatile pipe flow for axisymmetric pertur-

bations. In contrast to the earlier approach based on the Chebyshev expansion for the

spatial discretization, we use the set of the eigenfunctions derived from the longwave

limit of the Orr-Sommerfeld equation. We show that the Orr-Sommerfeld basis gives

greater accuracy than the Chebyshev basis if fewer terms are used in the Galerkin ex-

pansion. For the time evolution of the flow perturbation, instead of the usual Floquet

analysis, a different representation for the solution of the periodic system of linear

differential equations is employed. We found that the flow structures corresponding to

the largest energy growth are toroidal vortex tubes. They are stretched by the shear

stress of the mean flow so that a maximum energy growth occurs. The flow perturba-

tion subsequently decays due to viscous effects. The maximum energy growth is then

evaluated over a range of Reynolds and Womersley numbers. Asymptotic solutions
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provided for the longwave limit as well as the limit of large Womersley numbers agree

well with the numerical results, confirming the known linear stability of the flow.

5.1 Introduction

The study of pulsatile tube flow appears to have been first considered in the context

of arterial hemodynamics in the mid-1950s. Womersley and co-workers obtained an

exact solution of the Navier-Stokes equations for the fully-developed velocity profile

of a oscillatory, incompressible flow in a circular tube [128][60]. The stability and

behavior of arterial blood flow in response to perturbations (receptivity) - whether

arising from a cardiac fluctuation or a vessel wall non-uniformity or constriction -

can have significant implications for altered vascular wall shear stresses and overall

vascular impedance. For example, changes in normal wall shear stress distributions

are believed to play a role in atherogenesis whereas a transition to turbulent flow

within a large vessel can lead to substantial increases in flow resistance and increased

cardiac load [78].

Pulsatile flow has also recently found renewed significance in its application

to MEMS microfluidic engineering applications. A common feature of many of the

microfluidic devices described in the literature that incorporate micro-scale pumping

is that the flow is a pulsatile one [52][113]. The case of flow pulsations as a potential

laminar mixing strategy for MEMS devices have also been examined in [92][70]. The

relevance of pulsatile flow for arterial flows and certain microfluidic applications has

thus provided the motivation of the present study in which we re-examine its stability

characteristics.

The linear stability of the limiting case of steady Poiseuille flow in a pipe has
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been investigated extensively by a number of authors [25]-[54]. Such an analysis shows

that all the eigenmodes are damped, although an initial energy growth of the flow

perturbation can occur due to the non-normality of the Orr-Sommerfeld operator

(i.e. the operator does not commute with its adjoint). For a non-normal operator

[100][109] the associated eigenmodes do not exhibit orthogonality and consequently

their superposition can result in an energy growth.

In this paper we revisit the problem of the linear stability of pulsatile pipe flow.

We shall consider only axisymmetric perturbations and study their transient energy

growth, although we point out that non-axisymmetric disturbances may likely ex-

ist having higher energy growth as for the case of steady pipe flow [11][109]. The

starting point is the fourth-order Orr-Sommerfeld equation which is satisfied by the

Stokes stream function for axisymmetric flow perturbations [26]. We shall consider

the approach proposed in [38][54] where the set of eigenfunctions of a simplified Orr-

Sommerfeld operator is used for the solution of the Orr-Sommerfeld equation by the

Galerkin method. In contrast to the earlier approach [117] in which a Chebyshev

expansion was used, our spatial discretization is based on the eigenfunctions derived

from the long-wave limit of the Orr-Sommerfeld equation. We note that these eigen-

functions are essentially the eigenmodes of the Stokes flow for a pipe. The comparison

of the two eigenbasis shows that for smaller number of terms N ∼ 15 − 20 in the

Galerkin expansion, the Orr-Sommerfeld eigenbasis gives smaller relative error then

the Chebyshev basis, although it is well known that the Chebyshev basis gives smaller

error than any power of N−1 asympotically for N →∞. Nevertheless, the use of the

Orr-Sommerfeld basis seems to be a very good candidate for the construction of lower

order models by the Galerkin method: fewer eigenmodes would be sufficient to retain
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relatively greater accuracy than the Chebyshev basis.

For the time evolution of the flow perturbation, instead of the usual Floquet

analysis, a different representation for the solution of the periodic system of linear

differential equations is employed. The interested reader may refer to Refs. [61]-

[34] for other time-dependent flow stability analyses. An excellent summary on the

stability of time-periodic flows is found in [36].

For the case of axisymmetric perturbations, it has been found in this work that

the flow structures giving the largest energy growth are toroidal vortex tubes. These

axisymmetric flow structures are stretched by the shear stress of the mean flow along

the streamwise direction and reach a point of maximum energy growth. Beyond this

point a decay occurs due to viscous effects. Maximum energy growth of the flow

perturbation has been evaluated over a range of Reynolds and Womersley numbers;

the parametric regime considered has been chosen in part due to their relevance to

arterial blood flow and also to microfluidic applications. Our numerical results are

found to be in good agreement with asymptotic solutions obtained for the long-wave

limit as well as the limit of large Womersley numbers.

The determination of the initial conditions which give rise to the maximum

energy growth appears to be relevant, if transition to turbulence is thought as ema-

nating from nonmodal energy growth mechanisms, i.e. ’bypass transition’ (see [110],

pp. 402 and [63]). Another viewpoint on the transition to turbulence has been pro-

posed in [123]-[125]; here, a specific feedback mechanism to transition in channel flows

has been identified based on a self-sustaining process. This approach has led to the

discovery of exact travelling wave solutions for pipe flows [126][46].

Recent experimental results of Hof et al. [72] suggest that both nonmodal energy
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growth and self-sustaining mechanism could be important to understand pipe flow

transition. In their experimental work it has been found that the finite amplitude of

the perturbation necessary to trigger transition in a pipe flow scales as O(Re−1) with

Re the Reynolds number. As reported by Hof et al. [72] regarding the exponent of

this scaling, "the exponent .... is in agreement with recent estimates for pipe flows

where transient growth plays a role. The exponent also indicates a generic transition

so that a challenge to theory is to provide a more definitive indicator which will permit

a distinction between competing ideas to be made".

Along these lines, we believe that the semi-analytical approach presented in

this paper provides a framework for examining non-axisymmetric perturbations and

their linear or nonlinear space-time dynamics. The highlight of the present work is

the possibility of constructing Galerkin lower order models for pipe flows using fewer

eigenmodes yet retaining greater accuracy.

5.2 The Orr-Sommerfeld Equation for Perturbed,
Oscillatory Pipe Flow

Consider the pulsatile flow dynamics in a pipe of circular cross section of radius R

driven by an imposed periodic pressure gradient ∂P
∂z
. The fully-developed streamwise

velocity W (r, t) satisfies the following initial boundary value problem

∂W

∂t
− ν

1

r

∂

∂r

µ
r
∂W

∂r

¶
= −1

ρ

∂P

∂z
,

∂P

∂z
= − [K0 +Kω exp(iωt)] (5.1)

with the no-slip condition at the boundary of the pipe, and the boundedness of the

velocity field at the centerline of the tube. The solution for the radial velocity profile

W (r, t) is given by [128][60]
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W (r, t) =
K0

4µ

¡
R2 − r2

¢
+

R2

µWo2i

1− J0

³
r
R
i
3
2Wo

´
J0

³
i
3
2Wo

´
Kω exp (iωt) (5.2)

where R is the tube radius, J0 is the Bessel function of the first kind of order zero [1],

µ is the viscosity, and the parameterWo, known as the Womersley number, is defined

by Wo =
p
ρωR2/µ. It may be interpreted as either the ratio of oscillatory inertia to

viscous forces or as a Reynolds number for the flow using ωR as the velocity scale.

Still a third interpretation is as a measure of the ratio of the tube radius to the Stokes

layer thickness δs = (ν/ω)1/2.

In order to study the stability of the basic flow field (5.2), the axisymmetric

velocity perturbation (ur = u, uθ = 0, uz = w) is superimposed onto the basic flow,

ur = u(z, r, t) uθ = 0 uz = W (r, t)+w(z, r, t) p̃ = p(z, r, t)+P (z, t). (5.3)

Here, (z, r, θ) define a cylindrical coordinate system with z-axis along the streamwise

direction, (ur, uθ, uz) are the radial, azimuthal and streamwise velocity components

and p̃ is the pressure. The velocity field (5.3) has to satisfy the incompressible Navier-

Stokes equations 

Dur
Dt
=

u2θ
r
− 1

ρ
∂p̃
∂r
+ ν

¡
∇2ur − ur

r2
− 2

r2
∂uθ
∂θ

¢
Duθ
Dt
= − 1

ρr
∂p̃
∂θ
+ ν

¡
∇2uθ + 2

r2
∂ur
∂θ
− uθ

r2

¢
Duz
Dt
= −1

ρ
∂p̃
∂z
+ ν∇2uz

∂ur
∂r
+ ur

r
+ 1

r
∂uθ
∂θ
+ ∂uz

∂z
= 0

(5.4)

where D (·) /Dt, ∇2 (·) are the material derivative and the Laplacian operator in

cylindrical coordinates respectively. Substituting the velocities (5.3) into Eq. (5.4)

107



and neglecting nonlinear terms, yield the following equations

∂u
∂t
+W ∂u

∂z
= −1

ρ
∂p
∂r
+ ν

³
1
r
∂
∂r

¡
r ∂u
∂r

¢
+ ∂2u

∂z2
− u

r2

´
∂w
∂t
+ u∂W

∂r
+W ∂w

∂z
= −1

ρ
∂p
∂z
+ ν

³
1
r
∂
∂r

¡
r ∂w
∂r

¢
+ ∂2w

∂z2

´
1
r
∂
∂r
(ru) + ∂w

∂z
= 0

(5.5)

governing the linear dynamics of the axisymmetric flow perturbation (u, w, p). We

assume periodicity along the streamwise direction and let α denote the streamwise

wave number. The Stokes stream function Ψ(r, z, t) = ψ(r, t)eiαz allows the following

representation of the radial and streamwise velocity components of the perturbation

u = −1
r

∂Ψ

∂z
= −ψ(r, t)

r
iαeiαz w =

1

r

∂Ψ

∂r
=
1

r

∂ψ

∂r
eiαz (5.6)

and the condition of incompressibility is automatically satisfied in Eq. (5.5). Elimi-

nating the perturbation pressure p from the two first equations of (5.5) and using Eq.

(5.6), the following Orr-Sommerfeld equation for ψ can be obtained (see also [25][26])


Lψt −Wiα3ψ + iα (−ψLW +WLψ) = Re−1L2ψ

ψ(r,t)
r

<∞ , 1
r
∂ψ
∂r

<∞ as r → 0+

ψ(1, t) = ∂ψ
∂r
(1, t) = 0

. (5.7)

Here, the differential operator is defined by

L = ∂2/∂r2 − r−1∂/∂r − α2

and the boundary conditions reflect the boundedness of the flow at the centerline

of the pipe and the no-slip condition at the wall. In order to derive Eq. (5.7)

the time, radial lengths, streamwise lengths and velocities have been scaled with

T,R, L, U0 respectively. Here, T = R/U0 is a convective time scale, R is the tube

radius, L = 2π/α is the wavelength of the perturbation and U0 a characteristic
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velocity. The Reynolds and Strouhal numbers are defined as

Re =
U0R

ν
St = ωT.

The basic velocity field W [see Eq. (5.2)] is in the dimensionless form

W (r, t) = W0 +W1 exp (it St) (5.9)

and the functions W0 and W1 are given by

W0 = Λ0
¡
1− r2

¢
W1 = Λ1

1

i

"
1−

J0
¡
i3/2Wo r

¢
J0 (i3/2Wo)

#
(5.10)

where the non-dimensional amplitudes Λ0 and Λ1 have expression as

Λ0 =
K0R

2

4µU0
Λ1 =

KωR
2

µ St ReU0
.

In the following it is chosen U0 = K0R
2/4µ (characteristic velocity of steady Poiseuille

flow) which yields Λ0 = 1 and Λ1 =
4Kω

K0 St Re
.

The flows considered in this paper are characterized by the numbers Re =

50−5000 andWo = 10−30; the corresponding frequency regime is given by Strouhal

numbers St ' 0.1− 20. This parametric regime was chosen so as to include cases of

arterial blood flows as well as MEMS-based pumping.

5.3 Galerkin Method

We now derive the time-periodic system of first order linear differential equations

which governs the dynamics of the flow perturbation. Following the approach used

in [38][54] where the eigenmodes of a simplified Orr-Sommerfeld operator are con-

sidered, for the spatial discretization of the Orr-Sommerfeld equation (5.7) we use a

finite set of the eigenfunctions of the long-wave limit Orr-Sommerfeld operator,(i.e.
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Orr-Sommerfeld basis). Other eigenbasis can be chosen for the spatial Galerkin pro-

jection, as for the example Chebyshev polynomials. In Appendix D we report nu-

merical results showing that the Orr-Sommerfeld basis gives better accuracy than the

Chebyshev basis if few terms N ∼ 15− 20 in the Galerkin expansion are used.

5.3.1 The Long-Wave Orr-Sommerfeld Basis

Exact solutions of the Orr-Sommerfeld equation are difficult to obtain for an arbitrary

wave number α. In the limit of α → 0, which represents the case of a long-wave

perturbation, Eq. (5.7) admits the simple expansion

ψ̃(r, t) =

∞X
n=1

anφn(r) exp(−λnt).

The set of coefficients {an}∞n=1 is defined by the initial conditions and the set of

eigenfunctions {φn(r)}
∞
n=1

1 and eigenvalues {λn}∞n=1 satisfy the eigenvalue problem
L̃2φn = −Re λnL̃φn

1
r
φn <∞ 1

r
∂φn
∂r

<∞ r→ 0+

φn =
∂φn
∂r
= 0 at r = 1.

(5.11)

Here, L̃ = r∂/∂r (r−1∂/∂r) is a reduced operator and the eigenvalues are given by

λn = χ2n/Re where χn are the roots of J2(χ) = 0. One readily finds (see Appendix A

for details)

φn(r) =

√
2

χn
r

µ
r − J1 (χnr)

J1 (χn)

¶
(5.12)

where J1(r) and J2(r) are the Bessel functions of first kind of order 1 and 2, respec-

tively [1]. The first six eigenfunctions, shown in Fig. 5.1, exhibit the characteris-

tic behavior of Bessel’s functions: increasing number of extrema and monotonically

1Note that this set represents the eigenmodes of the Stokes flow for a pipe.
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decreasing maxima. Since the perturbation is bounded for r → 0+, this implies

φn =
∂φn
∂r
= 0 at r = 0, and this may be verified directly from Eq. (5.12).

The function space F = span(φ1, ..., φn, ...) with the following inner product

hf, gi = −
Z 1

0

f L̃g dr

r
=

Z 1

0

∂f

∂r

∂g

∂r

dr

r
, (5.13)

is a Hilbert space and the set of eigenfunctions {φn}
∞
n=1 is a complete orthonormal

set. We shall refer to the set {φn}
∞
n=1 as the Orr-Sommerfeld basis. The inner product

(5.13) induces the following norm

kfk2 = hf, f ∗i =
Z 1

0

∂f

∂r

∂f ∗

∂r

dr

r
= 2 E(f, t)|α=0 .

This norm is twice the long-wave limit of the energy E(f, t) of the axisymmetric

velocity field uf = −f
r
iαeiαz and wf =

1
r
∂f
∂r
eiαz [see Eq.(5.6)], defined as

E(f, t) = 1

2

Z 1

0

(ufu
∗
f + wfw

∗
f ) dr =

1

2

Z 1

0

µ
∂f

∂r

∂f ∗

∂r
+ α2f f ∗

¶
dr

r
. (5.14)

5.3.2 Galerkin Projection

Consider now a complete basis {hk(r)}∞k=1 for the function spaceF where {hk(r)}
∞
k=1 can

be the Orr-Sommerfeld basis {φn}
∞
n=1 or any other basis. Let us define its finite dimen-

sional subspace F̂ = span[h1(r), h2(r), ...., hN(r)], where N is the number of function

basis. In order to solve the Orr-Sommerfeld equation (5.7) we seek an approximation

stream function ψ̂(r, t) ∈ F̂ as

ψ̂(r, t) =
NX
k=1

ak(t)hk(r) (5.15)

where {ak(t)}Nn=1 are time-dependent coefficients to be determined. Under this expan-

sion the boundary conditions in Eq.(5.7) are automatically. To derive the equations

for {ak(t)}Nn=1 we shall project the Orr-Sommerfeld equation (5.7) onto the approxi-

mation function space F̂ . Using the inner product in Eq.(5.13), with the function f
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equal to the left hand side of the Orr-Sommerfeld equation in Eq.(5.7), and g equal

to hn, the n-th projection appears as

−
Z 1

0

·
Lψ̂t −Wiα3ψ̂ + iα

³
−ψ̂LW +WLψ̂

´
− 1

Re
L2ψ̂

¸
hn

dr

r
= 0. (5.16)

By substituting the expansion (5.15) into Eq. (5.16), it is possible to show that the

set of time-varying functions {an(t)}Nn=1 satisfies a finite system of periodic, first-order

linear ordinary differential equations. In matrix notation, the system is given by

M
da

dt
= [K+H exp (it St)] a. (5.17)

Here, a (t) is a column vector of dimension N whose n-th component is an (t) and the

constant matrices M, K, H of dimension (NxN) are defined in Appendix B. From

Eq.(5.14) the energy of the velocity field associated to the approximation stream

function ψ̂ is expressed as

E(ψ, t) = 1

2
a∗ (t)Ma (t) (5.18)

where a∗ denotes the Hermitian conjugate. Since the energy is a positive definite

scalar quantity, this implies that the matrixM has to be positive definite and there-

fore its inverse exists. Thus Eq.(5.17) can be rewritten as

da

dt
=
£
M−1K+M−1H exp (it St)

¤
a. (5.19)

The fundamental matrix G (t) satisfies the system (5.19) with initial conditions

G (0) = I, where I is the NxN identity matrix.

5.4 The Energy Growth

The time evolution of a(t), for any t, depends entirely on the fundamental matrix

G (τ) for the system (5.19), evaluated only on the interval τ ∈ [0,T] where T =
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2π/St is the dimensionless period of oscillations. By decomposing the time as t =

τ +mT with m an integer, the solution can be written as

a(t) = G (τ ) Gm (T)a(0), τ ∈ [0,T] , (5.20)

where the vector a(0) defines the initial conditions. Extensive computations (e.g.

Runge-Kutta method) show that the matrix G (T) has distinct eigenvalues {µk}
N
k=1

(a.k.a. the characteristic multipliers) which allows the diagonalization

G (T) = Q exp(ΓT)Q−1. (5.21)

Although the columns of Q are linearly independent, they are in general not orthogo-

nal; this is a consequence of the non-normality of the Orr-Sommerfeld operator. The

diagonal entries of the matrix Γ are the characteristic exponents {γk}
N
k=1 which are

related to the characteristic multipliers by

γk =
lnµk
T

. (5.22)

The solution is strictly stable if all the characteristic exponents γk lie strictly in the

left hand part of the complex plane, i.e. Re(γk) < 0.

The initial perturbation, defined by the vector a(0), is characterized by the

stream function ψ̂(r, 0) =
PN

k=1 ak(0)hk(r) [see Eq. (5.15)]. Its energy growth G(t),

at time t, can be evaluated by means of Eq. (5.18) as follows

G(c, t) = E(ψ̂, t)
E(ψ̂, 0)

=
a(0)∗E(t)a(0)
a(0)∗E(0)a(0)

.

Here, the matrix E(t) is given by

E(t) = [Gm (T)]∗G (τ )∗M G (τ ) Gm (T) . (5.23)
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The optimal initial condition aopt which gives the maximum growth Gopt(t) attained

at time t satisfies the following eigenvalue problem

E(t)aopt= Gopt(t)E(0)aopt. (5.24)

Note that Gopt(t) as function of t, should be thought as the envelope of the energy

evolution of individual optimal initial conditions aopt giving the maximum growth

Gopt(t) at time t (see also [90]). The largest energy growth Gmax for the pulsatile flow,

attained at time t = tmax, is then given by

Gmax= sup
t∈[0,∞)

Gopt(t). (5.25)

Note that Gmax can be alternatively evaluated via an adjoint method as in [110][6][24].

For the case of steady Poiseuille flow the fundamental matrix is readily derived

from Eq. (5.19) as

Gst (t) = exp
¡
tM−1K

¢
. (5.26)

The optimal energy growth Gopt,st(t) at time t is then given by the following expression

Gopt,st(t) = kG∗
st (t)MGst (t)k (5.27)

where the matrix norm k·k can be evaluated by means of the singular value decom-

position [110][90].

5.5 Results

As an example, consider an axial perturbation with wavenumber α = 1 and a strongly

pulsatile forcing of the basic flow characterized by the ratio Kω/K0 = 2. We shall use

the long-wave Orr-Sommerfeld basis with a Galerkin expansion consisting of N = 30

terms. We examine the stability of a basic pulsatile flow state characterized by St = 1,
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and Wo =
√
Re. The characteristic exponents {γk}

N
k=1 [see Eq. (5.22)] are plotted in

Fig. 5.2 in the complex plane for Re = 1500. For comparison purposes, the plot of the

eigenvalues of the steady Poiseuille flow is also shown in the figure. The real part of

the characteristic exponents are slightly more negative than their steady counterparts,

indicating that the pulsatile flow is slightly more stable than the steady Poiseuille

flow [117]. The characteristic exponents having the highest damping in Fig. 5.2 are

spurious due to the numerical error in evaluating the fundamental matrix G(T) by

the Runge-Kutta method. These spurious modes are ignored in the evaluation of the

energy growth.

A plot of Gopt(t) vs. t is shown in Fig. 5.3 for Re = 3500 and two different

values of the Womersley number Wo = 10 and 30. Due to the non-normality of the

Orr-Sommerfeld operator, Gopt(t) is not a monotonic decreasing function of the time

t. It first increases towards a maximum Gmax and then decays. The details of the flow

structures at the point of maximum energy growth Gmax attained at time t = tmax

are shown in Figs. 5.4 and 5.5 for the corresponding Womersley number of 10 and

30 respectively. These structures are toroidal vortex tubes. They are relatively more

stretched along the streamwise direction by the mean flow as the Womersley number

Wo increases. The increased stretching of the flow structure implies an increased

velocity field and a corresponding increased flow energy. This confirms the higher

value of the maximum energy growth Gmax for the case of Womersley numberWo = 30

as one can see from Fig. 5.3.

As an example of the time evolution of the flow perturbation, consider the

initial condition giving the largest energy growth Gmax for the case of Wo = 20 and

Re = 1000 (dimensionless period oscillation T = 18.2). At time t = 0 the stream
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function of the initial flow perturbation is given in fig. 5.6. As time evolves, the mean

shear stress tends to stretch the vortex tubes, so that at time t = tmax = 11.8 (see

fig. 5.7) the flow configuration is such that its energy growth attains a maximum

(Gmax ' 1.5). Beyond this time the vortex tubes tend to migrate closer to the

centerline (r = 0) where the effectiveness of the shear stress is diminished. The flow

structure then decays in time due to viscous effects as shown in Figs. 5.8 and 5.9.

Finally the flow response to axisymmetric perturbations with wavenumber α = 1

is summarized in Fig. 5.10. The maximum energy growth Gmax is plotted as a function

of the Reynolds number Re in the range 50−5000, for values of the Womersley number

Wo ranging between 10 to 30. The corresponding frequency regime is characterized

by Strouhal numbers St ' 0.1−20. For comparison, the plot of the maximum energy

growth Gmax,st for the case of steady Poiseuille flow is also displayed. For larger Wo,

the stability characteristics of the steady Poiseuille flow are recovered. This is to be

expected, since the amplitude of the pulsations scales as O(Wo−2). For α = 1 we find

an upper bound ofWo ' 30 beyond which the pulsatile forcing has negligible influence

on the stability of the pulsatile flow. As the Womersley number is reduced, the flow

perturbation is characterized by successively smaller maximum energy growth than

its steady counterpart (see Fig. 5.10). This may provide a possible explanation for

the observed suppression of the turbulence spots in pulsatile pipe flow transition for

low frequency regimes (see [117] and references therein). The numerical results also

provide a minimum Reynold number of Remin ' 370 that has to be surpassed in order

to yield an energy growth. This result is found to be independent of the Womersley

number. It has been reported for steady Poiseuille flow that an energy growth occurs

at the threshold Reynolds number αRemin = 369.7 ( see [110] pp. 117, Fig. 4.5).
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Thus, for α = 1, we find that the minimum Reynolds number for steady and pulsatile

cases are almost indistinguishable. This has immediate implications for pulsation-

induced mixing on the micro-scale: for the typically low Reynolds numbers found in

microchannel flows, it appears that linear perturbations to multi-fluid configurations

will be ineffectual.

5.6 Asymptotic Solutions

Analytical solutions of the system (5.19) can also be derived in two distinct and

important limits. The first case is for a long-wave perturbation when α << 1. The

second solution is valid for high Womersley numbers (Wo→∞).

5.6.1 The Case of Long-Wave Perturbations

In the long-wave limit there is a separation of the inertial, advection and viscous time

scales, which suggests using a multiscale perturbation approach. Here, the streamwise

wave number α serves as the small parameter in the multiscale expansion. Assume

that the Eq. (5.17) has been derived using the Orr-Sommerfeld basis. The long-wave

limit solution (see Appendix C for details) for the fundamental matrix G (t) is given

by

G(t) = exp[( K0+α diag(K1)+α2diag(K2−M2K0) )t] as α/Wo2 → 0. (5.28)

We can conclude that in the limit of α/Wo2 → 0, the characteristic exponents {γk}
N
k=1

are equal to

γk = −
χ2k
Re

µ
1 + α2

Z 1

0

φ2k
dr

r

¶
− 2

Re
α2 + iα

µ
−1 +

Z 1

0

r φkL̃φk dr
¶
. (5.29)

Note that Eq. (5.29) shows no dependence upon the oscillatory part of the flow (i.e.

Wo) and gives the eigenvalues for the case of the steady Poiseuille flow. Thus in the
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long-wave limit, the perturbation is not affected by the pulsatile part of the flow if the

wavelength of the disturbance L is much greater than the thickness δω of the Stokes

layer, i.e. α/Wo2 → 0.

Consider the pulsatile basic flow characterized by the numbers Re = 1500, St =

1, Wo = 38.7 and Kω/K0 = 2 and assume an axial perturbation with wavenumber

α = 0.1. We shall use the Galerkin expansion (5.15) consisting of N = 30 terms.

In table 1 it is shown a comparison between the eigenvalues obtained by numerically

solving the fundamental matrix and the analytical eigenvalues (5.29). As one can see

the agreement between numerical and analytical results is quite good.

5.6.2 The Case of Womersley Number Wo→∞

The exact analytical solution of the system (5.19) can be obtained provided the two

matricesM−1K andM−1H commute. In general, these two matrices do not commute,

except for case of large Womersley numbers (Wo→∞). In this limit, the amplitude

W1 of the oscillatory part of the basic flow (5.9) tends to be nearly uniform, since

the thickness of the Stokes boundary layer tends to zero. The following asymptotic

expression2 for W1 then holds

W1 ' W̃1 =
1

Wo2
4Kω

iK0
as Wo→∞. (5.30)

This implies that the matrix H [see Eq. (5.19) and Appendix D] simplifies as follows

H ' −iαW̃1M as Wo→∞,

and the system (5.19) reduces to the form

da

dt
=
h
M−1K−iαW̃1I exp (it St)

i
a. (5.31)

2In Eq. (5.10), for fixed radius r, if Wo →∞ the second term in the square brackets, involving
Bessel’s functions, goes to zero.
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This system can be solved analytically since the scalar multiple of the identity matrix

commutes with any other matrix. The solution is given by3

a(t, T ) = exp
·
4αKωt

K0Wo
2

µ
sin T
T + i

cos T − 1
T

¶¸
Gst (t) a(0) as Wo→∞,

(5.32)

where Gst (t) is the fundamental matrix for the case of the steady Poiseuille flow [see

Eq. (5.26)] and a(0) are appropriate initial conditions. Here the solution depends

upon the time scale t and the long time scale T = tSt. In Eq. (5.32), if also

α/Wo2 → 0, then the exponential factor is almost equal to 1 and Gst (t) tends to the

long-wave limit solution (5.28).

The energy of the flow perturbation can be evaluated by means of Eq. (5.18)

with the result

E(t, T ) = Est(t)Eosc(T ) as Wo→∞. (5.33)

Here,

Est(t) =
1

2
a∗ (0)G∗

st (t)MGst (t) a (0)

is the energy of the flow perturbation in the steady Poiseuille flow and

Eosc(T ) = exp
µ
8αKωRe

K0Wo
4 sinT

¶
.

Note that in this case the energy E(t,T ) evolves on the time scale t as if the basic

flow is steady. The effects due to the pulsatility of the basic flow are ’felt’ on the

long time scale T through the factor Eosc(T ). As t approaches infinity, E(t, T ) goes

to zero, confirming the stability of the pulsatile flow. However, an optimal energy

growth

Gopt(t,T ) = Gopt,st(t)Eosc(T ) as Wo→∞, (5.34)

3The transformation a(t)=exp
£
t M−1K

¤
b(t) applied to Eq. (5.31) gives rise to a decoupled

system of differential equations in the variables bk(t) = (b(t))k, which is readily solvable.
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can occur. Here, Gopt,st(t) is the optimal energy growth for the steady Poiseuille flow

at time t defined in Eq. (5.27). From Eq. (5.34), the following bound for the the

quotient η between the maximum energy growths Gmax and Gmax,st is derived

η =
Gmax
Gmax,st

≤ exp
µ
8αKωRe

K0Wo
4

¶
as Wo→∞, (5.35)

where Gmax,st=supt∈[0,∞) Gopt,st(t). As can be seen from Fig. 5.11, for the case of

α = 1 and Kω/K0 = 2, the effects of pulsatile forcing can be safely ignored beyond

the upper bound ofWo ' 30 on the Womersley number since in this range η is almost

equal to 1, in agreement with the numerical results plotted in Fig. 5.10 (see section

5.5).

5.7 Conclusions

In this paper we have re-examined the linear stability of pulsatile tube flow to axisym-

metric flow perturbations. The Orr-Sommerfeld equation has been solved by means

of a Galerkin projection onto a function space spanned by a finite set of the eigen-

functions of the longwave-limit Orr-Sommerfeld operator. It is shown that using few

terms (N ∼ 15− 20) in the Galerkin expansion gives greater accuracy in comparison

to the commonly employed Chebyshev basis. It has been found that the flow struc-

tures corresponding to the largest energy growth are toroidal vortex tubes, although

non axisymmetric disturbances may likely exists having higher energy growth. These

axisymmetric vortex tubes are stretched by shear stresses of the mean flow resulting

in an initial energy growth. A time of maximum energy growth is realized, and the

flow perturbation subsequently decays. Maximum energy growth has been evaluated

over a range of Reynolds andWomersley numbers characteristic of arterial blood flows

and microfluidic applications. Asymptotic solutions provided for the longwave limit
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as well as the limit of large Womersley numbers agree well with the numerical results,

confirming the known linear stability of the flow.

5.8 APPENDIX A

The operator in Eq. (5.11) can be factored as follows

L̃
³
L̃+ χ2

´
φ = 0.

Here, χ2 = λ Re and the general solution is given by φ = f1 + f2 such that L̃f1 = 0

and
³
L̃+ χ2

´
f2 = 0, i.e.

φ = C1 + C2r
2 + C3r Y1 (χr) + C4rJ1 (χr)

where, respectively, Y1 (r) and J1 (r) are the Bessel functions of first kind [1] and

C1, C2,C3 and C4 are constants to be determined by the boundary conditions. Since

both the functions, φ
r
and 1

r
dφ
dr
, must tend to zero as r → 0+, then C1 = C3 = 0. On

the other hand, from the boundary conditions at r = 1, namely φ
r
= 1

r
dφ
dr
= 0, the

following homogenous linear system for the unknowns (C2, C4) emerges C2 + J1 (χ) C4 = 0

2C2 + [J1 (χ) + χJ0 (χ)− J1 (χ)]C4 = 0
.

Non trivial solutions exist if and only if J2 (χ) = 0 with J2 (r) the Bessel function of

first kind [1]. Consequently, there are infinitely many roots χn n = 1, 2, 3, .... The

eigenvalues then readily follows as λn = χ2n/Re and the corresponding eigenfunctions

can be expressed as

φn = cn

·
r2 − rJ1 (χnr)

J1 (χn)

¸
where cn are constants. The set {φn} is orthogonal with respect to the scalar product

(5.13) provided one chooses cn =
√
2

χn
.
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5.9 APPENDIX B

The matrices defined in Eq. (5.17) are given by

M =M0 + α2M2 K = K0 + αK1 + α2K2 + α3K3 + α4K4 H =αH1 + α3H3

(5.36)

Here, we have defined the following matrix functions

M0= C (1) M2 = −D (1)

H1 = i[D
³
L̃V1

´
−C (V1)] H3 = iD (V1)

K0 = Re
−1B K1 = −iC (V0) K2 = −2Re−1C (1) K3 = iD (V0) K4 = Re

−1D (1)
(5.37)

where the (n, k)-th entries of the constant matrixB and function matricesC (p),D (p) ,with

p(r) ∈ L2 ([0, 1]), are given respectively by

(B)nk = −
Z 1

0

L̃2hk hn
dr

r
(C (p))nk = −

Z 1

0

p L̃hkhn
dr

r
(D (p))nk = −

Z 1

0

p hkhn
dr

r
.

If Orr-Sommerfeld basis are used, M0, K0, K2 simplify to the following diagonal

matrices

(M0)nk = δnk (K0)nk= −Re
−1χ2nδnk (K2)nk= −2Re

−1δnk (5.38)

since C (1)= I and (B)nk= −χ2nδnk ( δnk is the Kronecker delta).

5.10 APPENDIX C

Let us solve Eq. (5.17) by assuming the following expansion for the time-varying

column vector a(t)

a(t) = a0(t, T1, T2) + αa1(t, T1, T2) + ... (5.39)
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where T1 = αt, T2 = α2t are the advection and viscous time scales respectively.

According to the multiscale method these time scales are considered independent

variables. This implies that the time derivative operator is now as follows

d

dt
=

∂

∂t
+ α

∂

∂T1
+ α2

∂

∂T2
. (5.40)

By substituting the expansion (5.39) for a(t) into Eq. (5.17) and using the time

derivative operator (5.40) the following hierarchy of perturbation equations up to

O(α2) is derived

M0
∂aj
∂t

= K0aj + Sj(t) j = 0, 1, 2 (5.41)

where

S0 = 0 S1 = [K1 +H1f(t)]a0 −
∂a0
∂T1

and

S2 = K2a0 + [K1 +H1f(t)]a1 −
∂a0
∂T2
− ∂a1

∂T1
−M2

∂a0
∂t

.

For seek of simplicity in the calculations, it is assumed that the spatial Galerkin

projection has been performed using the Orr-Sommerfeld basis, implying thatM0 = I

and K0 is a diagonal matrix (see appendix B). The general solution of Eq. (5.41) is

now of the form

aj = eK0ta0j + eK0t

Z t

0

e−K0τSj(τ)dτ j = 0, 1, 2 (5.43)

where a0j determined the initial conditions (hereafter b
0 does not indicate derivatives).

In particular, the O(1) solution is

a0(t, T1,T2) = eK0ta00(T1,T2) (5.44)
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where a00(T1,T2) is an unknown function of the slow time scales T1 and T2 to be

determined . From Eqs. (5.43) and (5.44) the O(α) solution has expression as

a1(t, T1,T2) = eK0ta01(T1,T2) + eK0t

Z t

0

½
e−K0τ [K1 +H1f(τ )]e

K0τa00 −
∂a00
∂T1

¾
dτ

(5.45)

where a01(T1,T2) is an undetermined function. Using the Hadamard product definition,

i.e. (A ◦B)ij = (A)ij (B)ij, the first term of the integrand in Eq. (5.45) can be

written as follows

e−K0τ [K1 +H1f(τ)]e
K0τ= K1 ◦ Γ1(τ ; 0) +H1 ◦ Γ1(τ ;ω)

where the (i, j)-entry of the matrix of functions Γ1 is defined as

( Γ1(τ ;ω))ij =e
(χ2i /Re−χ2j/Re+iω)τ .

Then in Eq. (5.45) the secular and non secular terms can be readily separated as

follows

a1(t, T1,T2) = eK0ta01(T1,T2)+ (5.46)

+ eK0t

Z t

0

½
[(K1 − diag(K1)) ◦ Γ1(τ ; 0) +H1 ◦ Γ1(τ ;ω)] a00 −

∂a00
∂T1

¾
dτ+

+ eK0t

Z t

0

·
diag(K1 ◦ Γ1(τ ; 0)a00 −

∂a00
∂T1

¸
dτ.

Note that the third term in Eq. (5.46) is of secular type teK0t; by imposing to vanish,

the following equation for a00(T1,T2) is derived

diag(K1)a
0
0 −

∂a00
∂T1

= 0
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which has the readily solution

a00(T1, T2) = ediag(K1)T1a
00
0(T2) (5.47)

where a
00
0(T2) is an unknown function of the time scale T2 to be determined. Solving

the integrals in Eq. (5.46) gives

a1(t, T1,T2) = eK0ta01(T1,T2)+e
K0t [(K1 − diag(K1)) ◦ Π(t; 0) +H1 ◦ Π(t;ω)] ediag(K1)T1a

00
0 .

(5.48)

Here, we have defined the matrix

Π(t;ω) =

Z t

0

Γ1(τ ;ω)dτ = Π0(t;ω)−Π0(0;ω)

and Π0 has (i, j)-entry as

(Π0(t;ω))ij =
e(χ

2
i /Re−χ2j/Re+iω)t

χ2i /Re− χ2j/Re+ iω
.

The governing equations for a
00
0(T2) and a

0
1(T1,T2) are determined by imposing the

vanishing of the secular terms of the O(α2) solution which is given by

a2(t, T1,T2) =

eK0ta02(T1,T2) + eK0t

Z t

0

½
K2 ◦ Γ1(τ ; 0)ediag(K1)T1a

00
0 + [K1 ◦ Γ1(τ ; 0) +H1 ◦ Γ1(τ ;ω)]a01 −

∂a01
∂T1

+

+ [K1 ◦ Γ1(τ ; 0) +H1 ◦ Γ1(τ ;ω)] [(K1 − diag(K1) ◦ Π(τ ; 0) +H1 ◦ Π(τ ;ω)] ediag(K1)T1a
00
0+

(5.49)

− [(K1 − diag(K1) ◦ Π(τ ; 0) +H1 ◦ Π(τ ;ω)] diag(K1)e
diag(K1)T1a

00
0+

−[(M2K0) ◦ Γ1(τ ; 0)]ediag(K1)T1a
00
0 − ediag(K1)T1

da
00
0

dT2

¾
dτ .
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Removing the secular terms gives the following equation for a01

diag(K1)a
0
1 −

∂a01
∂T1

= S
0
(T1,T2) (5.50)

where

S
0
(T1,T2) =

−
£
(K1diag(K1)− diag(K1)

2) ◦ Π0(0; 0) + diag(K2 −M2K0)
¤
ediag(K1)T1a

00
0 − ediag(K1)T1

da
00
0

dT2
.

Note that in Eq. (5.49) the secular terms depending upon the oscillatory part cancel

each other exactly, implying that to the leading order the solution does not depend

upon the pulsatilty of the flow. The Eq. (5.50) admits uniform solutions if the

resonance terms in the source S
0
(T1,T2) are removed. This gives the following equation

for a
00
0

−da
00
0

dT2
+ diag(K2 −M2K0)a

00
0 = 0

readily solved as

a
00
0(T2) = ediag(K2−M2K0)T2a

000
0 (5.51)

where a
000
0 is the vector of initial conditions. Finally from Eqs. (5.51),(5.47) and (5.44)

the O(1) solution has the final expression

a0(t, T1,T2) = eK0tediag(K1)T1ediag(K2−M2K0)T2a
000
0 .

The leading order solution a0 does not depend upon the pulsatility part and is a good

approximation of the exact solution if α/Wo2 → 0. In this limit, the O(α) terms can

be neglected.

5.11 APPENDIX D

Consider the function space F = span(s1, ..., sn, ...) spanned by

sn(r) = r2(1− r2)2T2(n−1)(r) n = 1, ... (5.52)
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where T2(n−1)(r) are the Chebyshev polynomials of even order defined as

T2(n−1)(r) = cos
£
2(n− 1) cos−1(r)

¤
n = 0, 1, ...

It is readily proved that the set {sn}∞n=1 satisfy the required boundary conditions and

that it is orthogonal with respect to the weighted inner product

hf, giT =
Z 1

0

W (r) f g r dr W (r) =
1

r5(1− r2)4
√
1− r2

where the weight function W (r) has been derived by using the normality of the set

{T2n(r)} on the interval [0, 1]. We wish to point out that the Chebyshev basis are

not orthogonal in the energy sense (i.e. with respect to the inner product 5.13) and

as r → 1− they do not have caractheristic decay beahvior as the Orr-Sommerfeld

do (see figs. 5.1 and 5.12). From Eq. (5.19), if one neglects the oscillatory flow

component, the least stable eigenvalue of the matrix M−1K predicts the stability

of the steady Poiseuille flow. Set the parameters α = 1 and Re = 2000. For N =

10, 15, ...40 the least stable eigenvalue has been evaluated by using both the basis

{φn}
N
n=1 and {sn}

N
n=1. Taking the solution for N = 40 to be the ’exact’ solution

(λ(40) = −0.06375− 0.93676i in agreement with [110] p. 506), the relative error

e =

¯̄̄̄
¯λ(N) − λ(40)

λ(40)

¯̄̄̄
¯ ∼ N−d N = 10, 15, ...35

of the first least stable eigenvalue is plotted in fig. 5.13. If the Chebyshev basis are

used (d = 19.6), the error drops off faster but is always greater than the relative

error if the Orr-Sommerfeld basis are used (d = 9.0). As an example, for N = 15 the

error if Orr-Sommerfeld basis are used is e ∼ 10−8 whereas if the Chebyshev basis are

employed, one has e ∼ 10−3.
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Table 5.1: Comparison of asymptotic and numerical eigenvalues.
γ̃k (asympotic) γk (numeric) |1− γ̃k/γk|
−0.0176− 0.0818i −0.0198− 0.0814i 0.0266
−0.0473− 0.0723i −0.0499− 0.0738i 0.0341
−0.0900− 0.0696i −0.0907− 0.0690i 0.0074
−0.1460− 0.0685i −0.1455− 0.0682i 0.0031
−0.2151− 0.0679i −0.2145− 0.0678i 0.0024
−0.2973− 0.0676i −0.2968− 0.0675i 0.0016
−0.3927− 0.0673i −0.3923− 0.0673i 0.0011
−0.5013− 0.0672i −0.5009− 0.0672i 0.0007
−0.6230− 0.0671i −0.6227− 0.0671i 0.0005
−0.7579− 0.0670i −0.7576− 0.0670i 0.0004
−0.9059− 0.0670i −0.9057− 0.0670i 0.0003
−1.0671− 0.0669i −1.0669− 0.0669i 0.0002
−1.2415− 0.0669i −1.2413− 0.0669i 0.0001
−1.4290− 0.0669i −1.4289− 0.0669i 0.0001
−1.6297− 0.0668i −1.6296− 0.0668i 0.0001
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Figure 5.1: The first 6 long-wave Orr-Sommerfeld eigenfunctions.
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Figure 5.4: Stream function of the optimal disturbance at time t = tmax when the
max energy growth Gmax = 1.2 occurs for Wo = 10 , Re = 3500.
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Figure 5.5: Stream function of the optimal disturbance at time t = tmax when the
max energy growth Gmax = 2.6 occurs for Wo = 30 and Re = 3500.
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Figure 5.6: Stream function of the optimal disturbance at time t = 0 for Wo = 20
and Re = 1000.
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Figure 5.7: Stream function of the optimal disturbance at time t = tmax for Wo = 20
and Re = 1000.
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Figure 5.8: Stream function of the optimal disturbance at time t = 2T for Wo = 20
and Re = 1000.
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Figure 5.9: Stream function of the optimal disturbance at time t = 3T for Wo = 20
and Re = 1000.
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Figure 5.10: Max energy growth Gmax as function of the Reynold number Re for
different values of the Womersley number Wo. The plot of Gmax,st for the case of
steady Poiseille flow is also reported for comparison.
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and the upper bound defined in Eq. (5.35).
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Figure 5.12: The first 6 special Chebyshev basis.
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Chapter 6

Fluorescence Photon migration by
the Boundary Element Method

Francesco Fedele, Jeffrey P. Laible, Anuradha Godavarty, Eva M.

Sevick-Muraca & Margaret J. Eppstein

(submitted Journal of Computational physics 01/07/04 )

Abstract

The use of the boundary element method (BEM) is explored as an alternative to the

finite element method (FEM) solution methodology for the elliptic equations used to

model the generation and transport of fluorescent light in highly scattering media,

without the need for an internal volume mesh. The method is appropriate for do-

mains where it is reasonable to assume the fluorescent properties are regionally homo-

geneous, such as when using highly-specific molecularly targeted fluorescent contrast

agents in biological tissues. In comparison to analytical results on a homogeneous

sphere, BEM predictions of complex emission fluence are shown to be more accu-

rate and stable than those of the FEM. Emission fluence predictions made with the

BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary

nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluores-
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cence emission measurements acquired on a 1087 cm3 breast-mimicking phantom as

well as those of the FEM, but require only 1/8 to 1/2 the computation time.

6.1 Introduction

Imaging plays a central part of cancer diagnosis, therapy, and prognosis primarily

through the detection of anatomically defined abnormalities. With the wealth of

information provided by the now maturing areas of genomics and proteomics, the

identification of molecular markers and targets now promises contrast-enhanced, di-

agnostic imaging with specificity and sensitivity that is not otherwise possible with

conventional, anatomical imaging. Molecular imaging promises to improve diagnostic

imaging and to impact the quality of cancer patient care.

Near-infrared (NIR) light between the wavelengths of 700-900 nm propagates

deeply through tissues and provides a unique approach for molecularly-based diag-

nostic imaging. In the past decade, significant progress has been made in developing

molecularly targeted fluorescent dyes for molecular imaging [49, 95, 116, 2, 12, 127,

118]. With near-infrared excitable fluorescent contrast agents that can be conve-

niently conjugated with a targeting or reporting moiety, there is potential clinical op-

portunity for using non-ionizing radiation with these non-radioactive contrast agents

for “homing in” on early metastatic lesions, performing sentinel lymph node mapping,

and following the progress of therapy.

Direct imaging of fluorescence is possible in small animal and near-surface ap-

plications. However, in order to quantify fluorochrome concentrations and/or to im-

age fluorescent targets deeper into tissues, where the rapid decay of light renders

the diffuse signal weak and noisy, tomographic reconstruction is necessary. Three
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dimensional fluorescence tomography has recently been demonstrated in both for

near-surface targets [96, 97, 35] and deeper targets [45, 58, 108, 59, 56, 57], from

experimentally acquired measurements. However, especially in large volumes, there

remain a number of challenges for obtaining reliably quantitative and highly resolved

image reconstructions, as outlined below.

In NIR fluorescence-enhanced tomography [91], the tissue surface is illuminated

with excitation light and measurements of fluorescent light emission are collected at

the tissue surface. A forward model of fluorescent light generation and transport

through tissue is used to predict the observable states (e.g., emission fluence) at the

measurement locations, based on the known excitation light source and an estimate

of spatially distributed optical properties of the tissue volume. A computational

implementation of the forward model is typically used repeatedly within an inverse

(tomography) method, wherein estimates of spatially distributed optical properties

of the tissue are iteratively updated until the predictions match the observations

sufficiently well, or some other convergence criteria is achieved. Consequently, a

rapid and accurate implementation of the forward model is critical for a rapid and

accurate tomography code.

In clinically relevant volumes of highly scattering media, the forward problem

of fluorescent light generation and transport can be effectively approximated as a

diffusive process. The generation and propagation of fluorescent light through highly-

scattering media (such as biological tissues) is often modeled by a pair of second or-

der, elliptic, partial differential equations [101, 115, 67]. The first equation represents

propagation of excitation light (subscript x) and the second models the generation

and propagation of fluorescently emitted light (subscript m). Herein, we focus on
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frequency domain measurements using intensity modulated illumination, because a)

these time-dependent measurements permit the implementation of fluorescence life-

time tomography [57], and b) frequency domain measurements have some advantages

over time domain measurements approaches, including that ambient light rejection is

automatic and does not require background subtraction. In the frequency domain, the

diffusion approximations to the radiative transport equation over a three-dimensional

(3-D) bounded domain Ω are

−∇ · (Dx∇Φx) + kxΦx = Sx (6.1)

−∇ · (Dm∇Φm) + kmΦm = βΦx (6.2)

subject to the Robin boundary conditions on the domain boundary ∂Ω of

−→n · (Dx∇Φx) + bxΦx = px (6.3)

−→n · (Dm∇Φm) + bmΦm = 0 (6.4)

where∇ is the three dimensional (3×1) grad operator and −→n is the three dimensional

(3×1) vector normal to the boundary. In fluorescence tomography the light source is

localized on the surface and thus it can be modelled either by an appropriate definition

of excitation light source Sx (Watts/cm3) or as a source flux px (Watts/cm2) on

the surface boundary. Sources are intensity modulated with sinusoidal frequency ω

(rad/s) , and propagate through the media resulting in the AC component of complex

photon fluence at the excitation wavelength of Φx (Watts/cm2). The diffusion (Dx,m),

decay (kx,m) , and emission source (β) coefficients, as shown below,
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(
Dx =

1

3(µaxi+µaxf+µ
0
sx)

Dm =
1

3(µami+µamf+µ
0
sm)

;

½
kx =

iω
c
+ µaxi + µaxf

km =
iω
c
+ µami + µamf

; β =
φµaxf
1− iωτ

(6.5)

are functions of absorption coefficients due to non-fluorescing chromophore (µaxi,

µami), absorption coefficients due to fluorophore (µaxf , µamf), and isotropic (reduced)

scattering coefficients (µ
0
sx, µ

0
sm) at the two wavelengths (all in units of cm

−1), fluo-

rescence quantum efficiency (φ), and fluorescence lifetime (τ , in s). Here, i =
√
−1,

and c is the speed of light in the media (cm/s). The Robin boundary coefficients

(bx, bm) are governed by the reflection coefficients (Rx, Rm), which range from 0 (no

reflectance) to 1 (total reflectance):

bx =
1−Rx

2 (1 +Rx)
; bm =

1−Rm

2 (1 +Rm)
. (6.6)

In diffuse fluorescence tomography, the forward model is commonly computa-

tionally implemented using the finite element method (FEM) [74, 108, 47]. Despite

the fact that all excitation sources and detected measurements are restricted to the

tissue surface, in the FEM the entire volume must be discretized into nodes and 3D

elements. The internal FEM mesh makes it straightforward to implement the in-

ternally distributed emission source term (βΦx). Unfortunately, the internal FEM

mesh introduces discretization error that can render the method unstable, unless a

fine enough mesh is employed. In biological tissues, the rate of decay (k, dominated

by the absorption coefficients µa) is typically much larger than the rate of diffusion

(D, dominated by the inverse of the scattering coefficients µ
0
s, where µ

0
s >> µa), so

fine internal volume meshes are required in order to achieve a smooth and stable

result. Furthermore, the spatial resolution of small internal targets is governed by
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the internal mesh discretization in a FEM model. In a tomography algorithm, where

the target locations are unknown in advance, fine target resolution in an FEM-based

tomography code will require either a uniformly fine mesh, or some sort of adaptive

meshing scheme, both of which add to the computational complexity of the model.

If the optical parameters to be estimated in a tomographic reconstruction are associ-

ated with internal nodes or elements, the inverse problem of FEM-based tomographic

reconstruction algorithm will be highly under-determined, since the number of nodes

or elements in an adequately resolved FEM mesh typically far exceeds the number of

surface measurements available for inversion [58, 59, 56]. In fluorescence tomography

applications for large volumes this problem is exacerbated because a very fine mesh

resolution imposes large computational memory and time requirements that may be

impractical, and because the signal-to-noise of fluorescence emission measurements in

large volumes is extremely low and highly spatially-variant [45, 58], thereby rendering

the inverse problem even more ill-posed. There have been a variety of weighting and

damping approaches proposed for regularization of ill-posed FEM tomography codes

[45, 7, 102, 122, 65], as well as methods that explicitly reduce the dimensionality of

the parameter space in various FEM-based tomographic applications, including (i)

use of a priori structural information from co-registered magnetic resonance images

to reduce the number of uncertain optical parameters [103], (ii) use of clustering

algorithms to dynamically merge spatially adjacent uncertain parameters based on

their evolving estimates between iterations (aka data-driven zonation) [45, 40, 41],

and (iii) use of adaptive mesh refinement to enable use of a relatively coarse mesh in

the background while increasing spatial resolution inside regions of interest, based on

evolving estimates [75]. Although these regularization approaches have made FEM-
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based fluorescence tomography possible, it must be noted that accuracy of FEM-based

tomography is sensitive to the regularization imposed.

These difficulties associated with FEM-based fluorescence tomography motivate

us to explore boundary element method (BEM) -based tomography, wherein the BEM

[22] is used as an alternative numerical approach for solving the diffusion approxima-

tions to excitation and emission radiative transport (6.1) and (6.2). In the 3D BEM,

the domain is modeled with a finite number of spatially coherent 3D regions, each

of which is considered homogeneous. Only the boundaries of these subdomains must

be discretized into nodes and two-dimensional (2D) elements. Inside each subdomain

analytical solutions are employed, with compatibility and equilibrium constraints en-

forced on shared boundaries between subdomains [22]. For domains in which it is

reasonable to assume that parameters can be modeled with a relatively small number

of regionally homogeneous subdomains, the BEM thus requires many fewer nodes and

elements than the FEM, and is subject to less discretization error. In a BEM-based

tomography code, the number of unknowns can be inherently much lower than the

number of measurements, even for large domains, assuming a relatively few number

of internal subdomains. For example, unknowns can be limited to the locations of

nodes on internal boundaries and the uncertain optical parameters inside the vari-

ous subdomain regions, as demonstrated in electrical impedance BEM tomography

[94, 71]. Such a BEM-based tomography code would be overdetermined, and hence

should yield more accurate parameter estimates, that are less sensitive to selection of

regularization parameters, than in an FEM-based tomography code.

One difficulty with a BEM-based tomography code, however, is that one must

predetermine an upper limit on the number of internally distinct subdomains to
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model. An approach that has proven successful in electrical impedance tomogra-

phy using the BEM alternates several generations of a genetic algorithm with several

iterations of a gradient-based local optimizer, to dynamically determine the number,

locations, and geometries of internal subdomains [71]. Other approaches that may

prove effective for providing an initial estimate of target numbers and locations for

subsequent refinement with a BEM tomographic reconstruction include (i) extract-

ing approximate parameter structure from the result of a small number of iterations

of an FEM tomographic reconstruction, (ii) using an artificial neural network (e.g.,

a radial basis function neural network [28]) for rapid initial approximation of pa-

rameter structure, or (iii) using a priori parameter structure estimates from other

co-registered imaging modalities, such as PET or MRI.

As previously stated, the BEM treats optical properties as regionally homoge-

neous. We postulate that this may be appropriate for some biomedical fluorescence

tomography applications using highly-selective molecularly-targeting and reporting

dyes. When using receptor-targeted fluorescent markers, fluorescent properties such

as absorption and lifetime will tend to be highly localized (e.g., on the surface of a

discrete tumor) and may therefore be conducive to BEM modeling. While endoge-

nous optical absorption and scattering will remain much more spatially heterogeneous

that the distribution of fluorophore, the change in time-dependent measurements with

physiological absorption and scattering contrast is insignificant in comparison to the

change owing to the fluorescence decay kinetics. Indeed, signal perturbations due

to endogenous levels of scattering and absorption contrast can be within the mea-

surement error of time-dependent measurements. Prior computational studies using

synthetic data have confirmed that tomographic inversion of fluorescence emission flu-
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ence is relatively insensitive to a wide range of unmodeled variability in background

absorption and scattering [41].

There are reports in the literature of successful applications of the BEM to the

optical excitation equation (6.1)[68] and to the electrical impedance diffusion equation

[94, 71]. In these applications, implementation of the BEM is relatively straightfor-

ward, since all sources and detectors are located on the surface of the domain, where

the BEMmust be discretized in any case. However, modeling fluorescently generated

light, emitted from an internal target, is not straightforward with the BEM. In this

case, the source term for the emission equation (6.2) is internally distributed; it is

non-zero wherever there is non-zero fluorescence absorption coefficient (µaxf , µamf).

Modeling this internal source term without an explicit internal volume mesh makes

application of the BEM non-trivial. We have found no prior references to the BEM

for the coupled excitation/emission equations (6.1) and (6.2).

Ultimately, we plan to explore various approaches for a practical BEM imple-

mentation for 3D fluorescence tomography, as well as BEM-FEM hybrid approaches.

As a first step towards BEM-based fluorescence tomography, we herein report on the

derivation, implemention, and validation of a prototype BEM forward model of the

generation and propagation of fluorescent light through highly-scattering media.

6.2 BEM formulation for the Governing Equations

The governing equations (6.1) and (6.2) are only coupled in one direction; that is,

the solution to equation (6.2) depends on the solution to equation (6.1), but not vice

versa. Consequently, it is possible to solve these equations sequentially. To predict

fluorescence emission fluence Φm at surface detectors (generated in response to an ex-
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citation source Sx also at the tissue surface), one first solves the excitation equation

(6.1) with the boundary conditions (6.3), to predict excitation fluence Φx at all the

nodes in the domain volume Ω. The predicted excitation fluence is subsequently used

in the source term (βΦx) for solving the emission equation (6.2), subject to boundary

conditions (6.4), for emission fluence Φm. Since an internal discretization of the en-

tire volume Ω is already a requirement of the FEM, the internally distributed source

term for equation (6.2) requires no special accommodation. However, if a sequen-

tial solution approach were employed in a BEM formulation, this would necessitate

the creation of an internal mesh for the BEM in order to represent the internally

distributed fluorescent source. This approach would eliminate many of the potential

advantages of the BEM over the FEM.

Alternatively, one can entirely preclude the need of an internal volume mesh

discretization when using BEM if the governing equations (6.1) and (6.2) are solved

simultaneously, rather than sequentially. We recast the governing equations into the

following matrix form

−∇T
¡
D ∇ Φ

¢
+ k Φ = S on Ω. (6.7)

Similarly, the boundary conditions (6.3) and (6.4) are represented by the matrix

equation

nT
¡
D∇ Φ

¢
+ r Φ = p on ∂Ω. (6.8)

Here, we distinguish vector quantities with a single underbar and matrix quantities

with a double underbar and we use the following matrix definitions
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

∇
(6×2)

=

·
∇ 0
0 ∇

¸
; n
(6×2)

=

· −→n 0
0 −→n

¸
; D
(6×6)

=

 Dx I
(3×3)

0

0 Dm I
(3×3)

 ;
k

(2×2)
=

·
kx 0
−β km

¸
; r
(2×2)

=

·
bx 0
0 bm

¸
;

Φ
(2×1)

=

·
Φx

Φm

¸
; S
(2×1)

=

·
Sx
0

¸
; p
(2×1)

=

·
px
0

¸
.

(6.9)

where I is the identitiy matrix. The sizes of each matrix are shown for clarity. Note

that in the matrix formulation above we have moved the emission source term (βΦx)

to the left hand side of the emission equation. We first present a BEM solution

to system (6.7) on homogeneous domains, and then extend this to the case of non-

homogeneous domains.

6.2.1 Homogenous domains

By assuming a homogenous domain, where the matricesD,k,b are spatially constant

inside the domain Ω, we can rewrite Eqs. (6.7) as follows

−∇2Φ+K Φ = S on Ω (6.10)

with

K
(2×2)

=
£
D−1k

¤
, S̃

(2×1)
=
£
D−1S

¤
. (6.11)

Here, X−1 indicates the inverse of the matrix X.

We now define an arbitrary matrix of functions Ψ

Ψ
(2×2)

=

·
Ψxx Ψxm

Ψmx Ψmm

¸
. (6.12)
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Multiplying equation (6.10) by the transpose of Ψ and integrating over the entire

domain Ω yields

Z
Ω

ΨT
¡
−∇2Φ+K Φ

¢
dx =

Z
Ω

ΨT S̃ dx (6.13)

where superscript T indicates the transpose operator. Integrating by parts twice and

incorporating the boundary conditions (6.8) gives

Z
Ω

¡
−∇2Ψ+KTΨ

¢T
Φ dx+

Z
∂Ω

Ã
−ΨT ∂Φ

∂n
+

∂ΨT

∂n
Φ

!
dx =

Z
Ω

ΨT S̃ dx (6.14)

We now define the matrixΨ such that the following adjoint equation is satisfied, that

is

−∇2Ψ+KTΨ = ∆j . (6.15)

We define ρ =
¯̄
x− xj

¯̄
to be the distance from any arbitrary point x in the domain

to the jth node, xj . Then, ∆j is a 2 × 2 diagonal matrix of Dirac delta functions

centered at node j.

∆j

(2×2)
=

·
δ(ρ) 0
0 δ(ρ)

¸
. (6.16)

Hereafter Ψ is called the Green matrix of the 3-D diffusion equations (6.7) in an

infinite domain (equivalent to the Green’s function for the scalar case).

Equation (6.14) then simplifies as follows

Φ(xd) +

Z
∂Ω

Ã
−ΨT ∂Φ

∂n
+

∂ΨT

∂n
Φ

!
dx =

Z
Ω

ΨT S̃ dx. (6.17)

A modal decomposition procedure is applied to solve the system (6.15) (see Appendix

A for details) which yields, for the case of fluorescence photon migration, the following

analytical expression for Ψ
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Ψ =

 G
³q
− kx

Dx
ρ
´

G
³q

− kx
Dx

ρ
´
−G

³q
− km
Dm

ρ
´

Dm
β (

kx
Dx
− km
Dm
)

0 G
³q
− km

Dm
ρ
´

 (6.18)

Note that, for the fluorescence photon migration case, the component Ψmx of the

matrix Ψ is zero, reflecting the asymmetry in the governing equations (6.1) and

(6.2); that is, Φx influences Φm, but not vice versa. In equation 6.18, G
¡√
−λρ

¢
is

the scalar Green’s function satisfying the Helmholtz equation

∇2G− λG+ δ(ρ) = 0, λ =
kx
Dx

,
km
Dm

. (6.19)

For 3D domains, the function G is defined as:

G(
√
−λρ) = 1

4πρ
exp

³
−i
√
−λρ

´
. (6.20)

(See Appendix A for the 2D case). The integral equation (6.17) can be solved by

BEM discretization as follows. We first consider a triangular mesh discretization Υh

of the boundary ∂Ω. Without loss of generality, we employ linear elements. Over the

boundary ∂Ω, we define the real finite functional space

Vh = {u ∈ C0 (∂Ω) u |K is a linear polynomial} (6.21)

where K ∈ Υh is the generic surface triangular element and h = max
K �Υh

diam(K)

is the maximal dimension of the element. We define the global bases for Vh(∂Ω) as

{N1, N2, ......, Nn} where n is the number of nodes. The generic basis elements are

defined such that Ni(xj) = δij with δij the Kronecker symbol. By means of these

bases, Φ, its normal derivative q = ∂Φ
∂n
and the boundary flux p can be approximated

as

Φ(x) =
nX

k=1

Nk(x)Φk; q(x) =
nX

k=1

Nk(x)qk; p(x) =
nX

k=1

Nk(x)pk (6.22)
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whereΦk,qk and pk indicate values relative to the node k. Using these approximations

and choosing xj to span all the nodes of the surface Υh, i.e. xj = xi ∀ i = 1, ...n, the

equations (6.17) and (6.8) give respectively the following set of algebraic equations

HU +GV = S (6.23)

V = −R U +P. (6.24)

The matrix R is block-diagonal of dimension (2n× 2n), with n the number of nodes,

as follows

R
(2n×2n)

=


r
r ...

...
r

 . (6.25)

We define U , V, P and S as the column vectors of the nodal values of the fluence

Φ, its normal derivative q, the prescribed boundary flux p and the volume source S

respectively. These are vectors of dimension (2n× 1), i.e.

U
(2n×1)

=


Φ1

...

...
Φn

 , V
(2n×1)

=


q
1

...

...
q
n

 , P
(2n×1)

=


p
1

...

...
p
n

 , S
(2n×1)

=


s1
...
...
sn

 (6.26)

where the (2× 1) vector component sj at each node j is given by

sj
(2×1)

= −
Z
Ω

ΨT (ρ)S(x)dΩ. (6.27)

In the case of a point source located on the surface of a 3D domain, we effectively use

a lumped mass matrix to concentrate the source at a specific point xs located one

scattering length inside and normal to the surface beneath the point source, so the

integral in equation (6.27) disappears as follows:

sj
(2x1)

= −ΨT (
¯̄
xj − xs

¯̄
)S(xs) (6.28)
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By relocating the point source just inside the domain (so xj 6= xs, ∀j, s) we

avoid singularities arising from source locations that coincide with a boundary node.

The BEM matrices H, G are partitioned as

H
(2n×2n)

=


h
11

h
12

... h
1n

... ...

... h
jk

...

.... h
nn

 , G
(2n×2n)

=


g
11

g
12

... g
1n

... ...

... g
jk

...

.... g
nn

 (6.29)

where the block elements are computed as follows

h
jk

(2×2)
= δjkI

(2×2)
+

Z
∂Ω

∂ΨT (ρ)

∂n
Nk(x)dx (6.30)

g
jk

(2×2)
= −

Z
∂Ω

ΨT (ρ)Nk(x)dx (6.31)

Remark 1 Note that, since the component Ψmx of the Green matrix Ψ is zero [ see

Eq. (6.18)], it results that the matrices H and G are 3/4 populated 2n×2n matrices,

where n is the number of nodes in the BEM mesh. By defining Φx and Φm as column

vectors of the nodal values of the fluences Φx and Φm, the vectors U and V can be

rearranged as follows

U
(2n×1)

=

·
Φx

Φm

¸
, V
(2n×1)

=

·
q
x

q
m

¸
(6.32)

and one finds that the matrices H and G in Equation (6.23) have the following struc-

ture

H =

"
Hxx 0

Hxm Hmm

#
,G =

"
Gxx 0

Gxm Gmm

#
. (6.33)

For a given surface mesh, the size of the BEM matrices is smaller (dimensioned

by number of boundary nodes times 2) than the size of the FEM matrices for the

excitation and emission equations (dimensioned by number of nodes in the FEM vol-

ume mesh). The computation of the matrix block element entries (equations (6.30)
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and (6.31)) can be done using Gauss integration (we used 7 collocation points inside

each triangular element) as long as node k does not coincide with one of the nodes at-

tached to any of the triangular elements attached to node xj . In this case the integrals

appearing in equations (6.30) and (6.31) are regular. Otherwise the integrals are sin-

gular and special computation is required, as discussed in Appendix B. Substituting

equations (6.24) into (6.23) yields

¡
H −GR

¢
U = S −GP. (6.34)

This is a single equation to solve for all boundary nodal values of the light fluence U

(comprising both excitation and emission fluence).

6.2.2 Inhomogenous domains

Definition of the problem and BEM formulation

Assume that a domain volume Ω, with boundary ∂Ω, comprises an inner subdomain

Ωi, with boundary ∂Ωi, and outer subdomain Ωo, with boundary ∂Ωo = ∂Ωi ∪ ∂Ω

(Figure 6.1). The internal properties of the volume Ωi are characterized by the ma-

trices Di,ki whereas the outer volume Ωo is defined by the matrices Do,ko. The

Robin boundary conditions (6.8) still apply on ∂Ω. Inside each volume Ωi (inner)

and Ωo (outer) we define Φi and Φo as the inner and outer light fluences defined

on the boundary nodes directly touching each domain (note that nodes defining the

boundary of the inner volume Ωi are shared). Equation (6.17) still holds since each

volume is defined as being internally homogenous and two integral equations (inner
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and outer equations respectively) can be defined as follows

Φi(xd) +

*
−ΨT

i

∂Φi

∂ni
+

∂Ψi
T

∂ni
Φi

+
∂Ωi

= 0 xd ∈ ∂Ωi (6.35)

Φo(xd) +

*
−ΨT

o

∂Φo

∂no
+

∂ΨT
o

∂no
Φo

+
∂Ωo

=
D
ΨT

o S
E
Ωo

xd ∈ ∂Ωo. (6.36)

Here,Ψi andΨo are the Green matrices relative to the domainΩi and Ωo, respectively.

Note that according to the inner normal −→n i the flux leaving the inner volume, through

the inner boundary ∂Ωi, is Di
∂Φi

∂ni
whereas the flux entering the outer volume is

−Di
∂Φi

∂no
. We can now define the following matching boundary conditions required at

the shared nodes along the internal boundary ∂Ωi

Φi(x) = Φo(x), x ∈ ∂Ωi (6.37)

Di
∂Φi(x)

∂ni
= −Do

∂Φo(x)

∂no
, x ∈ ∂Ωi. (6.38)

These conditions impose the continuity of the light fluence (6.37) and the conservation

of the light flux (6.38) at the nodes on the shared boundary ∂Ωi. Consider a trian-

gular mesh discretization for both the boundaries ∂Ωi and ∂Ωo = ∂Ωi ∪ ∂Ω. In the

following, the subscript I or O indicates quantities relative to the nodes of the inner

boundary ∂Ωi or the outer boundary ∂Ωo respectively, whereas the superscript (i) or

(o) indicates properties relative to the inner volume Ωi or outer volume Ωo. We use

linear elements as we did for the homogenous case (see equation (6.22)) and indicate

with nI and nO the number of nodes of the inner and outer boundaries respectively

and nT = nI + nO the total number of nodes. The BEM discretization of the inner

and outer equations are, respectively

H(i)

(2nI×2nI )
U (i)I

(2nI×1)
+ G(i)

(2nI×2nI)
V (i)I

(2nI×1)
= 0

(2nI×1)
(6.39)

and
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H(o)

(2nT×2nT )
U (o)

(2nT×1)
+ G(o)

(2nT×2nT )
V(o)

(2nT×1)
= S(o)

(2nT×1)
. (6.40)

where the sizes of matrices and vectors are shown for clarity. Here, U (o) and V (o) and

S(o) are defined as follows

U (o)
(2nT×1)

=


U (o)I

(2nI×1)
U (o)O

(2nO×1)

 , V(o)
(2nT×1)

=


V(o)I

(2nI×1)
V(o)O

(2nO×1)

 , S(o)
(2nT×1)

=

 0
(2nI×1)
S(o)O

(2nO×1)

 , (6.41)
and U (i)I and V(i)I refer to the nodal values of the inner fluence Φi and its normal

derivative along the inner boundary ∂Ωi. The vectors U (o)I and V(o)I are relative to

the nodal values of the outer fluence Φo and its normal derivative along the inner

boundary ∂Ωi, respectively, whereas U (o)O and V(o)O are vectors relative to the nodal

values of the outer boundary ∂Ωo. Note that both the elements of the matrices H(i)

and G(i) , as well as the matrices H(o) and G(o), are computed using equations (6.30)

and (6.31), with ∂Ωi and ∂Ωo as boundary contours for the integrations, respectively.

Because of the matching conditions (6.37) and (6.38) we need to impose the

nodal conditions

U (o)I = U (i)I (6.42)

D(o)V (o)I = −D(i)V(i)I . (6.43)

where D(o) and D(i) are block-diagonal matrices defined as follows

D(o)
(2nI×2nI)

=


Do

...
...

Do

 , D(i)
(2nI×2nI)

=


Di

...
...

Di

 . (6.44)

>From Eq. (6.39) and the matching conditions (6.42) and (6.43) we derive a relation

between the vectors V(o) and U (o) that is equivalent to a discretized Robin boundary
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condition as in Eq. (6.24) for the homogenous case. Since the matrix G(i) is non

singular, from equation (6.39) one obtains

V(i)I = −
¡
G(i)

¢−1
H(i) U (i)I . (6.45)

Applying the matching condition (6.43), equation (6.45) yields

D(o) V(o)I = D(i)
¡
G(i)

¢−1
H(i) U (i)I . (6.46)

Because of the matching condition (6.42), the following equation holds

V(o)I =
¡
D(o)

¢−1D(i) ¡G(i)
¢−1

H(i) U (o)I . (6.47)

This is a relation between the vector V (o)I of the nodal normal derivatives of the outer

fluence Φo and the vector U
(o)
I of the nodal values of the fluence Φo on the inner

boundary ∂Ωi. The discretization of the Robin boundary condition on the outer

boundary ∂Ω (see equation (6.8)) is defined the same as in equation (6.23) for the

homogenous case, that is

V(o)O = −R U (o)O +P. (6.48)

Using the vector definitions (6.41), the equations (6.47) and (6.48) can be recast

together in the following block form

V(o) = −R U (o) + P (6.49)

where we have defined

R
( 2nT×2nT )

=

" ¡
D(o)

¢−1D(i) ¡G(i)
¢−1

H(i) 0
0 R

#
, P

(2nT×1)
=

·
0
P

¸
. (6.50)

Substituting equation (6.49) into equation (6.40) yields the following system

¡
H(o) −G(o)R

¢
U (o) = S(o) −G(o)P . (6.51)
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Equation (6.51) has the same matrix structure as the equation (6.34) for the homoge-

nous case. Extension to multiple non-overlapping inner domains is straightforward.

6.3 Experiments

6.3.1 Comparison to FEM and Analytical Solution on a Ho-
mogeneous Sphere

Both the proposed BEM formulation and the FEM (see [47] for a detailed description

of our vectorized finite element implementation) were implemented in Matlab Version

6.5 [87] on a 2.2 GHz Pentium IV. In order to test the proposed BEM formulation,

we first consider the propagation of light through a homogenous sphere of radius

Γ. Using spherical coordinates ρ, ϕ, and θ, for the following axisymmetric boundary

conditions

Dx
∂Φx

∂n
= Pη (ϕ) , Dm

∂Φm

∂n
= 0 (6.52)

the analytical solution of the coupled equations (6.10) in scalar form has expression

as follows (see Appendix C for derivation)

Φx (ρ, ϕ) =
Pη (ϕ) jη

³q
−kx
Dx

ρ
´

dx j
0
η

³q
−kx
Dx

Γ
´ (6.53)

Φm (ρ, ϕ) = Pη (ϕ)
βDm³

kx
Dx
− km

Dm

´
 jη

³q
−km
Dm

ρ
´

Dm

q
−km
Dm

j 0η

³q
−km
Dm

Γ
´ − jη

³q
−kx
Dx

ρ
´

Dx

q
−kx
Dx

j 0η

³q
−kx
Dx

Γ
´
(6.54)

Here, Pη (ϕ) are the Legendre polynomials, jη(x) are the spherical Bessel functions of

first kind of order η and j
0
η (x) is the derivative of jη (x).

The case of η = 0 corresponds to a uniform imposed flux on the surface of

the sphere, and hence the analytic solution is also homogenous on the surface of the

sphere, rendering this a good test case for the accuracy and stability of numerical

solutions. We have solved this problem using the BEM formulation (6.34) on 5 cm
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diameter spheres with 9 levels of surface mesh discretization, using triangular elements

with linear basis functions. Specifications for the coarsest, medium, and finest of

these nine sphere meshes are detailed in Table 1 and depicted in Figure 6.2. For

these experiments, we selected optical property values consistent with the background

properties employed in human breast phantom studies, assuming the presence of low

levels of the fluorescent contrast agent Indocyanine Green [58], as shown in Table 2,

and assumed a modulation frequency of 100 MHz. The FEM discretizations used the

same surface meshes as did the BEM but had additional discretization of the internal

volume of the sphere into tetrahedral elements, also using linear basis functions.

Experimental measurements are referenced, in order to account for instrument

effects and unknown source strength [58]. For consistency, analytic results, as well

as FEM and BEM predictions, were similarly referenced by dividing all complex

fluences (Φx or Φm) by the estimates at a designated reference location. Since this

test case has a homogeneous result, the reference location was selected arbitrarily, but

was used consistently for all three methods. The homogeneous referenced analytical

fluences thus had real component equal to one and imaginary component equal to

zero. For both the FEM and BEM, we define the prediction error as the referenced

analytical solution minus the referenced numerical prediction, at all surface nodes

on the sphere, for both real and imaginary components of the referenced predicted

fluence (Φx or Φm). Results were assessed by two metrics: (i) the root mean square

of the prediction error (RMSE) was used to indicate accuracy — this metric includes

residual bias in the predictions, and (ii) the standard deviation (σ) of the prediction

error was used to indicate smoothness — this metric excludes bias in the predictions.
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6.3.2 Comparison to FEM and Experimental Data from a
Non-homogeneous Breast Phantom

In order to test the BEM on a non-homogeneous domain, we compared predictions

from the BEM formulation (6.51) to experimentally acquired measurements. In prior

work [58, 59, 56, 57], we experimentally collected measurements of frequency do-

main fluorescence emission fluence (Φm) from the surface of a breast shaped tissue-

mimicking phantom (a 10 cm diameter hemispherical "breast" atop a 20 cm diameter

cylindrical portion of the "chest wall"). The instrumentation and data collection

protocol is outside the scope of this paper, but is fully described elsewhere [58]. By

incorporating a finite element model [47] of this phantom into the Bayesian approxi-

mate extended Kalman filter [45, 58, 40, 41] image reconstruction algorithm, we have

successfully performed 3-D tomographic reconstructions of both fluorescence absorp-

tion (µaxf) [58, 59, 56] and fluorescence lifetime (τ) [57]. Herein, we compare the

model mismatch of the FEM and BEM forward models to an 11-source experimen-

tally acquired data set [58], with background optical properties as shown in Table 2,

and a 1 cc fluorescent target with 100:1 target:background contrast in µaxf , with cen-

troid located 1.4 cm from the surface of the phantom breast. This data set comprised

401 measurements of Φm, selected from 704 measurements at 64 spatially distributed

optical collection fibers in response to 11 spatially distributed sequential point source

illuminations (only those measurements above the noise floor were retained, as de-

scribed in [58]).

The coarsest FEM mesh that we have found to adequately resolve a 1 cc target

and achieve acceptable model match contains 6956 nodes, and is shown in Figure 6.3a.

This is the mesh that was used for the image reconstructions reported in [58, 59, 57].
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However, because the BEM requires more memory than the FEM, we were not able to

run the BEM using the surface mesh shown in Figure 6.3a. Consequently, we imple-

mented a much coarser 708 node BEM mesh to model the breast phantom, as shown

in Figure 6.3b, where the inter-node spacing on the domain surface is approximately

double that used in the FEM. Note that the geometry and location of the cubic target

can be very accurately represented in even a course BEMmesh, because a) the surface

mesh of the internal target is independent of the coarseness of the mesh on the outer

domain surface, and b) the shape of the internal surface is not constrained by the

locations of nodes in an internal volume discretization, as in the FEM. We remind

the reader that in this manuscript we are only addressing the forward problem, where

the target location, size, and shape are known. In the inverse problem, the locations

of internal target surface nodes could be iteratively estimated, (e.g., as in [71]).

The experimental measurements are referenced by dividing each measurement of

emission fluence by the measurement at a designated reference detector [58], for each

source illumination. Our FEM and BEM predictions were thus similarly referenced

for comparison to the experimental data. Model mismatch is defined as the real and

imaginary components of the referenced measured Φm minus the referenced predicted

Φm. The mean of the model mismatch is an indication of bias in the combined model

and measurement error. The variance of the model mismatch is a measure of the

noise level in the combined model and measurement error.
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6.4 Results

6.4.1 Comparison to Analytical Sphere Solutions

In comparison to the analytical solution on the homogeneous sphere using biologically

realistic optical properties, the BEM outperformed the FEM by over an order of mag-

nitude, in both accuracy (RMSE) and smoothness (σ) of both Φx or Φm predictions,

and this effect became increasingly pronounced on finer meshes. For example, in Fig-

ure 6.4 we show the predictions on the finest sphere mesh used, where it is apparent

that the BEM solutions have much less bias and noise than the FEM solutions. Both

convergence and stability improve more rapidly with the BEM than with the FEM,

as the meshes get more refined (Figure 6.5). We believe these results are due to the

additional discretization error incurred by the FEM, due to the internal volume mesh.

These results imply that we may be able to achieve BEM predictions from coarser

meshes that are more accurate than FEM predictions with finer meshes.

6.4.2 Comparison to Experimental Data from Breast Phan-
tom

Referenced predictions of emission fluence from the FEM with the fine mesh (Figure

6.3a) and the BEM with the coarser mesh (Figure 6.3b), exhibited similar model

mismatch when compared to experimental results on the non-homogeneous breast

phantom. In Figure 6.6, we show referenced measurements and predictions for two

of the eleven source illuminations. Here it can be seen that, for some measurements,

the FEM matches the data more closely than the BEM, and for other measurements

the BEM matches the data more closely. Some measurements are clearly outliers

that add to the model mismatch, but without a priori knowledge of the true domain

one would not know this, so we have left them in. On average, over all 11 sources
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(401 source-detector pairs), the distribution of the observed model mismatch was

very similar for both FEM and BEM predictions of real and imaginary components

of emission fluence, as shown in Figure 6.7, and quantified in Table 3. Although the

inter-node spacing on the domain surface in the BEMmesh was approximately double

that of the FEM mesh (Figure 6.3), the bias of the BEM predictions was actually

lower than that from FEM predictions, and the variances were similar (Table 3).

The FEM system matrices are large and sparse, while the BEM system matrix

is relatively small but 3
4
dense (see equations 6.33). In fact, although the BEM breast

mesh had an order of magnitude fewer nodes than the FEM mesh, it had an order

of magnitude more non-zero elements in its system matrix (Table 4), thus requiring

more memory. Despite this, total prediction time for all 11 source illuminations on

the breast model took about half the time with the BEM than with the FEM. If

the portions of the system matrix associated with the outer mesh (H(o) and G(o))

were pre-computed, the BEM only took one eighth the time of the FEM (Table 4).

Pre-computing the outer mesh may be a practical approach in a BEM tomography

application where the background properties and geometry of outer domain are held

constant, and only the locations, sizes, shapes, and values of internal targets are

estimated. Since this was a prototype implementation of the BEM and used a direct

solver, we anticipate that further implementation improvements will yield additional

speedups for the BEM.

6.5 Summary and Conclusions

Finite element method (FEM) approaches to fluorescence tomography in clinically rel-

evant volumes have proven feasible [58, 59, 56, 57], but are highly under-determined.
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Consequently FEM-based tomographic reconstructions are dependent on, and sensi-

tive to, regularization schemes. In contrast, boundary element method (BEM) based

tomography may afford high resolution imaging of internal targets, in the context of

an over-determined problem. While FEM models may be necessary for modeling do-

mains with a large degree of continuously varying heterogeneity, the BEM method is

appropriate for applications in which the domain can be modeled with a small number

of homogeneous subdomains. One such potential application is when modeling flu-

orescence from molecularly-targeting dyes that exhibit highly-localized spatial accu-

mulation (e.g., on discrete tumors). Using the BEM, only the external boundary and

the internal target boundaries require discretization, and regional solutions are solved

analytically. The BEM can accurately model the geometries of internal subdomains,

independent of the degree of surface discretization. Unfortunately, the application of

a BEM forward model to the fluorescence diffusion equations is not straight-forward,

because of the internally-distributed fluorescent emission source caused by embedded

fluorophore.

In this contribution, we have developed a 3D BEM formulation that allows the

simultaneous solution of the excitation and emission equations that describe the gen-

eration and propagation of fluorescent light through turbid media, without the need

for an internal volume mesh. This formulation is based on a derivation of the fun-

damental solution to the coupled system of excitation and emission equations. The

BEM is shown to be more accurate and more stable than the FEM, when compared to

an analytic solution on a spherical homogeneous domain using optical properties con-

sistent with those of biological tissues, owing to the lower internal discretization error

inherent in the BEM. For a given inter-node spacing in the mesh, the BEM requires
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more memory and runtime than the FEM. However, the BEM with a coarser mesh

gives more accurate and stable results, and takes less computer time, than the FEM

with a fine mesh. Emission fluence predictions made with the BEM using a 708-node

boundary mesh, with roughly double the inter-node spacing of boundary nodes as in

a 6956-node FEM volume mesh, match experimental frequency-domain fluorescence

emission measurements acquired on a non-homogeneous 1087 cm3 breast-mimicking

phantom as well as those of the FEM, but required only 1/8 to 1/2 the computation

time. These encouraging results on the BEM forward model of fluorescence photon

migration motivate us to pursue BEM-based fluorescence tomography in future work.

6.6 Appendix A: Analytical derivation of the Green
matrix Ψ

A modal decomposition procedure is applied to solve for the fundamental solution

(Ψ) of the coupled adjoint system (6.15), as follows. Set K̃ = KT in equation (6.15)

as

K̃ =

·
K̃x K̃xm

0 K̃m

¸
where

K̃x =
kx
Dx

, K̃xm = −
β

Dm
, K̃m =

km
Dm

.

In order to solve the adjoint system (6.15), define a generic non singular matrix V

and the variable transformation

Ψ = V U. (6.55)
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The new differential equation satisfied by the transformed variableU is readily derived

from equation (6.10) as follows

∇2U− (V−1K̃V)U+V−1∆j = 0. (6.56)

We now choose V to be the matrix having as column entries the eigenvectors of the

matrix K̃. It follows that V−1K̃V = Λ with Λ the diagonal matrix of the eigenvalues

and equation (6.56) simplifies

∇2U−ΛU+V−1∆j = 0. (6.57)

Here,

Λ =

·
K̃x 0

0 K̃m

¸
, V =

·
1 α
0 1

¸
, V−1 =

·
1 −α
0 1

¸
(6.58)

where

α =
K̃xm

K̃m − K̃x

=
β
Dm

kx
Dx
− km

Dm

(6.59)

>From the matrix equation (6.57) the following scalar equations for the entries Uij

of the matrix U can be derived
∇2U11 − K̃xU11 + δ(ρ) = 0

∇2U12 − K̃xU12 − α δ(ρ) = 0

∇2U21 + K̃mU21 = 0

∇2U22 − K̃mU22 + δ(ρ) = 0.

(6.60)

Note that the component U21 is zero and the analytical expression of the matrix U

is readily obtained

U =

 G
³p
−K̃x ρ

´
−α G

³p
−K̃x ρ

´
0 G

³p
−K̃m ρ

´  (6.61)

where G
¡√
−λr

¢
satisfies the Helmholtz-type equation

∇2G− λG+ δ(ρ) = 0 λ = K̃x, K̃m. (6.62)
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The following radiation boundary condition at infinity needs to be satisfied in order

to guarantee decay-outgoing solutions from the location x = xj, i.e.

lim
ρ→∞

µ
∂G

∂ρ
− i
√
−λG

¶
= 0. (6.63)

In two dimensions

G(
√
−λρ) = i

4
H1
0

³√
−λρ

´
(6.64)

where H1
0 (x) is the Hankel function of first kind and order 0, whereas in three dimen-

sions

G(
√
−λρ) = 1

4πρ
exp

³
−i
√
−λρ

´
. (6.65)

Using the transformation (6.55) the Green matrix Ψ has the general expression as

follows:

Ψ =

 G
³p
−K̃xρ

´
−α G

³p
−K̃xρ

´
+ α G

³p
−K̃mρ

´
0 G

³p
−K̃mρ

´  . (6.66)

6.7 Appendix B: Computation of the matrices H
and G

Equations (6.30) and (6.31) are required to compute the element entries of the ma-

trices H and G (equations (6.29)), and are repeated below:

h
jk

(2×2)
= δjkI

(2×2)
+

Z
∂Ω

∂ΨT

∂n
Nk(x)dx (6.67)

g
jk

(2×2)
= −

Z
∂Ω

ΨTNk(x)dx (6.68)

Special computation is required if the node k coincides with one of the nodes attached

to any of the triangular elements attached to node xj. In this case, Gauss quadra-
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ture gives poor approximations. In order to compute these integrals, we set a polar

coordinate system (ρ, θ) at xj. Since ρ =
¯̄
x− xj

¯̄
, equations (6.67) and (6.68), in the

polar system, transform to

h
jk

(2×2)
= δjkI

(2×2)
+

Z
∂Ω

∂ΨT

∂ρ

∂ρ

∂n
Nk(ρ, θ)ρ dρdθ, (6.69)

g
jk

(2×2)
= −

Z
∂Ω

ΨT Nk(ρ, θ)ρ dρdθ. (6.70)

Here, the integral in (6.70) is regular, since Ψ ∼ 1
ρ
and can be easily computed by

numerical quadrature in the domain (ρ, θ). The integral in (6.69) is weakly singular,

since
∂Ψ

∂ρ
∼ 1

ρ2
. In order to compute it, we consider an external small spherical

surface ∂Ω� of radius � centered at node xj (Figure 6.8). The integral splits into two

components, as follows:

h
jk

(2×2)
= δjkI

(2×2)
+

Z
∂Ω�

∂ΨT

∂ρ

∂ρ

∂n
Nk(ρ, θ)ρ dρdθ +

Z
∂Ω\∂Ω�

∂ΨT

∂ρ

∂ρ

∂n
Nk(ρ, θ)ρ dρdθ (6.71)

Note that the second component of (6.71) vanishes, since ∂ρ
∂n
= 0 in ∂Ω\∂Ω�. Conse-

quently, the integral simplifies as follows:

h
jk

(2×2)
= δjkI

(2×2)
+

Z
∂Ω�

∂ΨT

∂ρ
Nk(ρ, θ)ρ dρdθ (6.72)

In the limit as �→ 0, it holds that Nk(ρ, θ)→ δjk + o(�), and (6.72) simplifies to:

h
jk

(2×2)
= δjkI

(2×2)
(1− ϑj) + o(�). (6.73)

Here, ϑj is the internal solid angle with respect to the normal direction facing the

outside of the boundary ∂Ω at the node xj (Figure 6.8). If the surface is flat, the

solid angle at the node is equal to 1
2
.
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6.8 Appendix C: Analytic Solution to Homoge-
neous Domain

We derived the analytic solution of the coupled system (6.10) as follows. Using a

similar procedure as applied to derive the Green matrix as described in Appendix

A, one can obtain the following eigenfunction expansion for the equations in system

(6.10). Using spherical coordinates ρ, ϕ, and θ,

Φx(ρ, ϕ, θ) =
X

Aηζ exp(iζθ)P
ζ
η (ϕ) jη

Ãr
− kx
Dx

ρ

!
(6.74)

Φm(ρ, ϕ, θ) =
X

exp(iζθ)P ζ
η (ϕ)

"
Bηζ jη

Ãr
− km
Dm

ρ

!
− χAηζjη

Ãr
− kx
Dx

ρ

!#
.(6.75)

Here, Aηζ and Bηζ depend upon the boundary conditions, P ζ
η (ϕ) are the Legendre

functions (for ζ = 0 they become the Legendre polynomials Pη(ϕ) ), jη(x) is the

spherical Bessel function of first kind of order η

jη(x) =
J(η+ 1

2)
(x)

√
x

(6.76)

where Jη(x) is the Bessel function of first kind of order η. The parameter χ is defined

as follows

χ =
βDm³

kx
Dx
− km

Dm

´ .
The boundary conditions (6.52) impose axisymmetry, i.e. ζ = 0, and from equations

(6.74) and (6.75) the two following equations are obtained

Aη Dx

r
− kx
Dx
j
0
η

Ãr
− kx
Dx

ρ

!
= 1 (6.77)

Bη

r
− km
Dm

j
0
η

Ãr
− km
Dm

ρ

!
− χAη

r
− kx
Dx
j
0
η

Ãr
− kx
Dx

ρ

!
= 0. (6.78)

where j
0
η (x) is the derivative of jη (x). Then one can solve for the coefficients Aη

and Bη and the solutions for the homogeneous sphere (6.53) and (6.54) are readily

derived.
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Table 6.1: Three of the nine mesh discretizations of the 5 cm diameter sphere.
Coarsest sphere Medium sphere Finest sphere
FEM/BEM FEM/BEM FEM/BEM

Avg node spacing (cm) 1.43/1.88 0.56/0.66 0.32/0.40
Max node spacing (cm) 2.20/2.20 0.95/0.83 0.60/0.52
Numbersvg of nodes 53/26 873/218 4215/602

Table 6.2: Optical parameter values used in all simulations at the excitation wave-
length and the emission wavelength.

µaf (cm−1) µaf (cm−1) µaf (cm−1) R τ(s) φ
λx 5.98e− 3 2.48e− 2 1.09e− 2 2.82e− 2 − −
λm 1.01e− 3 3.22e− 2 9.82e1 2.82e− 2 5.6e− 10 1.6e− 2

Table 6.3: Error metrics for FEM and BEM predictions of real and imaginary compo-
nents emission fluence, as compared to measured data on the breast phantom. Here,
mean (a.k.a., bias) and variance are reported for referenced (measured - predicted)
m from 401 source-detector pairs (all 11 sources) (see Figure 7).

Bias Re (φm) V ariance Re (φm) Bias Im (φm) V ariance Im (φm)
FEM −0.0184 0.0134 −0.0082 0.0034
BEM −0.0031 0.0153 −0.0061 0.0032
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Table 6.4: Computational requirements of two breast meshes used (Figure 3).
Breast mesh Nodes Elements Non-zeros Runtime (s)

FEM 6, 956 34, 413 188, 732 139
BEM 708 1, 408 1, 503, 792 67 (17 with pre-comp. of outer mesh)

a) b)

o∂Ω

i∂Ω

in
r

on
r

on
r

oΩ

iΩ

Figure 6.1: Geometry and notation of inhomogeneous domain showing a) the outer
subdomain Ωo and b) one inner subdomain Ωi (illustrated in 2D, for clarity).

a) b) c)a) b) c)

Figure 6.2: The surface mesh for the a) coarsest, b) medium, and c) finest discretiza-
tions of the nine sphere meshes used (see Table 1).
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a)

b)

a)

b)

Figure 6.3: Cut-away views of the discretizations used for the breast phantom sim-
ulations. a) Finite element mesh, and b) boundary element mesh showing internal
target. See Table 4 for additional specifications.
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Figure 6.4: FEM and BEM referenced predictions for excitation (a,c) and emission
(b,c) fluence, at all surface nodes on the finest sphere (Figure 2c, Table 1). Perfect
predictions would be a horizontal line at 1.0 for the real components (a,b) and a
horizontal line at 0.0 for the imagingary components (c,d).
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Figure 6.5: Accuracy (a,b) and smoothness (b,d) of FEM and BEM predictions of
emission fluence on the homogeneous sphere, as a function of sphere discretization.
Here, RMSE is the root mean square, and σ is the standard deviation, of the prediction
error (referenced analytical - referenced predicted).
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Figure 6.6: a) Real and b) imaginary components of predicted and observed emission
fluence at detector locations. For clarity, data for only two sources are shown; see
Figure 7 and Table 4 for summary statistics on all eleven sources.
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Figure 6.7: Observed frequency distribution of a) real and b) imaginary components
of model mismatch of (measured-predicted) Φm, for all 401 source-detector pairs on
the non-homogeneous breast phantom, using the meshes shown in Figure 3. If there
were no measurement or model error the distributions would be a vertical spike at 0
of height 1.0.
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Figure 6.8: Local geometry of a node, showing the spherical surface ∂Ω� centered at
node xj, and the internal solid angle ϑj, described in Appendix B.
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