
Proceedings of OMAE 2006
25th International Conference on Offshore Mechanics and Arctic Engineering

June 4-9, 2006, Hamburg, Germany,

OMAE2006-92527

EXTREME WAVES AND STOCHASTIC WAVE GROUPS

Francesco Fedele(1) & M. Aziz Tayfun(2)

(1)GEST & GMAO, NASA Goddard Space Flight Center, Greenbelt MD, USA
(2)Dept. of Civil Engineering, College of Engineering and Petroleum, Kuwait Univ., Kuwait

ABSTRACT

We introduce the concept of stochastic wave groups to ex-
plain the occurrence of extreme waves in nonlinear random seas,
according to the dynamics imposed by the Zakharov equation
(Zakharov, 1999). As a corollary, a new probability of ex-
ceedance of the crest-to-trough height which takes in to account
the quasi-resonance interaction is derived. Furthermore, a gener-
alization of the Tayfun distribution (Tayfun, 1986) for the wave
crest height is also proposed. The new analytical distributions
explain qualitatively well the experimental results of Onorato
et al. (2004,2005) and the numerical results of Juglard et al.
(2005).

1 INTRODUCTION

Waves that are extremely unlikely as judged by the
Raleigh distribution are called freak waves. The freak event
occurred on January 1st 1995 under the Draupner platform
in the North Sea (Wist et al.,2002) provides evidence that
such waves can occur in the open ocean. During this freak
event, an extreme crest with an amplitude of 18.5 m oc-
curred. The maximal wave height of 25.6 m was much more
than twice the significant wave height of about 10.8 m. Re-
cent studies have outlined different feasible scenarios for the
occurrence of extreme waves (Kharif & Pelinivosky, 2003).
In particular, one of them is based on the nonlinear mech-
anism of second order bound waves (Tayfun, 1980;1986).
They can cause a concentration of wave energy in a small
area of the ocean through the time-space focusing of a sec-
ond order nonlinear wave group as explained by Fedele
(2006b) and Fedele & Arena (2005) by means of the theory
of quasi-determinism of Boccotti (1989,2000). According to
this model the wave crest amplitude H is distributed ac-
cording to the Tayfun distribution (Tayfun, 1980;1986) and
a freak wave, that is a wave for which 2H/Hs > 2.2, is a rare

realization of a second order nonlinear wave population, Hs

being the significant wave height. Moreover the underly-
ing stochastic process is non-gaussian but stationary and
ergodic.

Another relevant scenario is based on the third or-
der four-wave resonance interaction of free waves (Benney,
1962, Komen et al., 1996; Janseen, 2003). In this case the
weakly nonlinear energy transfer among resonant quartets
occurs according to the deterministic Zakharov integraldif-
ferential equation (Zakharov, 1999; Krasitskii, 1996). For
the case of narrow-band long-crested waves the Zakharov
equation reduces to the nonlinear Schrödinger (NLS) equa-
tion (Janseen, 2003) valid for narrow-band spectra or to
the enhanced NLS equation derived by Dysthe (Trulsen et
al., 2000), valid for broader spectral bandwidth and larger
steepness.

An initial wave packet changes in time when the energy
flows from the central mode to the side-band modes because
of the Benjamin-Feir instability (Benjamin & Feir, 1967). If
only a discrete but finite set of side-band modes are consid-
ered and if the discretization is done consistently to man-
tain the Hamiltonian integrability of the NLS equation (
Ablowitz & Herbst, 1990), then the energy eventually flows
back to the central mode restoring the wave to its initial
state. This energy exchange occurs in time recurrently and
it produces an effect of intermittence to the surface displace-
ment: high crests occur intermittently in time, affecting the
statistics of the wave crests which tends to deviate from be-
ing Gaussian (Janseen, 2003). Extreme events become more
probable due to the Fermi-Pasta Ulam recurrence and the
kurtosis of the wave distribution increases (Onorato et al.
2001; Janseen, 2003). In the limit of an infinite set of side-
band modes ( continuous case ) the recurrence phenomenon
is suppressed by phase mixing and the spectrum asymptoti-
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cally relaxes toward a statistical non-gaussian steady state.
Such an asymptotic behavior has been confirmed by the
numerical simulations of Dysthe et al., (2003) based on an
accurate discretization of the enhanced NLS equation of
Dysthe (Trulsen et al., 2000). According to this second sce-
nario a freak wave is thus a typical realization of a special
wave population.

In recent wave tank experiments Onorato et. al. (2005)
show that a Benjamin- Feir type modulation instability is
dominant only in long-crested narrow-band waves. To char-
acterize the nonlinear behavior of the random field, they
considered the Benjamin-Feir index (BFI) introduced by
Janseen (2003) but defined for the first time by Onorato et
al. (2001), that is

BFI =

√
2εd

2∆K/ |kd|
.

Here, εd is the characteristic steepness of the linear waves,
|kd| is the wave number corresponding to the peak of
the linear spectrum and 2∆K is the bandwidth of the
wave spectrum.They investigated the spatial evolution of
quasi-stationary gaussian initial conditions generated by the
wavemaker and found that the kurtosis tends to exceed its
gaussian value and stabilizes monotonically as the distance
from the wavemaker increases. The deviation from gaus-
sianity strongly affects the wave-crest amplitudes whose
sample distribution derived from the tank measurements
seems to deviate from the Tayfun distribution (Tayfun,
1980;1986). Strong deviations from the Rayleigh law were
also found for the crest-to-trough height distribution (Ono-
rato et al., 2004). Socquet-Juglard et al. (2005) arrive at
the same conclusions by studying the time evolution of ho-
mogenous random fields by means of numerical simulations.

Both the experimental results of Onorato et al.
(2004,2005) and the numerical simulations of Juglard et al.
(2005) show that for the case of multi-directional random
waves the nonlinear effects due to bound waves are domi-
nant with respect to the four-wave resonance interaction of
free waves and the Tayfun distribution explains very well
the crest statistics. However, no analytical models like the
Tayfun distribution are currently available for the case of
third order nonlinear narrow-band waves.

The aim of this paper is to introduce a stochastic theory
of wave groups to explain the occurrence of extreme waves
in nonlinear random seas and their statistics. The starting
point is the Zakharov equation which governs the dynamics
of weakly nonlinear surface waves. Guided by the theory of
quasi-determinism of Boccotti (1989,2000) and supported
by the analytical work of Lindgren (1970,1972) and the re-
gression approximation method of Rychlik (1987),we intro-

duce the concept of the stochastic wave group, key element
in explaining the occurrence of extreme waves either during
the spatial evolution of stationary, gaussian initial condi-
tions as in channel experiments or during the time evolution
of initial homogenous gaussian random fields. As a corol-
lary a new probability of exceedance of the crest-to-trough
height which takes in to account the quasi-resonance inter-
action is derived. The new wave height distribution explains
the strong deviations from the Rayleigh law and tends to
stabilize at times (distances ) larger then the Benjamin-Feir
time (length) scale in agreement with the experimental re-
sults of Onorato et al. (2004). The theory presented here,
is also extended to consider second order bound wave non-
linearities, thus providing a generalization of the Tayfun
distribution for the wave crest height.

2 WAVE GROUPS IN A GAUSSIAN SEA

Consider the general case of three dimensional Gaussian
random waves and define σ as the standard deviation of the
surface displacement. In the theory of quasi-determinism,
Boccotti (1989,1993a,b, 2000) assumes that a large wave
crest of amplitude h has been recorded at the point x =
x0 = (x0, y0) at time t = t0. Then he proves that as
h/σ → ∞, with probability approaching one , a well de-
fined wave group has passed through the point x = x0 when
the apex of its development stage occurred at time t = t0.
If h/σ →∞, i.e. the crest is very high with respect to the
mean crest height, then with probability approaching 1, the
surface displacement η in the neighborhood of x = x0 and
t = t0 is asymptotically equal to the sum of a determinis-
tic part ηdet(X, T ) of O(h) and a residual random process
r(X, T ) of O(1), that is

η(x0 +X, t0 + T ) = ηdet(X, T ) + r(X, T ) (1)

where

ηdet(X, T ) = h
Ψ(X, T )

Ψ(0, 0)
; (2)

Here, O(x) means ’the same order as x’, X =(X,Y ) and
Ψ(X, T ) is the space-time covariance given by

Ψ(X, T ) =

∫ ∞

0

S(k) cos (k ·X− ωT ) dk. (3)

Here, S(k) is the given wave spectrum and σ2 is the
variance of the Gaussian sea. Note that Ψ(0, 0) =
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∫
S(k)dk = σ2. The wave frequency ω is related to the

wave number k = |k| through the linear dispersion relation
ω2/g=k tanh (kd) with g as the acceleration due to gravity.
In the limit of h/σ →∞, in Eq. (1) the residual r(X, T ) is
negligible if compared to the leading term, and this implies

η(X, T ) ≃ ηdet(X, T ), as h/σ →∞ (4)

Thus, an exceptionally high local maximum, with a very
high degree of probability, is also the crest of its wave, since
ηdet(X, T ) attains its absolute maximum at (T = 0,X = 0).

Note that ηdet(X, T ), or equivalently Eq.(4), can be in-
terpreted as the wave surface around a randomly chosen
very large crest (Boccotti, 1989; Lindgren 1970,1972) where
now the variable h is interpreted as stochastic and its prob-
ability density function ph(h) is given by

ph(h)dh =
EX(h)dh

EX+
= exp

(
− h2

2σ2

)
h

σ
dh, as

h

σ
→∞;
(5)

Here, EX(h)dh is the expected number for unit time of lo-
cal maxima of the surface displacement recorded in time
at a fixed point at the sea whose elevation is between
h and h + dh, and EX+ is the expected number per unit
time of zero up-crossing of the surface displacement. This
model can be thought as a first order regression approxi-
mation of the wave process locally to a randomly chosen
very large crest according to Rychlik (1987). Thus, the sto-
chastic wave group in Eq. (4) can be thought as a ’gene’
for a Gaussian sea when the interest is in the dynamics
of the process at high energy levels (Fedele 2005,2006b).
With high probability the occurrence of extreme events in
a Gaussian sea are due to the dynamics of a wave group:
an isolated extreme crest event, an extreme crest-to-trough
wave event or two consecutive extreme crest events occur
when the same wave group is in different configurations
(Fedele,2006b).

3 WAVE GROUPS IN NON-GAUSSIAN SEAS

The stochastic interpretation of the wave group
ηdet(X,T ) given in the previous section is the key element
for explaining extreme events in nonlinear random seas. Us-
ing the three fundamental invariants of the Zakharov equa-
tion (Zakharov 1999), i.e. the wave action, wave momen-
tum and Hamiltonian, Fedele (2006a) related the initial and
final time conditions of the phase-space trajectory of the
Zakharov equation for the most likely dynamical path of
formation of an extreme wave. Fedele argued that, in a non-
linear random sea before the extreme wave occurs, mostly

likely a wave group in its first stage of development exists
and nonlinearities are negligible. Thus, this wave group
resembles the characteristics of a Gaussian group at some
time T = −T0 prior the focussing time T = 0 and it can
be defined as in Eq. (4). According to this equation, in
absence of nonlinearities, the initial Gaussian wave group
would focus at time T = 0 with a formation of an extreme
linear wave with crest amplitude h. Due to nonlinearities,
at the same time T = 0, the wave group will focus forming
an extreme crest with different amplitude hnl.

To relates the nonlinear amplitude hnl and the linear
crest amplitude h, Fedele (2006a) defined an extremal for-
mulation and proposed a new semi-analytical solution for
the probability of exceedance of the nonlinear wave crest
height hnl. The relevance of this extremal formulation is
highlighted by the deterministic variant of it proposed re-
cently by Van Groesen et al. (2006a,b) for the case of the
nonlinear Schrödinger equation.

In the following the extremal formulation proposed by
Fedele (2006a) is briefly revisited and its exact solution is
derived for the case of nonlinearly modulated long-crested
narrow-band waves. As a corollary, new analytical solutions
for the probability of exceedance for the crest-to-trough
heights and crest heights are provided. They represent a
generalization of the Rayleigh and Tayfun distribution re-
spectively, and explain qualitatively well the experiments of
Onorato et al. (2004,2005) and the numerical simulations
of Juglard et al. (2005).

3.1 The extremal formulation

Consider weakly nonlinear multidirectional water waves
over a finite depth d. The free-surface η(X, T ) is given by

η(X, T ) =
1

2π

∑√
ωn

2g
|Bn(T )| exp [i (kn·X−ωnT + ϕn(T ))] + c.

(6

where ϕn(T ) are arbitrary time-varying phase angles and
the spectral component Bn(T ) is defined as

Bn(T ) = |Bn(T )| exp[iϕn(T )] n = 1, ...N

and X = (X,Y ) is the horizontal spatial vector. The wave
frequency ωn is related to the wave number kn through
the linear dispersion relation ω2n/g = |kn| tanh(|kn|d). If
third order nonlinear effects are considered, then the spec-
tral components Bn(T ) of the wave envelope satisfy the fol-
lowing discrete version of the Zakharov equation (Zakharov,
1999)
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dBn

dT
= −i

∑

p,q,r

Knpqrδn+p−q−rB
∗
pBqBr exp (i∆ωnpqr T ) .

(7)

Here, B∗
n denotes the complex conjugate of Bn, and the

kernel Knpqr = K(kn,kp,kq,kr). is a real function of
kn,kp,kq,kr and it can be derived by symmetrization as
described in Krasitskii (1994). The generalized Kronecker
delta δn+p−q−r denotes that summation is taken over those
subscripts satisfying kn + kp = kq + kr and ∆ωnpqr =
ωn + ωp − ωq − ωr. The conserved quantities of Eq. (7)
are the discrete Hamiltonian

H ({Bn(T )}) =
∑

n
ωnBnB

∗
n +

(8)

+
1

2

∑

n,p,q,r

Knpqrδn+p−q−rB
∗
nB∗

pBqBr exp (i∆ωnpqrT ) ,

the wave action A and wave momentum M=(Mx,My),
that is

A ({Bn(T )}) =
∑

n
BnB∗

n, (9)

M ({Bn(T )}) =
∑

n
knBnB∗

n.

Here, {Bn(T )} indicates the set of the spectral components
Bn(T ) at time T .

Consider now the stochastic linear wave group defined
in Eq.(4) in its discrete form, that is

ηdet(X, T ) =
h

σ2

N∑

j=1

1

2
a2n exp [i (kn·X−ωnT )] + c.c.;

(10)

In this case the wave spectrum is given by

S(k) =
N∑

n=1

1

2
a2nδ(k− kn), (11)

where {an} is a given set of wave amplitudes and the vari-
able h is random with a Rayleigh probability density func-
tion ph(h) given by Eq. (5).

Assume that, at some initial time T = −T0, the nonlin-
ear surface displacement η(X, T ) is described by the linear
group ηdet(X, T ) defined in Eq. (10), that is η(X,−T0) =
ηdet(X,−T0) which in the Fourier domain implies

Bn(T = −T0) = B̃n exp (iϕ̃n) n = 1, ...N.
(12)

where

B̃n =
h

2σ2
π

(
ωn

2g

)−1/2
a2n exp (−iωnT0) ,

ϕ̃n = 0 n = 1, ...N.

As time varies, the nonlinearities characterized by resonant
and non-resonant quartet interactions modify the initial lin-
ear wave group ηdet(X, T ), but during its nonlinear evolu-
tion the time invariance of the three motion integrals given
by Eqs. (8-9) must hold, that is

H ({Bn}) = H
({

B̃n

})
, (13)

A ({Bn}) = A
({

B̃n

})
,

M ({Bn}) =M
({

B̃n

})
.

In this setting, we seek the critical conditions that yield the
largest wave at (X =0, T = 0). These are given by imposing
that all the elementary waves in Eq. (6) are in phase at the
focussing time, that is

ϕn(0) = 0 n = 1, ...N. (14)

This condition ensures that the nonlinear surface displace-
ment η(X, T ) admits a stationary point at (X = 0, T = 0)
and the wave amplitude is given by

η(0, 0) =
1

π

∑√
ωn
2g
|Bn(0)| (15)

Here, the set of harmonic coefficients {Bn(0)} satisfying
Eq. (13) can be chosen such that η(0, 0) is the absolute
maximum attained by η(X, T ). Define the dimensionless
frequency wn = ωn/ωd and the dimensionless variables
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Xn(T ) = h
|Bn(T )|√

ωd
2g

(16)

where h is highest linear crest amplitude of the linear wave
group ηdet(X, T ) and ωd the peak frequency. Note that

Xn(−T0) = X̃n = h

∣∣∣B̃n

∣∣∣
√

ωd
2g

.

Then, the optimal set {Bn(0)} , or equivalently the set {Xn}
(hereafter Xn indicates the values Xn(0) at time T = 0),
satisfies the following optimization problem

max
(X1,...XN )∈ℜN

N∑

n=1

Xn
√

wn Xn � 0 (17)

subject to the constraints given in Eq. (13), which in terms
of the Xn (or equivalently Xn(0)) variables are given by

N∑

n=1

X2
n =

N∑

n=1

X̃2
n,

N∑

n=1

|kn|X2
n =

N∑

n=1

|kn| X̃2
n,
(18)

and

N∑

n=1

wnX2
n +

1

2
(εdξ)

2
∑

n,p,q,r

K̃npqrXnXpXqXr =

N∑

n=1

wn X̃2
n +

1

2
(εdξ)

2 ·
∑

n,p,q,r

K̃npqrδn+p−q−rX̃nX̃pX̃qX̃r exp
(
−i∆̃npqr ωdT0

)
.

Here, εd = |kd|σ is the characteristic steepness of the linear
waves, ξ = h/σ is the dimensionless linear wave crest ampli-
tude, ∆̃npqr = wn +wp −wq −wr , and K̃npqr =

1
|kd|

3Knpqr

with |kd| and ωd respectively the wave number and fre-
quency corresponding to the peak of the linear spectrum.

In the Euclidean space RN with N the number of har-
monic components, the constraints in Eq. (13) represent

four hypersurfaces. Their intersection manifold Γ ∈ RN-4
is bounded since one of the hypersurfaces is a hypersphere.
Because the objective function in Eq. (17) is linear in the
Xn variables, then the point solution of the optimization
problem lies on the intersection manifold Γ.

The solution of the constrained optimization problem
in Eq. (17) provides the relation between the highest linear
amplitude h and the highest nonlinear amplitude hnl, that
is

ξnl = λ (ξ, εd, T0) ξ ξ →∞ (19)

where ξnl = hnl/σ is the nonlinear dimensionless crest
amplitude and the dimensionless parameter λ (ξ, εd, T0) is
given by

λ (ξ, εd, T0) =
1

π

N∑

n=1

√
wnXn (ξ, εd, T0) . (20)

The set {Xn (ξ, εd, T0)} is the solution of the optimization
problem (17) and it depends upon the parameters ξ, εd and
the initial time T0. Note that λ > 1 indicates self-focusing,
i.e. the linear crest amplitude h increases due to third order
nonlinear interaction among free waves, i.e. waves satisfying
the linear dispersion relation. Second order effects due to
bound waves are also relevant. To include second order
nonlinear contributions, consider the quadratic equation of
Tayfun (1980,1986, 2006) which yields the modified crest
amplitude ξbnl

ξbnl = ξnl +
µ

2
ξ2nl (21)

where ξnl is the amplitude due to third order effects given
by Eq. (19), µ = λ3

3 is the rms of the surface gradient and
λ3 is the swewness of the random process1. This yields the
new definition of the nonlinear crest amplitude hnl which
takes into account also second order nonlinearities, that is

hnl
σ
= λ (ξ, εd, T0) ξ +

µ

2
λ (ξ, εd, T0)

2
ξ2. (22)

Although Tayfun derived equation Eq. (21) for narrowband
random waves, recently Fedele & Arena (2005) showed that

1In the original formulation of Tayfun (2006), ξnl corresponds to

the linear crest height.
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the equation is rather general and valid for three dimen-
sional random waves irrespective of the spectral bandwidth.
In the limit of ξ →∞ the statistics of the linear wave crest
height ξ follows asymptotically the Rayleigh distribution in
Eq. (5) and from Eq (21) the probability of exceedance of
the nonlinear extreme wave crest hnl can be easily derived
thus providing a generalization of the Tayfun distribution
(Tayfun 1980,1986,2006), that is

Pr

(
hnl
σ

> x

)
= exp

[
−1
2
ξ(x; εd, T0)

2

]
, (23)

where ξ(x; εd, T0) satisfies the nonlinear equation (22) where
the left-hand side hnl/σ is set equal to x. A numerical solu-
tion of the optimization problem in Eq. (17) is attempted
by Fedele (2006a) where the generalized probability of ex-
ceedance in Eq. (23) has been compared against the sample
distribution of the Draupner time series (Wist et al. 2002).

In the following an analytical solution of the extremal
problem in Eq. (17) is presented for the case of long-crested
narrow-band waves.

4 STATISTICS OF LONG-CRESTED NARROW-BAND

WAVES

Consider unidirectional waves travelling along the x di-
rection, in water of finite depth D with a narrow band spec-
trum of dimensionless bandwidth 2∆K/kd, kd being the
peak wave number. In this case one of the four constraints
in Eq. (13) relative to the wave momentumMy is always
satisfied since there is no transverse motion. Moreover, the
optimization problem in Eq. (17) can be solved analyti-
cally because the intersection manifold Γ ∈ RN-3 of the con-
straints in Eq. (13) relative to the three invariants A,Mx

and H reduces to a single point solution as it will be shown
below. Set N as the number of elementary waves, define
the dimensionless wave number kn normalized with respect
to kd, the dimensionless frequency wn normalized with re-
spect to ωd =

√
kd tanh(kdD) and assume kn = 1 + κn

with |κn| << 1; the Taylor expansion of the dimensionless
frequency wn up to second order terms is then given by [see
the book of Mei (2000) for details]

wn =
√

kn tanh(kn kdD) ≃

1 + f1(kdD)
κn

2
− 1
8
f2(kdD) κ

2
n + o(κ2n);

Here, o(x) means ’of order greater than x’ and the expression
of the depth-dependent coefficients f1 and f2 are reported

in appendix B. In deep water, that is kdD → ∞, f1 and
f2 tends to be equal to 1. We now introduce the Gaussian
spectrum

X2
n(kn, T )∆kn =

1
√
2πΩ2(T )

exp

(
− κ

2
n

2Ω2(T )

)
∆kn

=
1√
2π
exp

(
−z2n
2

)
∆zn

where we have defined

zn =
κn

ΩT
, ∆zn =

∆kn
ΩT

,

ΩT being the spectral bandwidth Ω(T ) at time T . The
half bandwidth of the spectrum corresponding to half of
the spectral peak value is given by ∆T = ΩT

√
2 ln 2 where

∆T = ∆(T ). For this particular choice of the spectrum, the
wave action and wave momentum in Eq. (13) are conserved
always. In fact, in the limit of large number of waves, that
is N →∞, and for narrowband spectra, that is ΩT → 0, the
following sums relative to the wave action A and momen-
tumMx (in the summations and hereafter, it is implicitely
assumed that the index runs from 1 to N)

A ({Xn}) =
∑

n

X2
n =

∑

n

exp
(
− κ

2

n

2Ω2
T

)

√
2πΩ2T

∆kn

Mx ({Bn}) =
∑

n

knX2
n =

∑

n

exp
(
− κ

2

n

2Ω2
T

)

√
2πΩ2T

(1 +κn)∆kn

both represent the Riemann sums of the two following in-
tegrals, that is

∞∫

−∞

1√
2π
exp

(
−z2

2

)
dz = 1

∞∫

−∞

1√
2π
exp

(
−z2

2

)
(1 + ΩT z) dz = 1.

This implies that both A and Mx are time invariant for
continuous (N →∞) narrowband spectra (ΩT → 0). Note
that the condition that ΩT → 0 is important in order to
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avoid non physical negative wave numbers. The time in-
variance of the Hamiltonian H [see Eq. (19)] yields instead
the following equation

F(−T0) = F(0) (24)

where we have defined the auxiliary function

F(T ) =
∑

1

w1X
2
1 +

1

2
(εdξ)

2
∑

1234

K̃1234X1X2X3X4 =

−Ω
2
T

8
f2Sa +

1

2
ε2d f3 Sb(T ) ξ2 + o(Ω2T )

Here, the depth-dependent parameter f3 is reported in ap-
pendix B and the coefficients Sa and Sb are given by the
following discrete sums

Sa =
∑

1

z21
1√
2π
exp

(
−z21
2

)
∆z1 (25)

and

Sb(T ) =
∑

1,2,3,4

1

2π
exp

(
−z21 + z22 + z23 + z24

4

)
·

·K̃1234 cos (∆w1234ωdT ) δ1+2−3−4
√
∆z1∆z2∆z3∆z4.

respectively; here, each summation index runs from 1 to N ,
∆w1234 = w1 + w2 − w3 − w4 and ωd the wave frequency
corresponding to the peak of the linear spectrum. The gen-
eralized Kronecker delta δ1+2−3−4 denotes that summation
is taken over those subscripts satisfying k1 + k2 = k3 + k4.
Moreover, in the narrowband limit the Zakharov kernal
K̃1234 → f3(kdD) and the NLS equation is recovered (
Janseen, 2003, Onorato et al. 2004). The parameter f3
tends to one as the depth increases to infinity and becomes
negative for values of kdD < 1.363 as one can see from Fig.
(1). In such a case the modulation instability disappears
and Stokes waves are stable to perturbations. In appendix
it is shown that for continuous narrowband spectra, that is
N →∞ and ΩT → 0, the continuous form of F(T ) is given
by

F(T ) = −Ω
2
T

8
f2 +

1

2
β(T )ε2d f3ξ

2 (26)

0 1 2 3 4 5 6 7 8 9
-5

-4

-3

-2

-1

0

1
f
3

k
d
D

Figure 1. The parameter f3 as function of the dimensionless kdD.

where we have defined the time-varying function

β(T ) =
cos
(
1
2 arctan

1
2 ln 2

ε2
d

BFI2
T

f3 ωdT
)

4

√(
1

2 ln 2

ε2
d

BFI2
T

f3 ωdT
)2
+ 1

. (27)

and the BFIT parameter at time T is given in the following
orm (Onorato et al. 2004)

BFIT =

√
2εd
∆T

fD

where the depth factor fD has expression as follows:

fD =

√
|f3|
f2

.

Note that the depth factor fD decreases on diminuishing
water depths and vanishes at kdD = 1.363 as one can see
from Fig.(2). As a consequence, the modulation instability
diminishes its strength as the depth decreases and disap-
pears for kdD = 1.363 . Thus equation (26) is valid for
kdD ≥ 1.363. Note that the Hamiltionian invariance in Eq.
(24) allows to relate only the initial and final time conditions
of the phase-space trajectory of the NLS equation charac-
terizing the most likely dynamical path of formation of an

7 Copyright c© 2006 by ASME
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Figure 2. The depth factor fD as function of the dimensionless depth kdD.

extreme wave. In fact, Eq. (24) yields the following rela-
tion between the spectral bandwidth at the different times
T = −T0 and T = 0 , that is

Ω20 − Ω2−T0 = 4ε
2
d fd [1− β(−T0)] ξ

2. (28)

Observe that Ω0 ≥ Ω−T0 , and the spectral bandwidth al-
ways increases in time since β(T ) ≤ 1 ∀T . The intersection
manifold Γ ∈ RN-3 of the constraints relative to the three
invariants A,Mx and H reduces to a single point solution
given by the Gaussian spectrum with bandwidth Ω0 if Eq.
(28) holds. Thus, the optimization problem in Eq. (17) ad-
mits a unique solution. In the continuous narrowband limit,
that is N →∞ and ΩT → 0, the ratio between the optimal
nonlinear crest amplitude ξnl = hnl/σ and the linear crest
amplitude ξ = h/σ is given by

hnl
h
=

ξnl
ξ
=

∑
n

√
wnXn(0)∑

n

√
wnXn(−T0)

≃
√

Ω0
Ω−T0

≥ 1

and this ratio is always greater than or equal to 1 because
Ω0 ≥ Ω−T0 , implying that extreme waves are always larger
than Gaussian waves. Furthermore from Eq. (28) it readily
follows that

ξnl
ξ
= 4

√
1 + 4 ln 2 [1− β(−T0)] BFI2−T0ξ

2

(29)

which yields a relation between the nonlinear wave crest
height ξnl and the linear crest height ξ in terms of the initial
BFI at time −T0. In simple words, the initial spectrum
with bandwidth Ω−T0 at time T = −T0 characterizes an
initial linear wave group that, as time goes on, nonlinearly
evolves and its spectral bandwidth tends to broaden at T =
0 when the largest wave occurs at the focussing pointX = 0.

Thus, larger waves than the Gaussian waves may form
because of both the constructive interference of the elemen-
tary waves and the broadening of the wave spectrum due to
the Benjamin-Feir modulation instability.

4.1 The wave crest distribution

Because the linear crest height ξ is distributed accord-
ing to the Rayleigh law, from Eq. (29) the probability of
exceedance of the wave crest ξnl at some time T is given by

Pr (ξnl > y) = exp

(
−ξ2(y)

2

)
(30)

where ξ(y) satisfies the algebraic equation

y4 = ξ4 + χ ξ6 (31)

and the coefficient χ is defined as follows:

χ(T ;α, kdD) =

4 ln 2 BFI2



1−
cos
(
1
2 arctan

1
2 ln 2

ε2
d

BFI2
T

f3 α
)

4

√(
1

2 ln 2

ε2
d

BFI2
T

f3 α
)2
+ 1



 ;

Here, the parameter α = ωdT and the BFI is the Benjamin
Feir index BFI−T0 of the wave field at some initial time
as in in Eq. (29). Note that the coefficient χ depends
upon the time scale T because we are considering the time
evolution of a spatial homogenous random field. The Eq.
(30) is also valid for the case of spatial evolution of an initial
stationary Gaussian state in a wave tank if one sets α =
kdX, X being the distance from the wavemaker. In this
case, BFI represents the Benjamin-Feir index of the waves
generated at the wavemaker, i.e. at X = 0. The probability
of exceedance in Eq. (30) can be interpreted as the ratio
between the number of waves Ny whose crest amplitude ξnl
exceeds the threshold y at time T ( at distance X from the
wavemaker) and the total number of waves Nw occurring in
space ( in time) at time T ( at distance X). If the threshold
y is very large, a wave with ξnl > y is the central wave of
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a wave group that has reached its maximum at time T ( at
distance X from the wavemaker).

To compute the probality of exceedance in Eq. (30),
we shall use the method of successive approximations to
solve for the positive fix point solution ξ of Eq. (31) which
satisfies the following convergent recurrent relation

ξ2j+1 =
y2√
1 + χξ2j

, j = 0, 1, ... (32)

where for j = 0 we set ξ = 0. To highlight certain properties
of the proposed distribution (30), we solve this recurrent
relation up to iteration j = 2 obtaining the approximation

Pr (ξnl > y) ≃ exp
(

− y2

2
√
1 + χ y2

)

. (33)

which is valid only for small values of χ ( for real data
comparisons the numerical solution of the recurrent relation
in Eq. (32) is necessary ). Including second order Stokes
effects, from Eq. (22) one obtains the generalized Tayfun
distribution for the wave crest

Pr
(
ξ̃nl > y

)
≃ exp



−
(
−1 +√1 + 2µ y

)2

2µ2
√
1 + χ

(
−1 +√1 + 2µ y

)2




(34)

where ξ̃nl = ξnl +
µ
2
ξ2nl is the nonlinear crest height which

takes in to account also second order nonlinearities.
Define the modulation time scale Tbf = 2π/(ωdε2d) and

length scale Lbf = 2π/(kdε2d) respectively. Then, it is in-
teresting to note that for T << Tbf (X << Lbf), that is
α → 0+, the coefficient χ in Eq. (32) tends to zero and
the crest distribution (34) tends to the Tayfun distribution
(Tayfun 1986,2006), that is

Pr
(
ξ̃nl > y

)
→ exp

(

−
(
−1 +√1 + 2µ y

)2

2µ2

)

and larger wave crests are well described by second order
Stokes theory. This means that for time scales (distances)
less than the modulation time (length) scale Tbf ( Lbf) the
modulation instability has not developed yet and the waves
follows the Tayfun distribution. For T much longer than
the modulation period Tbf or for distances X away from

the wavemaker (X >> Lbf), that is for increasing α ap-
proaching infinity, the coefficient χ tends monotonically to
a constant and the new crest distribution (34) monoton-
ically deviates from the Tayfun distribution and tends to
relax toward a steady state distribution given by

Pr
(
ξ̃nl > y

)
→ (35)

exp



−
(
−1 +√1 + 2µ y

)2

2µ2
√
1 + 4 ln 2 BFI2

(
−1 +√1 + 2µ y

)2





In this case the modulation instability is fully developed
and permanently alters the initial wave field in agreement
with the experimental results of Onorato et al. (2005) and
the numerical simulations of Juglard et al. (2005).

4.2 The crest-to-trough height distribution

The probability of exceedance of the wave height H is
easily obtained from Eq. (33) as

Pr (H/Hs > x) = exp

(
−ξ2(x)

2

)
(36)

where Hs = 4σ is the significant wave height and ξ(x) sat-
isfies the algebraic equation (31) for y = 2x, that is

16x4 = ξ4 + χ ξ6 (37)

which can be solved by means of the convergent recurrent
relation

ξ2j+1 =
16x4

√
1 + χξ2j

, j = 0, 1, ... (38)

whose solution up to iteration j = 2 yields the following
approximation

Pr (H/Hs > x) ≃ exp
(

− 2x2
√
1 + 4χ x2

)

. (39)

Observe that for T << Tbf (X << Lbf ) the modulation
instability is weakly developing and

Pr (H/Hs > x)→ exp
(
−2 x2

)
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Figure 3. Wave height probabilities of exceedance for X/Ld=2.8;18.5;32.7

compared to the Rayleigh distribution (BFI = 0.6).

implying that larger wave heights follow approximately the
Rayleigh law. For T much longer than the modulation
period Tbf or for distances X away from the wavemaker
(X >> Lbf ), the modulation instability is fully developed
and the new wave height distribution monotonically devi-
ates from the Rayleigh law and tends toward a steady form
given by

Pr (H/Hs > x)→ exp

(
− 2x2√

1 + 16 ln 2 BFI2 x2

)
.

The initial wave field is permanently alterated and strongly
intermittent due to the increased kurtosis as shown by Ono-
rato et al. (2004).

5 COMPARISONS

Consider the experimental results2 of Onorato et al.
(2004,2005). They investigated the case of a wave field

2Onorato et al. (2004,2005) define the steepness as 2εd = 0.142 and
thus the correspondent value of the Benjamin Feir index is 2BFI =

1.2.
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Rayleigh 
x/L=4
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Figure 4. Wave crest distributionsX/Ld=4;25 compared to both the Tayfun

and Rayleigh distributions (BFI = 0.6, µ = 0.071).

generated at the wavemaker with BFI = 0.6, steepness
εd = 0.071, significant wave height Hs = 0.16m, depth
factor fd = 0.95, peak period Td = 1.5s and correspon-
dent wavelength Ld = 3.51m and the Tayfun parameter is
µ = 0.071. Figs. 4-5-6 in Onorato et al. (2004) show the
plots of the experimental sample distribution of the crest-to-
trough height at different distances X/Ld = 2.8, 18.5, 32.7
from the wavemaker. From these figures it is clear the in-
creasing deviations from the Rayleigh law away from the
wave maker due to the developing modulation instability.
The latter experimental results agree well with the ana-
lytical distribution computed using Eq. (36) for the same
X/Ld values used by Onorato et al. (2004) as one can see
from Fig. (3). To compute this analytical distribution, the
recurrent relation in Eq.(38) has been solved numerically
and its solution is exact within numerical accuracy. Note
that in Fig. (3) the curve relative to X/Ld = 2.8 is prat-
ically coincident with the Rayleigh distribution and X/Ld

increases, deviations from the Gaussian conditions occur.
The wave height distribution is not affected by second or-
der nonlinearities, which instead can modify the wave crests.
This fact is clearly shown by the experimental results pre-
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sented by Onorato et al. (2005). From the same experi-
ment described above (BFI = 0.6, µ = 0.071) they showed
that closer to the wave maker (X/Ld << 1), the Tayfun
distribution explains well the experimental data, whereas
away from the wavemaker (X/Ld >> 1) strong deviations
from the Tayfun distribution occur. Solving the recurrent
relation in Eq. (32), the generalized Tayfun distribution
proposed in Eq. (30) is plotted in Fig. (4) for two values of
X/Ld=4;25. As one can see, increasing deviations from the
Tayfun distribution occurs as the distance X/Ld increases.

These analytical results qualitatively agree with the ex-
periments of Onorato et al. (2004) and the numerical sim-
ulations of Juglard et al. (2005), thus providing evidence
that the concept of the stochastic wave group is useful for
explaining the occurrence of extreme event occurs in ran-
dom seas due to modulation instability. More analysis and
numerical simulations are needed in order to fully validate
both the theory and the new analytical distributions pre-
sented here, but this will be discussed elsewhere.

6 CONCLUSIONS

Guided by the theory of quasi-determinism of Boccotti
(1989,2000) and supported by the analytical work of Lind-
gren (1970,1972) and the regression approximation method
of Rychlik (1987), the concept of stochastic wave groups
is presented for explaining the occurrence of an extreme
wave in third order nonlinear random seas. In particular,
for the case of nonlinearly modulated narrow-band waves
a new probability of exceedance of the wave height which
takes in to account the quasi-resonance interaction is de-
rived. A generalization of the Tayfun distribution for the
wave crest height is also provided. The new distributions
explain qualitatively well the experimental results of Ono-
rato et al. (2004,2005) and the numerical results of Juglard
et al. (2005).

7 APPENDIX A

To simplify the expression of F(T ) given in Eq. (26)
consider only the quasi-resonant interactions of the follow-
ing type

k1 = 1 +κ1, k2 = k1, k3 = k1 +κ2, k4 = k1 −κ2

where ∀κ1, κ2,<< 1. It follows that

∆w1234 = w1+w2−w3−w4 = −
1

4
f2(kdD) z22Ω

2
−T0+o(z22, z

2
1)

where f2 is given by in Eq. (41). Then, Sa and Sb in Eqs.
(25,26) simplify respectively as follows

Sa =
∑

1

z21
1√
2π
exp

(
−z21
2

)
∆z1 (40)

Sb(T ) =
∑

1,2

1

2π
exp

(
−z21 + z22

2

)
cos

(
1

4
f2 z22ωdT Ω

2
T

)
∆z1∆z2

Eq. (26) readily follows because the two sums in Eq. (40),
are respectively the Riemann sums of the two following in-
tegrals

∞∫

−∞

1√
2π
exp

(
−z2

2

)
dz = 1

and

∞∫

−∞

∞∫

−∞

1

2π
exp

(
−z21 + z22

2

)
cos

(
1

4
f2 z22ωdTΩ

2
T

)
dz1dz2 =

cos
(
1
2
arctanα(T )

)

4

√
α2(T ) + 1

where we have defined the function

α(T ) =
1

2
f2 ωdT Ω2T =

1

2 ln 2

ε2d
BFI2T

f3 ωdT.

8 APPENDIX B

f1(kdD) = 1 + kdD
1− tanh2 kdD

tanh kdD
, (41)

f2(kdD) = 2− ν2 + 8 (kdD)
2 cosh 2kdD

sinh2 2kdD

f3(kdD) = (42)

8 + cosh 4kdD − 2 tanh2 kdD

8 sinh4 kdD
−

(
2 cosh2 kdD + 1

2ν
)2

sinh2 2kdD
(

kdD
tanh kdD

− 1
4ν

2
) ,

ν = 1 +
2kdD

sinh 2kdD
. (43)
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