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ABSTRACT
We propose a novel remote sensing technique that infers the

three-dimensional wave form and radiance of oceanic sea states
via a variational stereo imagery formulation. In this setting, the
shape and radiance of the wave surface are minimizers of a com-
posite cost functional which combines a data fidelity term and
smoothness priors on the unknowns. The solution of a system of
coupled partial differential equations derived from the functional
yields the desired ocean surface shape and radiance. The pro-
posed method is naturally extended to study the spatio-temporal
dynamics of ocean waves, and applied to video data retrievedin
the Grand Canal in Venice, Italy. Finally, it is observed that the
omni-directional spectrum of the reconstructed waves decays as
k−2.5 in agreement with Zakharov’s theory (1999).

INTRODUCTION
Wind-generated waves play a prominent role at the inter-

faces of the ocean with the atmosphere, land and solid Earth.
Waves also define in many ways the appearance of the ocean seen
by remote-sensing instruments. Classical observational methods
rely on time series retrieved from wave gauges and ultrasonic in-
struments or buoys to measure the space-time dynamics of ocean
waves. Global altimeters, or Synthetic Aperture Radar (SAR)
instruments are exploited for observations of large oceanic ar-
eas via satellites, but details on small-scales are lost. Herein, we

propose to complement the abovementioned instruments witha
novel video observational system which rely on variationalstereo
techniques to reconstruct the 3-D wave surface both in spaceand
time. Such system uses two or more stereo camera views point-
ing at the ocean to provide spatio-temporal data and statistical
content richer than that of previous monitoring methods. Vision
systems are non-intrusive and have economical advantages over
their predecessors, but they require more processing powerto ex-
tract information from the ocean.

Since this work covers both the topics of shape reconstruc-
tion and oceanic sea states, it relates to a vast body of litera-
ture. The three-dimensional reconstruction of an object’ssur-
face from stereo pairs of images is a classical problem in com-
puter vision (see, for example [1–4]), and it is still an extremely
active research area. There are many 3-D reconstruction algo-
rithms available in the literature and the reconstruction problem
is far from being solved. The different algorithms are designed
under different assumptions and provide a variety of trade-offs
between speed, accuracy and viability. Traditionalimage-based
stereo methods typically consist of two steps: first image points
or regions are detected and matched across images by optimiz-
ing a photometric score to establish local correspondences; then
depth is inferred by combining these correspondences usingtri-
angulationof 3-D points (back-projectionof image points). The
first step, also known as the stereo matching problem, is signif-

1 Copyright c© 2011 by ASME



icantly more difficult than the second one. However, epipolar
geometry between image pairs can be exploited to reduce stereo
matching to a 1-D search along epipolar lines. This is the strat-
egy used in recent systems [5, 6]. This approach has the advan-
tages of being simple and fast. However, it also has some major
disadvantages that motivated the research on improved stereo re-
construction methods [7–9]. These disadvantages are: (i) Corre-
spondences rely on strong textures (high contrast between inten-
sities of neighboring points) and image matching gives poorcor-
respondences if the objects in the scene have a smooth radiance.
Correspondences also suffer from the presence of noise and local
minima. (ii ) Each space point is reconstructed independently and
therefore the recovered surface of an object is obtained as acol-
lection of scattered 3-D points. Thus, the hypothesis of theconti-
nuity of the surface is not exploited in the reconstruction process.
The breakdown of traditional stereo methods in these situations
is evidenced by “holes” in the reconstructed surface, whichcor-
respond to unmatched image regions [1, 5]. This phenomenon
may be dominant in the case of the ocean surface, which, by na-
ture, is generally continuous and contains little texture.

Modernobject-basedimage processing and computer vision
methods that rely on Calculus of Variations and Partial Differ-
ential Equations (PDEs), such as Stereoscopic Segmentation [8]
and other variational stereo methods [7, 9, 10], are able to over-
come the disadvantages of traditional stereo. For instance, un-
matched regions are avoided by building an explicit model of
the smooth surface to be estimated rather than representingit
as a collection of scattered 3-D points. Thus, variational meth-
ods provide dense and coherent surface reconstructions. Sur-
face points are reconstructed by exploiting the continuity(co-
herence) hypothesis in the full two-dimensional domain of the
surface. Variational stereo methods combine correspondence es-
tablishment and shape reconstruction into one single step and
they are less sensitive to matching problems of local correspon-
dences. The reconstructed surface is obtained by minimization
of an energy functional designed for the stereo problem. The
solution is obtained in the context of active surfaces by deform-
ing an initial surface via a gradient descent PDE derived from
the necessary optimality conditions of the energy functional, the
so-called Euler-Lagrange (EL) equations.

On the other hand, in the context of oceanography, the
first experiments with stereo cameras mounted on a ship were
by Schumacher [11] in 1939. Later, Coté et al. [12] in 1960
demonstrated the use of stereo-photography to measure the sea
topography for long ocean waves. The study of long waves
using stereophotography was also discussed by Sugimori [13],
based on an optical method by Barber [14], and by Holthui-
jsen [15]. Stereography gained popularity in studying the dy-
namics of oceanographic phenomena during the 1980s due to
advances in hardware. Shemdin et al. [16, 17] applied stereog-
raphy for the directional measurement of short ocean waves.In
1997, Holland et al. [18] demonstrated the practical use of video

FIGURE 1. Left: off-shore platform “Acqua Alta” in the Northern
Adriatic Sea, near Venice. Center: pair of synchronized cameras for
monitoring the ocean climate from the platform. Right: WASShardware
installed at the platform for recording stereo videos of ocean waves.

systems to measure nearshore physical processes. A more recent
integration of stereographic techniques into the field of oceanog-
raphy has been the WAVESCAN project of Santel et al. [19].

Recently, Benetazzo [5] successfully incorporated epipolar
techniques in the Wave Acquisition Stereo System (WASS). This
was tested in experiments off the shore of the California Coast
and the Venice coast in Italy. Benetazzo was able to estimate
wave spectra from the extracted time series of the surface fluc-
tuations at one fixed point given the data images. The accu-
racy of such spectral estimates is comparable to the accuracy ob-
tained from ultrasonic transducer measurements. An example of
a WASS system currently installed in the Acqua Alta platformis
shown in Fig. 1. An alternative trinocular imaging system (AT-
SIS) for measuring the temporal evolution of 3-D surface waves
was proposed in [6]. More recently, in [20] it is shown how
a modern variational stereo reconstruction technique pioneered
by [7] can be applied to the estimation of oceanic sea states.
Additional references demonstrate that this is an active research
topic [21–24].

Encouraged by the results in [5,20,25], in this paper we pro-
pose a novel variational framework for the recovery of the shape
of ocean waves given multi-view stereo imagery. In particular,
motivated by the characteristics of the target object in thescene,
i.e., the ocean surface, we first introduce the graph surfacerepre-
sentation in the formulation of the reconstruction problem. Then,
we present the new variational stereo method in the context of ac-
tive surfaces. The performance of the algorithm is validated on
experimental data collected off shore, and the statistics of the re-
constructed surface are also analyzed. Concluding remarksare
finally presented.

THE VARIATIONAL GEOMETRIC METHOD
This paper is inspired by the works of [5,20] and [8]. In par-

ticular, the variational approach ofStereoscopic Segmentation[8]
is used to tackle the vision problem: the reconstructed surface of
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the ocean is obtained as the minimizer of an energy functional
designed to fit the measurements of ocean waves. In every 3-
D reconstruction method, the quality and accuracy of the results
depend on the calibration of the cameras. There are standard
camera calibration procedures in the literature to characterize ac-
curately the intrinsic and extrinsic parameters of the cameras [1].
We will assume cameras are calibrated and synchronized, andwe
focus on the reconstruction of the water surface for a fixed time.

Multi-image setup. Graph surface representation
Let S be a smooth surface inR3 with generic local coordi-

nates(u,v) ∈ R
2. Let {Ii}

Nc
i=1 be a set of images of a static (wa-

ter) scene acquired by cameras whose calibration parameters are
{Pi}Nc

i=1. Space points are mapped into image points according
to the pinhole camera model [2]. The equations of such a per-
spective projection mapping are linear if expressed in homoge-
neous coordinates of Projective geometry. A surface point (or,
in general a 3D point)X = (X,Y,Z)⊤ with homogeneous coor-
dinatesX̄ = (X,Y,Z,1)⊤ is mapped to pointxi = (xi ,yi)

⊤ in the
i-th image with homogeneous coordinatesx̄i = (xi ,yi ,1)⊤ ∼ P

iX̄,
where the symbol∼ means equality up to a nonzero scale factor
andPi = K

i [Ri | ti ] is the 3×4 projection matrix with the intrinsic
(Ki) and extrinsic (Ri , ti) calibration parameters of thei-th camera.
These parameters are known under the hypothesis of calibrated
cameras. The optical center of the camera is the pointCi that
satisfiesPiC̄i = 0. Let πi : R3 → R

2 note the projection maps:
xi = π i(X). Finally, Ii(xi)≡ Ii(πi(X)) is the intensity atxi .

We present a different approach to the reconstruction prob-
lem presented in [7, 8] by exploiting the hypothesis that thesur-
face of the water can be represented in the form of a graph or
elevation map:

Z = Z(X,Y), (1)

whereZ is the height of the surface with respect to a domain
plane that is parameterized by coordinatesX and Y. Indeed,
slow varying, non-breaking waves admit this simple represen-
tation with respect to a plane orthogonal to gravity direction. As
a natural extension of existing variational stereo methods, energy
functionals can be tailored to exploit the benefits of this valuable
representation. The surface can still be obtained as the minimizer
of a suitable energy functional but now with a different geomet-
rical representation of the solution.

The graph representation of the water surface presents some
clear advantages over the more general level set representation
of [7–9,20]. Surface evolution is simpler to implement since the
surface is not represented in terms of an auxiliary higher dimen-
sional function (the level set function). The surface is evolved
directly via the height function (1) discretized over a fixed2-
D grid defined on theX −Y plane. The latter also implies that

for the same amount of physical memory, higher spatial resolu-
tion (finer details) can be achieved in the graph representation
than with the level set. TheX −Y plane becomes the natural
common domain to parameterize the geometrical and photomet-
ric properties of surfaces. This simple identification doesnot
exist in the level set approach [8]. Finally, the graph represen-
tation allows for fast numerical solvers besides gradient descent,
like Fast Poisson Solvers, Cyclic Reduction, Multigrid Methods,
Finite-Element Methods (FEM), etc. In the level set framework,
the range of solvers is not as diverse.

However, there are also some minor disadvantages. A world
frame properly oriented with the gravity direction must be de-
fined in advance to represent the surface as a graph with respect
to this plane. This is not triviala priori and might pose a problem
if only the information from the stereo images is used [5]. This
condition may not be so if external gravity sensors provide this
information. Surface evolution is constrained to be in the form of
a graph and this may not be the same as the evolution described
for an unconstrained surface. As a result, more iterations may be
required to reach convergence.

The reconstruction problem is mathematically stated in the
following section. The desired surface is given by the solution of
a variational optimization problem.

Proposed energy functional
Consider the 3-D reconstruction problem from a collection

of Nc ≥ 2 input images (we will exemplify withNc = 2). We
investigate a generative model of the images that allows forthe
joint estimation of the shape of the surfaceS and the radiance
function on the surfacef as minimizers of an energy functional.
Let the energy functional be the weighted sum of a data fidelity
term Edata and two regularizing terms: a geometry smoothing
termEgeomand a radiance smoothing termErad

E(S, f ) = Edata(S, f )+αEgeom(S)+βErad( f ), (2)

whereα,β ∈ R
+. The data fidelity term measures the photo-

consistency of the model: the discrepancy in theL2 sense be-
tween the observed imagesIi and the radiance modelf ,

Edata=
n

∑
i=1

Ei , Ei =

∫

Ωi

φi dxi, (3)

where the photometric matching criterion is

φi =
1
2

(

Ii(xi)− f (xi)
)2
. (4)

The region of the image domain where the scene is projected is
denoted byΩi . Assuming that the surface of the scene is repre-
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sented as a graphZ = Z(u,v), a point on the surface has coordi-
nates

X(u,v) =
(

u,v,Z(u,v)
)⊤

. (5)

The chain of operations to obtain the intensityIi(xi) given a sur-
face point with world coordinatesX(u)≡ S(u), u = (u,v)⊤, is

X(u) 7→ X̃i = M
iX+pi

4 7→ xi 7→ Ii(xi), (6)

whereX̃i = (X̃i ,Ỹi , Z̃i)
⊤ are related to the coordinates ofX in

the i-th camera frame,xi = (xi ,yi)
⊤ = (X̃i/Z̃i ,Ỹi/Z̃i)

⊤ are the
coordinates of the projection ofX in the i-th image plane and
P

i = [Mi |pi
4] is the projection matrix of the camera correspond-

ing to the i-th image, in world coordinates, i.e.,Mi = K
i
R

i ≡
(ni

1,n
i
2,n

i
3)

⊤ andpi
4 = K

iti. Also, |Mi |= det(Mi).
The radiance modelf is specified by a function̂f defined

on the surfaceS. Then, f in (4) is naturally defined byf (xi) =
f̂ (π−1

i (X)), whereπ−1
i denotes the back-projection operation

from a point in thei-th image to the closest surface point with
respect to the camera. With a slight abuse of notation, let ususe
f to denote the parameterized radiancef (u), understanding that
f (xi) in (4) reads the back-projected value inf̂ (X(u)) = f (u).

Motivated by the common parameterizing domain of the
shape and radiance of the surface and to obtain the simplest dif-
fusive terms in the PDEs derived from the necessary optimality
conditions of the energy (2), let the regularizers be

Egeom=

∫

U

1
2‖∇Z(u)‖2 du, (7)

Erad =
∫

U

1
2‖∇ f (u)‖2 du. (8)

Once all terms in (2) have been specified, some transforma-
tions are carried out to express the data fidelity integrals over a
more suitable domain: the parameter space. The Jacobian of the
change of variables between integration domains is, by applying
the chain rule to (6),

Ji =

∣

∣

∣

∣

dxi

du

∣

∣

∣

∣

=−|Mi|Z̃−3
i (X−Ci) · (Xu×Xv), (9)

whereXu ×Xv is proportional to the outward unit normalN to
the surface atX(u,v), andZ̃i = ni

3 · (X−Ci) > 0 is the depth of
the pointX with respect to thei-th camera (located atCi). With
this change, energy (3) becomes

Ei =

∫

Ωi

φi dxi =

∫

U
φiJi du, (10)

where the last integral is overU : the part of the parameter space
whose surface projects onΩi in the i-th image. Observe that
the Jacobian weights the photometric errorφi proportionally to
the cosine of the angle between the unit normal to the surface
at X and theprojection ray(the ray joining the optical center
of the camera andX): (X − Ci) · (Xu × Xv). After collecting
terms (7), (8), and (10), and noting that the shapeX of the surface
solely depends on the height (Eqn. (5)), energy (2) becomes

E(Z, f ) =
∫

U
L(Z,Zu,Zv, f , fu, fv,u,v)du. (11)

where subscripts indicate the derivative with respect to that vari-
able, and the integrand is the so-calledLagrangian L.

Energy minimization. Optimality condition
The energy (11) depends on two functions: the shapeZ and

the radiancef of the surface. To find a minimizer of such a func-
tional, we derive the necessary optimality condition by setting
to zero the first variation of the functional. Using standardtech-
niques from Calculus of Variations, the first variation (Gâteaux
derivative) of (11) has two terms: one in the interior of the inte-
gration regionU in the parameter space and one boundary term
(on∂U). Setting the first variation to zero for all possible smooth
perturbations yields a coupled system of PDEs (EL equations)
along with natural boundary conditions:

g(Z, f )−α∆Z = 0 inU, (12)

b(Z, f )+α
∂Z
∂ν

= 0 on∂U, (13)

−
Nc

∑
i=1

(Ii − f )Ji(Z)−β ∆ f = 0 inU, (14)

β
∂ f
∂ν

= 0 on∂U, (15)

where the non-linear terms due to the data fidelity energy are

g(Z, f ) =∇ f ·
Nc

∑
i=1

|Mi|Z̃−3
i (Ii − f )(u−C1

i ,v−C2
i ), (16)

b(Z, f ) =
Nc

∑
i=1

φi |M
i |Z̃−3

i

(

(u−C1
i )ν

u+(v−C2
i )ν

v).

The Laplacians∆Z and∆ f arise from the regularizing terms (7)
and (8), respectively, and∂ ∗/∂ν is the usual notation for the di-
rectional derivative alongν, the normal to the integration domain
U in the parameter space.

A simple classification of the PDEs can be done as follows.
For a fixed surface, (14) and (15) form a linear elliptic PDE (of
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the inhomogeneous Helmholtz type) with Neumann boundary
conditions. On the other hand, for a fixed radiance, (12) and (13)
lead to a nonlinear elliptic equation in the heightZ with nonstan-
dard boundary conditions.

A common approach to solve difficult EL equations, such
as the EL equation presented in (12)-(15), is to add an artificial
time marching variablet dependency in the unknown functions
(height, radiance) and set up a gradient descent flow that will
drive their evolution such that the energy (11) will decrease in
time. Thus the solution of the EL equations is obtained as the
steady-state of the gradient descent equations. This is thecontext
of the so-called active surfaces. The gradient descent PDEsare:

Zt = α∆Z−g(Z, f ), (17)

ft = β ∆ f −
Nc

∑
i=1

Ji(Z) f +
Nc

∑
i=1

IiJi(Z). (18)

To simplify the equations, we approximate the boundary condi-
tion (13) by a simpler, homogeneous Neumann boundary condi-
tion. This can be interpreted as if the data fidelity term vanished
close to the boundary and it is a reasonable assumption sincethe
major contribution to the energy is given by the terms inU , not
at the boundary.

Numerical solution
An iterative, alternating approach is used to find the mini-

mum of energy (2) via the evolution of the coupled gradient de-
scent PDEs (17)-(18). During each iteration there are two phases:
(i) evolve the shape, leaving the radiance fixed, and (ii ) evolve
the radiance, leaving the shape unchanged. The PDEs are dis-
cretized on a rectangular 2-D grid in the parameter space and
then solved numerically using finite-difference methods (FDM).
Forward differences in time and central differences in space ap-
proximate the derivatives, yielding anexplicit updating scheme.
The time step∆t in the scheme is determined by the stability
condition of the resulting PDE. For the linear PDE (18), the time
step forℓ2 stability satisfies

∆t ≤
(4β

h2 +
1
2

max
Nc

∑
k=1

Jk
)−1

, (19)

whereJk(Z) ≥ 0 and the maximum is taken over the 2-D dis-
cretized Jacobians for the current height function. The time step
may change at every iteration, depending on the value of the
evolving height. For the nonlinear PDE (12), the von Neumann
stability analysis of the linearized PDE yields a time step

∆t ≤
(4α

h2 +
1
2

max|ġ(Z)|
)−1

, (20)

FIGURE 2. Left: projection of the boundary of the estimated graph,
which has been discretized on a grid of 129×513 points. Right: mod-
eled image (computed form surface height and radiance) superimposed
on original image.
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FIGURE 3. Left: estimated height functionZ(u,v) (shape of the water
surface) in pseudo-color. Center: contour plot of height function. Right:
estimated radiance functionf (u,v) (texture on the surface)

whereġ(Z) is the derivative of (16) and the maximum is taken
over the 2-D discretized grid at the current time.

The previous time-stepping methods are used as relaxation
procedures inside a multigrid method [26] that approximately
solves the EL equations. Multigrid methods are the most efficient
numerical tools for solving elliptic boundary value problems.

EXPERIMENTS
After validating the numerical implementation of the pro-

posed variational stereo method with synthetic data, some exper-
iments with real data are carried out. Figs. 2, 3 and 4 show an ex-
ample of a reconstructed water surface from images of the Venice
Canal. Cropped images in Fig. 2 are of size 600×450 pixels and
show the region of interest to be reconstructed. Fig. 2 also dis-
plays one of the modeled images created by the generative model
within our variational method. The data fidelity term compares
the intensities of the original and modeled images in the high-
lighted region, in all images. As observed, the modeled image
is a good match of the original image. Fig. 3 shows the con-
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FIGURE 4. Left: perspective, three-dimensional wire-frame repre-
sentation of the estimated surface shape (height) according to grid
points. Right: texture-mapped surface obtained by incorporating the
radiance function in the wire-frame model. The vertical axis has been
magnified by a factor of 5 with respect to the horizontal axes for visual-
ization purpose.

verged values of the unknowns of the problem: the height and the
radiance of the surface, as well as the 3-D representation ofthe
reconstructed surface obtained by combining both 2-D functions.
In this experiment, the empirical values of the weights of the reg-
ularizers were empirically determined:α = 0.035 andβ = 0.01.
At the finest of the 5-level multigrid [26] algorithm, the gradi-
ent descent PDEs are discretized on a 2-D grid with 129× 513
points. The distance between grid points ish = 5 cm. There-
fore, the grid covers an area of 6.45×25.65m2. An example of
a surface discretized at the finest grid level is shown in Fig.4.
Observe the high density of the surface representation, typical of
variational methods. The step sizeh (distance between adjacent
grid points) must be chosen so that it approximately matchesthe
resolution in the images: a displacement of 1 pixel is observable
at the finest grid level in the multigrid framework and it corre-
sponds to a physical displacement of at leasth. Due to perspec-
tive projection, the maximum value ofh is determined by the grid
points closest to the cameras.

The method proposed in this paper is naturally extended to
process stereo video on a snapshot-by-snapshot basis by estimat-
ing the new surface shape and radiance based on the previously
reconstructed surface. This sequential processing is the simplest
way in which the method can be applied to stereo video imagery.
We test the method on a different video data consisting of 10
consecutive images of size 1000× 1000 pixels. A grid of size
513×513 points and distance between grid points ofh= 1.5 cm
is selected. Thus, the grid covers an area of 7.7× 7.7m2. The
deforming surface is initialized by the planeZ = 0. A multigrid
method with 6 levels and 200 V-cycles (with 1 pre- and post-
relaxation sweeps per level) is used to solve the problem at each
frame. For the first frame, a full multigrid method (FMG) with
200 V-cycles per level is performed prior to entering the above
processing schedule. In this experiment, the weights of theregu-
larizers areα = 4·10−2 andβ = 4·10−3. Another reconstruction
of the wave surface from video data collected by Benetazzo [5] is

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Wavenumber (rad/m)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 [m

2 /(
ra

d/
m

)]

 

 

 

FIGURE 5. Left: Surface reconstruction from a snapshot of the
data in [5]. Right: Average omni-directional wave number spectrum.
Straight lines:k−2.5 (solid),k−3 (dashed).

shown in Fig. 5. In the same figure we also report the the omni-
directional spectrumS(k) (averaged over the frames), computed
by numerically integrating the 2-D spectrumS(k1,k2) of the el-
evation map over all directions. In agreement with Zakharov’s
theory [27], the spectrum tail decays close tok−2.5, wherek is
the wave number.

CONCLUSIONS
Variational stereo is more powerful, flexible, and rigorous,

albeit computationally expensive, than earlier traditional, image-
based stereo methods founded on epipolar line search. Therefore,
we follow this research path by developing a variational stereo
method for the case of smooth surfaces representable in the form
of a graph supporting a smooth radiance function. We success-
fully apply this method to reconstruct the surface of the ocean.
In future research we plan to elaborate on better choices forthe
regularizers as well as new ones that include global and/or lo-
cal properties of the dynamics of ocean waves such as statistical
distribution of wave heights, the wave equation, etc.

Departing from the simple snapshot-by-snapshot sequen-
tial temporal processing used in the experiments, the variational
framework allows for better ways to enforce coherence in space-
time of the reconstructed surface. This topic is now under inves-
tigation. Preliminary research shows that VWASS is a promising
remote-sensing observational technology with a broader impact
on ocean engineering since it will enrich the understandingof the
oceanic sea states and wave statistics, enabling improved designs
of off-shore structures and platforms.
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