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ABSTRACT propose to complement the abovementioned instrumentsawith
We propose a novel remote sensing technique that infers the novel video observational system which rely on variatictateo
three-dimensional wave form and radiance of oceanic seasta techniques to reconstruct the 3-D wave surface both in spate
via a variational stereo imagery formulation. In this setj the time. Such system uses two or more stereo camera views poir
shape and radiance of the wave surface are minimizers of a com ing at the ocean to provide spatio-temporal data and stailist
posite cost functional which combines a data fidelity terrd an  content richer than that of previous monitoring methodsidri
smoothness priors on the unknowns. The solution of a sytem o systems are non-intrusive and have economical advantages o
coupled partial differential equations derived from thadtional their predecessors, but they require more processing pgovegr
yields the desired ocean surface shape and radiance. The pro tractinformation from the ocean.
posed method is naturally extended to study the spatiodgeahp

dynamics of ocean waves, and applied to video data retrigved Since this work covers both the topics of shape reconstruc
the Grand Canal in Venice, Italy. Finally, it is observed tiize tion and oceanic sea states, it relates to a vast body oéditer
omni-directional spectrum of the reconstructed waves geca ture. The three-dimensional reconstruction of an objestis

k25 in agreement with Zakharov's theory (1999). face from stereo pairs of images is a classical problem in-com

puter vision (see, for example [1-4]), and it is still an extely

active research area. There are many 3-D reconstructian alg
INTRODUCTION rithms available in the literature and the reconstructiozbfem

Wind-generated waves play a prominent role at the inter- is far from being solved. The different algorithms are desit)

faces of the ocean with the atmosphere, land and solid Earth. under different assumptions and provide a variety of traffie-
Waves also define in many ways the appearance of the ocean seebetween speed, accuracy and viability. Traditianzdge-based
by remote-sensing instruments. Classical observatioetiods stereo methods typically consist of two steps: first imagatpo
rely on time series retrieved from wave gauges and ultrasoni or regions are detected and matched across images by optimi
struments or buoys to measure the space-time dynamicsafioce ing a photometric score to establish local correspondetices
waves. Global altimeters, or Synthetic Aperture Radar (BAR depth is inferred by combining these correspondences tising
instruments are exploited for observations of large oceani angulationof 3-D points pack-projectiorof image points). The
eas via satellites, but details on small-scales are loseirleve first step, also known as the stereo matching problem, isfsign
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icantly more difficult than the second one. However, epipola
geometry between image pairs can be exploited to reduasoster
matching to a 1-D search along epipolar lines. This is thet-str
egy used in recent systems [5, 6]. This approach has the advan
tages of being simple and fast. However, it also has somermajo
disadvantages that motivated the research on improvezbster
construction methods [7—-9]. These disadvantages gré€o(re-
spondences rely on strong textures (high contrast betvmen-i
sities of neighboring points) and image matching gives poor
respondences if the objects in the scene have a smooth cadian
Correspondences also suffer from the presence of nois@ead |
minima. (i) Each space pointis reconstructed independently and
therefore the recovered surface of an object is obtainecak a
lection of scattered 3-D points. Thus, the hypothesis o€ ti-
nuity of the surface is not exploited in the reconstructioogess.
The breakdown of traditional stereo methods in these &gt

is evidenced by “holes” in the reconstructed surface, whimh

FIGURE 1. Left: off-shore platform “Acqua Alta” in the Northern
Adriatic Sea, near Venice. Center: pair of synchronized evas for
monitoring the ocean climate from the platform. Right: WA&®dware
installed at the platform for recording stereo videos ofaoceaves.

systems to measure nearshore physical processes. A meng rec

respond to unmatched image regions [1, 5]. This phenomenonintegration of stereographic techniques into the field eeomog-

may be dominant in the case of the ocean surface, which, by na-

ture, is generally continuous and contains little texture.

Modernobject-basedmage processing and computer vision
methods that rely on Calculus of Variations and Partial éiff
ential Equations (PDESs), such as Stereoscopic Segmenf8fio
and other variational stereo methods [7, 9, 10], are ablevéo-o
come the disadvantages of traditional stereo. For instance
matched regions are avoided by building an explicit model of
the smooth surface to be estimated rather than represanting
as a collection of scattered 3-D points. Thus, variationeihm
ods provide dense and coherent surface reconstructions. Su
face points are reconstructed by exploiting the contin(tty-
herence) hypothesis in the full two-dimensional domainhaf t
surface. Variational stereo methods combine correspaeies:
tablishment and shape reconstruction into one single step a
they are less sensitive to matching problems of local cpmes
dences. The reconstructed surface is obtained by miniioizat
of an energy functional designed for the stereo problem. The
solution is obtained in the context of active surfaces bydaf
ing an initial surface via a gradient descent PDE derivedhfro
the necessary optimality conditions of the energy funetipine
so-called Euler-Lagrange (EL) equations.

On the other hand, in the context of oceanography, the

raphy has been the WAVESCAN project of Santel et al. [19].

Recently, Benetazzo [5] successfully incorporated epipol
technigues in the Wave Acquisition Stereo System (WASSk Th
was tested in experiments off the shore of the CaliforniasCoa
and the Venice coast in Italy. Benetazzo was able to estimat
wave spectra from the extracted time series of the surface flu
tuations at one fixed point given the data images. The acct
racy of such spectral estimates is comparable to the agcabac
tained from ultrasonic transducer measurements. An exaafpl
a WASS system currently installed in the Acqua Alta platfasm
shown in Fig. 1. An alternative trinocular imaging systenT{A
SIS) for measuring the temporal evolution of 3-D surfaceasgav
was proposed in [6]. More recently, in [20] it is shown how
a modern variational stereo reconstruction techniquegaced
by [7] can be applied to the estimation of oceanic sea state:
Additional references demonstrate that this is an actisearch
topic [21-24].

Encouraged by the results in [5,20,25], in this paper we pro:
pose a novel variational framework for the recovery of thepsh
of ocean waves given multi-view stereo imagery. In partcul
motivated by the characteristics of the target object irsttene,
i.e., the ocean surface, we first introduce the graph surégre-
sentation in the formulation of the reconstruction prohldimen,

first experiments with stereo cameras mounted on a ship were we present the new variational stereo method in the context-o
by Schumacher [11] in 1939. Later, Coté et al. [12] in 1960 tive surfaces. The performance of the algorithm is validate
demonstrated the use of stereo-photography to measuredhe s experimental data collected off shore, and the statisfitiseore-
topography for long ocean waves. The study of long waves constructed surface are also analyzed. Concluding renaseks
using stereophotography was also discussed by Sugimdti [13 finally presented.

based on an optical method by Barber [14], and by Holthui-

jsen [15]. Stereography gained popularity in studying tige d

namics of oceanographic phenomena during the 1980s due toTHE VARIATIONAL GEOMETRIC METHOD

advances in hardware. Shemdin et al. [16,17] applied sgereo
raphy for the directional measurement of short ocean waves.
1997, Holland et al. [18] demonstrated the practical usadgw

This paper is inspired by the works of [5,20] and [8]. In par-
ticular, the variational approach 8fereoscopic Segmentati&h
is used to tackle the vision problem: the reconstructedserdf
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the ocean is obtained as the minimizer of an energy fundtiona for the same amount of physical memory, higher spatial vesol
designed to fit the measurements of ocean waves. In every 3-tion (finer details) can be achieved in the graph repredentat
D reconstruction method, the quality and accuracy of theltes than with the level set. Th¥ —Y plane becomes the natural
depend on the calibration of the cameras. There are standardcommon domain to parameterize the geometrical and photome

camera calibration procedures in the literature to charemet ac- ric properties of surfaces. This simple identification does
curately the intrinsic and extrinsic parameters of the casgl]. exist in the level set approach [8]. Finally, the graph repre
We will assume cameras are calibrated and synchronizedyand  tation allows for fast numerical solvers besides gradiesteént,
focus on the reconstruction of the water surface for a fixee fi like Fast Poisson Solvers, Cyclic Reduction, Multigrid kieds,

Finite-Element Methods (FEM), etc. In the level set framegwo

. , the range of solvers is not as diverse.
Multi-image setup. Graph surface representation _ However, there are also some minor disadvantages. A worl

Let Sbe a smooth s#rface iR with generic local coordi-  frame properly oriented with the gravity direction must ke d
nates(u,v) € RZ; Let {li};=, be a set of images of a static (Wa-  fined in advance to represent the surface as a graph withatespe
ter) Scene acquired by cameras whose calibration pars@&®r o this plane. This is not trivia priori and might pose a problem
{P'}iZs- ~Space points are mapped into image points according jf only the information from the stereo images is used [5]isTh
to the pinhole camera model [2]. The equations of such a per- ¢sndition may not be so if external gravity sensors provide t
spective projection mapping are linear if expressed in lg#n0  jnformation. Surface evolution is constrained to be in threrf of
neous coordinates of Projective geometry. A surface peint (4 graph and this may not be the same as the evolution describ
in general a 3D pointk = (X,Y,Z)" with homogeneous coor-  for an unconstrained surface. As a result, more iteratiomgine
dinatesX = (X,Y,Z,1)" is mapped to poirk; = (x,y) " in the required to reach convergence.
i-th image with homogeneous coordinates: (xi,yi,1) " ~P'X, The reconstruction problem is mathematically stated in the

where the symbol- means equality up to a nonzero scale factor  fo|iowing section. The desired surface is given by the sotuof
andP' =K'[R' | t'] is the 3x 4 projection matrix with the intrinsic a variational optimization problem.

(x') and extrinsick', t') calibration parameters of theth camera.
These parameters are known under the hypothesis of calibrat

cameras. The optical center of the camera is the irthat Proposed energy functional _
satisfiesP/Cj = 0. Let 77 : R® — R2 note the projection maps: Consider the 3-D reconstruction problem from a collection
xi = m(X). Finally, I;(x;) = I;(15(X)) is the intensity a;. of Ne > 2 input images (we will exemplify witiNe = 2). We
We present a different approach to the reconstruction prob- investigate a generative model of the images that allowsier
lem presented in [7, 8] by exploiting the hypothesis thatsie joint estimation of the shape of the surfadand the radiance

face of the water can be represented in the form of a graph or function on the surfacé as minimizers of an energy functional.
elevation map: Let the energy functional be the weighted sum of a data fidelit

term Egaa and two regularizing terms: a geometry smoothing

termEgeomand a radiance smoothing teffg
Z=27(X,Y), (1)

E(S f) =EdadS )+ aEgeom(S) + BErad(f), (2
whereZ is the height of the surface with respect to a domain

plane that is parameterized by coordinaxesndY. Indeed,  \yherea,B € R*. The data fidelity term measures the photo-
slow varying, non-breaking waves admit this simple repnese consistency of the model: the discrepancy in tResense be-
tation with respect to a plane orthogonal to gravity di@ttiAs tween the observed imaggsnd the radiance modé|

a natural extension of existing variational stereo methedsrgy
functionals can be tailored to exploit the benefits of thisiahle n
representation. The surface can still be obtained as thiemzier Egata= ZlEi’ E = / @ dxi, (3)
of a suitable energy functional but now with a different gedm i= Qi
rical representation of the solution.
The graph representation of the water surface presents somewhere the photometric matching criterion is
clear advantages over the more general level set repréisenta

of [7-9, 20]. Surface evolution is simpler to implement sittice 1 2

surface is not represented in terms of an auxiliary highmedi- @ =3 (li0x) —f(x)" 4)
sional function (the level set function). The surface islesd

directly via the height function (1) discretized over a fixad The region of the image domain where the scene is projected

D grid defined on theX —Y plane. The latter also implies that  denoted byQ;. Assuming that the surface of the scene is repre:
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sented as a graph= Z(u,V), a point on the surface has coordi-
nates

X(u,v) = (u,v,Z(u,v))T. (5)

The chain of operations to obtain the intensity;) given a sur-
face point with world coordinates(u) = S(u), u = (u,v) ', is

X (u) = Xj = MX +ply = Xi = 1i (X)), (6)

whereX' = (X,¥;,Z)" are related to the coordinates Xfin
the i-th camera framex; = (x,yi)" = (X/Z,Y;/Z)" are the
coordinates of the projection of in thei-th image plane and
P' = [M'|p}] is the projection matrix of the camera correspond-
ing to thei-th image, in world coordinates, i.eM = KR!
(ni,n5,n5) T andp), = K't'. Also, |M'| = detM").

The radiance model is specified by a functiorf defined
on the surfac&. Then,f in (4) is naturally defined by (xi) =
f(m (X)), wherert ! denotes the back-projection operation
from a point in thei-th image to the closest surface point with
respect to the camera. With a slight abuse of notation, letsas
f to denote the parameterized radiari¢e), understanding that
f(x;) in (4) reads the back-projected valuefitX (u)) = f(u).

Motivated by the common parameterizing domain of the
shape and radiance of the surface and to obtain the simgfest d
fusive terms in the PDEs derived from the necessary optiynali
conditions of the energy (2), let the regularizers be

(7)
(8)

Egeom = /U 1|10z(u)|?du,

Erad = /U 1|0f (u)|2du.

Once all terms in (2) have been specified, some transforma-
tions are carried out to express the data fidelity integre¢s a
more suitable domain: the parameter space. The Jacobihe of t
change of variables between integration domains is, byyappl

the chain rule to (6),

dXi

aul = —MZ73(X = Ci) - (Xu x Xy),

(9)

whereXy x Xy is proportional to the outward unit normisll to
the surface aX (u,v), andZ = nj- (X — Cj) > 0 is the depth of
the pointX with respect to thé-th camera (located &;). With
this change, energy (3) becomes

E = / qqui:/ @J; du, (20)
JQj U

where the last integral is ovér: the part of the parameter space
whose surface projects di; in thei-th image. Observe that
the Jacobian weights the photometric ergpproportionally to
the cosine of the angle between the unit normal to the surfac
at X and theprojection ray(the ray joining the optical center
of the camera an&X): (X — Cj) - (Xy x Xy). After collecting
terms (7), (8), and (10), and noting that the sh¥p# the surface
solely depends on the height (Eqn. (5)), energy (2) becomes

Ez,f) :/ L(Z,Zu,Zv, , fu, Fu, U,v) UL, (11)
U

where subscripts indicate the derivative with respectab vari-
able, and the integrand is the so-calleyrangian L

Energy minimization. Optimality condition

The energy (11) depends on two functions: the siapad
the radiancd of the surface. To find a minimizer of such a func-
tional, we derive the necessary optimality condition bytisgt
to zero the first variation of the functional. Using standich-
nigues from Calculus of Variations, the first variation {€fux
derivative) of (11) has two terms: one in the interior of theet
gration regiorlJ in the parameter space and one boundary tern
(ongdU). Setting the first variation to zero for all possible smooth
perturbations yields a coupled system of PDEs (EL equations
along with natural boundary conditions:

9(Z,f)—aAZ=0 inU, (12)
b(Z,f)Jra%:O ondu, (13)
ov
Ne
—Z(h—f)«]i(z)—BAf:O inU, (14)
i=
of
d_v:() ondu, (15)

where the non-linear terms due to the data fidelity energy are

9(z,f)=0f .§|Mi|2i3(|i —f)(u-Cctv—-C?, (16)
b(Z, f) = qumi 1Z73((u—ChHyvi+ (v—CAHvY).

The Laplacian®\Z andAf arise from the regularizing terms (7)
and (8), respectively, andlx /dv is the usual notation for the di-
rectional derivative along, the normal to the integration domain
U in the parameter space.

A simple classification of the PDEs can be done as follows
For a fixed surface, (14) and (15) form a linear elliptic PDE (o
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conditions. On the other hand, for a fixed radiance, (12) 48y (
lead to a nonlinear elliptic equation in the heighwith nonstan-
dard boundary conditions.

A common approach to solve difficult EL equations, such
as the EL equation presented in (12)-(15), is to add an aatific
time marching variablé dependency in the unknown functions
(height, radiance) and set up a gradient descent flow that wil
drive their evolution such that the energy (11) will deceeas
time. Thus the solution of the EL equations is obtained as the
steady-state of the gradient descent equations. This totitext
of the so-called active surfaces. The gradient descent RE¥ES

FIGURE 2. Left: projection of the boundary of the estimated graph,
which has been discretized on a grid of 22913 points. Right: mod-
eled image (computed form surface height and radianceyisupesed
on original image.

Z = aAng(Z f), 17)

= BAf — ZiJ )+ ZI iJi( (18)

To simplify the equations, we approximate the boundary cond
tion (13) by a simpler, homogeneous Neumann boundary condi-
tion. This can be interpreted as if the data fidelity term shad
close to the boundary and it is a reasonable assumptiontsiace
major contribution to the energy is given by the term&Jinnot

at the boundary.

Numerical solution

An iterative, alternating approach is used to find the mini- FIGURE3. Left: estimated height functiafi(u, v) (shape of the water
mum of energy (2) via the evolution of the coupled gradient de surface) in pseudo-color. Center: contour plot of heightfion. Right:
scent PDEs (17)-(18). During each iteration there are tvasps: estimated radiance functidiu, v) (texture on the surface)
(i) evolve the shape, leaving the radiance fixed, andeyolve
the radiance, leaving the shape unchanged. The PDEs are dis-
cretized on a rectangular 2-D grid in the parameter space andWhereg(Z) is the derivative of (16) and the maximum is taken
then solved numerically using finite-difference method3N. over the 2-D discretized grid at the current time.
Forward differences in time and central differences in spe The previous time-stepping methods are used as relaxatic
proximate the derivatives, yielding @xplicit updating scheme  procedures inside a multigrid method [26] that approxiryate
The time stepAt in the scheme is determined by the stability ~solves the EL equations. Multigrid methods are the mostieffic
condition of the resulting PDE. For the linear PDE (18), iineet numerical tools for solving elliptic boundary value proibie
step for¢? stability satisfies

4 Ne EXPERIMENTS

B 1 — o :

At < (h2 +3 maxz ) (19) After validating the numerical implementation of the pro-
posed variational stereo method with synthetic data, somere
iments with real data are carried out. Figs. 2, 3 and 4 show-an e

where Ji(Z) > 0 and the maximum is taken over the 2-D dis- ample of a reconstructed water surface from images of thizg&en

cretized Jacobians for the current height function. The titep Canal. Cropped images in Fig. 2 are of size &350 pixels and

may change at every iteration, depending on the value of the show the region of interest to be reconstructed. Fig. 2 also d

evolving height. For the nonlinear PDE (12), the von Neumann plays one of the modeled images created by the generativelmoc

H

stability analysis of the linearized PDE yields a time step within our variational method. The data fidelity term congzar
the intensities of the original and modeled images in thé-hig

. lighted region, in all images. As observed, the modeled enag

A< (5 5 max|g( 0 (20) is a good match of the original image. Fig. 3 shows the con.
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FIGURE 4. Left: perspective, three-dimensional wire-frame repre-
sentation of the estimated surface shape (height) acaprdingrid
points. Right: texture-mapped surface obtained by inaatiy the
radiance function in the wire-frame model. The verticalsaxas been
magnified by a factor of 5 with respect to the horizontal axewvisual-
ization purpose.

verged values of the unknowns of the problem: the heightlaad t
radiance of the surface, as well as the 3-D representatitimeof
reconstructed surface obtained by combining both 2-D fanst

In this experiment, the empirical values of the weights efrig-
ularizers were empirically determined:= 0.035 and3 = 0.01.

At the finest of the 5-level multigrid [26] algorithm, the glia
ent descent PDEs are discretized on a 2-D grid withx 333
points. The distance between grid pointdis- 5 cm. There-
fore, the grid covers an area o4& x 25.65m?. An example of

a surface discretized at the finest grid level is shown in HBig.
Observe the high density of the surface representatioitelpf
variational methods. The step sia€distance between adjacent
grid points) must be chosen so that it approximately matttes
resolution in the images: a displacement of 1 pixel is otede/
at the finest grid level in the multigrid framework and it eotr
sponds to a physical displacement of at Idasbue to perspec-
tive projection, the maximum value bfis determined by the grid
points closest to the cameras.

1 Density [rradim)]

Wavenumber (radim)

FIGURE 5. Left: Surface reconstruction from a snapshot of the
data in [5]. Right: Average omni-directional wave numbeecpum.
Straight linesk—2° (solid), k3 (dashed).

shown in Fig. 5. In the same figure we also report the the omni
directional spectrur®(k) (averaged over the frames), computed
by numerically integrating the 2-D spectrug(k;, k;) of the el-
evation map over all directions. In agreement with Zakharov
theory [27], the spectrum tail decays closektd-®, wherek is

the wave number.

CONCLUSIONS

Variational stereo is more powerful, flexible, and rigorous
albeit computationally expensive, than earlier tradilpimage-
based stereo methods founded on epipolar line search.fohere
we follow this research path by developing a variationalesie
method for the case of smooth surfaces representable iotime f
of a graph supporting a smooth radiance function. We sueces:
fully apply this method to reconstruct the surface of theaoce
In future research we plan to elaborate on better choicethéor
regularizers as well as new ones that include global andfor |
cal properties of the dynamics of ocean waves such as &tatist
distribution of wave heights, the wave equation, etc.

Departing from the simple snapshot-by-snapshot sequer
tial temporal processing used in the experiments, the tianizl

The method proposed in this paper is natura”y extended to framework allows for better ways to enforce coherence irttepa

process stereo video on a snapshot-by-snapshot basisrhgtest

time of the reconstructed surface. This topic is now undezsn

ing the new surface shape and radiance based on the prgviousl tigation. Preliminary research shows that VWASS is a pregis

reconstructed surface. This sequential processing idri@est

remote-sensing observational technology with a broadpagn

way in which the method can be applied to stereo video imagery Onocean engineering since it will enrich the understandinige
We test the method on a different video data consisting of 10 Oceanic sea states and wave statistics, enabling impressgits

consecutive images of size 10QA.000 pixels. A grid of size
513x 513 points and distance between grid pointh ef 1.5 cm
is selected. Thus, the grid covers an area.@h77.7m?. The
deforming surface is initialized by the plad@e= 0. A multigrid

method with 6 levels and 200 V-cycles (with 1 pre- and post-

relaxation sweeps per level) is used to solve the probleradt e
frame. For the first frame, a full multigrid method (FMG) with
200 V-cycles per level is performed prior to entering thewabo
processing schedule. In this experiment, the weights ofdbe-
larizers arex =4-10"2andf = 4-10~2. Another reconstruction
of the wave surface from video data collected by Benetaze [5

6

of off-shore structures and platforms.
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