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ABSTRACT 
We present an application of a novel variational Wave 

Acquisition Stereo System (WASS) for the estimation of the 
space-time dynamics of oceanic sea states. WASS technology, 
if combined with statistical techniques of the Euler 
Characteristics of random excursion sets, provides a new 
paradigm for the accurate prediction of the largest crest 
expected over an area.  

INTRODUCTION  
 The prediction of large waves is typically based on the 
statistical analysis of time series of the wave surface 
displacement retrieved from wave gauges, ultrasonic 
instruments or buoys at a fixed point P of the ocean.  However, 
the largest wave crest predicted in time at P underestimates the 
highest crest expected over the area nearby P. Indeed, large 
waves travel on top of wave groups, and the probability that the 
group passes at its apex through P is practically null. The large 
crest height recorded in time at P is simply due to the 
dynamical effects of a group that focuses nearby that location 
forming a larger wave crest. Can we predict the largest wave 
expected over a given area?  Yes we can if the exceedance 
probability  
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 of the global maximum of the wave surface η over a given area 
S  is known. Asymptotic solutions of (1) for Gaussian fields are 
given by Piterbarg (1995) in the limit of an infinite area, and by 

Adler (1981) and Adler & Taylor (2007) exploiting Euler 
Characteristics (EC) of random excursion sets. These 
theoretical results are very useful for ocean & coastal 
engineering design. Indeed, Socquet-Juglard et al. (2005) 
applied Piterbarg's theorem to explain large spatial waves 
observed in simulations of the Dysthe equation. Further, 
Forristall (2006) used  Piterbarg's results to explain the 
damages sometimes observed on the lower decks of platforms 
after storms (Forristall 2007). These may be due to a design 
that underestimates the largest crest height expected over the 
area nearby the offshore structure. Offshore industry can thus 
benefit from the synergy of technologies and statistical tools 
that provide predictions of the largest wave expected over a 
given area and the associated spectral properties.  

In this paper, we present a Wave Acquisition Stereo System 
(WASS), a video observational technology able to acquire four-
dimensional (4D) video data (both in space and time) of 
oceanic states. The rich statistical content of 4D data allows 
reliable estimates of the expected global maximum (largest 
crest height) over an area via Euler Characteristics’ theory 
(Adler 1981, Adler & Taylor 2007).  

WASS has a significant advantage as a low-cost system in 
both installation and maintenance. Further, it provides spatial 
and temporal data whose statistical content is richer than that of 
a time series retrieved from a buoy, which is expensive to 
install and maintain. WASS exploits the combination of state-
of-the-art of epipolar methods (Benetazzo 2006) and 
variational partial differential equation techniques (Jin et al. 
2005) for the 4D stereo reconstruction of the spatio-temporal 
dynamics of ocean waves. We have preliminary results 
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(Gallego et al. 2008) showing that WASS yields accurate 
estimates of the spatio-temporal ocean dynamics, the associated 
wave spectra and wave surface statistics.  

The paper is structured as follows. We first briefly review 
the theory behind the variational WASS and then introduce the 
EC of excursion sets of random fields. We then analyze the EC 
of spatial snapshots η of oceanic sea states acquired via WASS. 
We present new estimates from video data of both directional 
wave spectra and empirical exceedance probabilities of the 
global maximum of η over an area. The broader impact of these 
results to oceanic applications is also discussed.    
 

THE STEREO VARIATIONAL GEOMETRIC METHOD  
The reconstruction of the wave surface from stereo pairs of 

ocean wave images is a classical problem in computer vision 
commonly known as the correspondence problem (Ma et al. 
2004). For  WASS we solve this by  two distinct approaches 
based on epipolar geometries and variational techniques. In the 
former, the ‘epipolar algorithm’ of Benetazzo (2006) finds 
corresponding points in the two images, from which the 
estimate of the real point in the three dimensional terrestrial 
coordinate system can be obtained. However, this approach 
may fail to provide a smooth surface reconstruction because of 
“holes” corresponding to unmatched image regions (Ma et al. 
2004, Benetazzo 2006). This is typical during cloudy days, 
when at a given point on the water surface, the same amount of 
light is received from all possible directions and reflected 
towards the observer causing a visual blurring of the 
specularities of the water. In this case, the water surface is said 
to support a Lambertian radiance function (Ma et al. 2004). 
Variational techniques overcome this problem. Under the 
assumptions of a Lambertian surface, following the seminal 
work by (Faugeras et al. 1998), the 3-D reconstruction of the 
water surface is obtained in the context of active surfaces by 
evolving an initial surface through a PDE derived from the 
gradient descent flow of a cost functional designed for the 
stereo reconstruction problem. 

To be more specific, the energy being maximized is the 
normalized cross correlation between the image intensities 
obtained by projecting the same water surface patch onto both 
image planes of the cameras. It is clear that such energy 
depends on the shape of the water surface. Therefore, the active 
surface establishes an evolving correspondence between the 
pixels in both images. Hence, the correspondence will be 
obtained by evolving a surface in 3-D instead of just 
performing image-to-image intensity comparisons without an 
explicit 3-D model of the target surface being reconstructed. 

To infer the shape of the water surface ),( yxη  at the 
location (x,y) over an area S, we set up a cost functional on the 
discrepancy between the projection of the model surface and 
the image measurements. As previously announced, such cost 
is based on a cross correlation measure between image 
intensities, which will be noted as Edata(η). We conjecture that, 

to have a well-posed problem, a regularization term that 
imposes a geometric prior must also be included, Egeom(η). We 
consider the cost functional to be the (weighted) sum: 
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In particular, the geometric term favors surfaces of least area:  
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The data fidelity term may be expressed as 
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where η is the wave surface region within the field of views of 
both cameras, and  21, II  is the cross-correlation between the 
image intensities I1 and I2 .  

The surface η is found by minimizing E via a gradient flow-
based iterative algorithm that starts from an initial estimate of 
the surface at time t = 0, η0, and it will make the surface evolve 
towards a minimizer of E, hopefully converging to the desired 
water surface shape. Based on the theorem in (Faugeras et al. 
1998) that says that for a function Φ : R3 ´ R3→R+ and the 
energy  

( )∫η
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where N is the unit normal to η at X, the flow that minimizes E 
is given by the evolution PDE 

Nt β=η ,                                                               (6) 

where tη  is the derivative of η with respect to a fictitious time 
variable and the speed β in the normal direction to the surface 
that drives the evolution is 
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All quantities are evaluated at the point η =X with normal N to 
the surface. H denotes the mean curvature. NX ΦΦ ,  are the 
first-order derivatives of Φ , while NNXN ΦΦ ,  are the second-
order derivatives. dN  is the differential of the Gauss map of 
the surface and

ηT(·) means “restriction to the tangent plane Tη 

to the surface at η=X”. Note that our proposed energy (2) can 
be expressed in the form of (5) if ( ) α+−=Φ 2121 ·/,1 IIII ,               
where α is just a weight for the geometric prior. In practice, we 
use the flow based on the first-order derivatives of Φ  because 
it provides similar results to those of the complete expression, 
but saves a significant amount of computations, 

( ) .·)·(2 NNNH XNt Φ−Φ−Φ=η                                           (8) 
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The level set framework has been adopted to numerically 
implement (8) (see Gallego et al. 2008). We have tested the 
variational reconstruction algorithm using a set of images, 
shown in the upper panel of Fig. 1, acquired by Benetazzo 
(2006) on a water depth of 8 meters. In the lower panel of the 
same figure it is shown the successful reconstructed surface.  
The associated directional and omni-directional wave spectra 
are shown in figure 2. Note that the spectrum tail decays as k-2.5 
in agreement with wave turbulence theory (Zakharov 1999) and 
the numerical simulations of the Dysthe equations (Socquet-
Juglard et al. 2005). Hereafter, we introduce the concept of the 
Euler characteristic (EC) that will be applied to predict the 
expected number of large maxima in we oceanic sea states 
exploiting the high statistical content of the acquired video data 
via WASS. 

 

Figure 1: (Upper panel) Input stereo pair images to the algorithm. The 
rectangular domain (8 m x 8.7 m) of the reconstructed surface has 
been superimposed. The wave height is in the range ±0.2 m. (Lower 
panel) Reconstructed normalized wave surface η via WASS. 
 
 

 
 
Figure 2: (left) Estimate of the directional wave spectrum of η of 
figure 1. (right) Omnidirectional spectrum with tail decaying as k-2.5 
(Socquet-Juglard et al. 2005, Zakharov 1999). 

Figure 3: Excursion sets of a normalized zero-mean Gaussian field Z 
at the  thresholds z=1 (left) and z=2.5 (right).  
 

EULER CHARACTERISTICS 
In algebraic topology, the Euler characteristic EC is 

classically defined for polyhedra according to the formula  

FEVEC +−= ,                                                                     (9) 

where V, E, and F are respectively the numbers of vertices, 
edges and faces in the given polyhedron. The same definition 
given in (9) can be adapted to 2D surfaces which are the focus 
of this paper. In this case, the EC is also equivalent to the 
difference between the number connected components (CC) 
and holes (H) of the given set, viz.   

H.-CCEC =                                                                         (10) 

For a generic 2D set Σ with complicated regions, computing the 
EC from the definition (10) presents some challenges. A 
computationally efficient approach can be devised based on (9). 
Following Adler (1981), we first define a Cartesian mesh grid Г 
of size (Δx, Δy) that approximates the complicated domain of 
the given set Σ. The EC(Г) is then computed as follows. Denote 
F as the number of squares (faces) composing Г, Eh (Ev) as the 
number of horizontal (vertical) segments between two 
neighboring mesh points and V the number of grid points. The 
EC(Г) then follows from (9) setting E= Eh + Ev. As the grid cell 
size ΔxΔy tends to zero, EC(Г)  EC(Σ).  For example, for a 
square EC=4-4+1=1 according to (9), which is in agreement 
with (10) since there is only 1 connected component and no 
holes.  

Consider now a two dimensional (2D) random field η to 
model realizations of oceanic sea states at fixed time 
(snapshots) over a given area S as in Figure. 3.  The excursion 
set  

{ }hyxSyxA h >η∈=η ),(:),(,   

is the portion of the area S above the threshold h. From Figure 
3 it is clear that the EC of an excursion set depends very 
strongly on h.  If this is low, then EC counts the number of 
holes in the given set. If the threshold is high (see Figure 3, 
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right panel), then all the holes tend to disappear and the EC 
counts the number of connected components, or local maxima 
of the random field. For a stationary Gaussian field η, an exact 
formula for the expected value of EC, valid for any threshold, 
was discovered by Adler (1981). For 2D Gaussian fields 
defined over the region S of area SA  

2/
,

2
)( ξ

η ξ −= eNAAEC wSh ,                                                  (11) 

where )(•  means expectation , σ=ξ /h  is the normalized 
threshold amplitude, σ is the standard deviation of η and  

( ) 2/122/32 Λ−−= σπwN                                                        (12) 

is the number of ‘waves’ per unit area  with Λ  as the 
covariance matrix of the gradient η∇ .  If the excursion set 
touches the boundary of the area S, correction terms need to be 
added (Worsley 1995). Why the EC of random excursion sets is 
relevant to oceanic applications?  
Adler (1981) and Adler & Taylor (2007) have shown that the 
probability that the global maximum of a random field η 
exceeds a threshold h is well approximated by the expected EC 
of the excursion set hA ,η , provided the threshold is high. 
Indeed, as the threshold h increases, the holes in the excursion 
set hA ,η  disappear until each of its connected components 
includes just one local maximum, and the EC counts the 
number of local maxima. For very large thresholds, the EC 
equals 1 if the global maximum exceeds the threshold and 0 if 
it is below. Thus, the )( ,hAEC η  of large excursion sets is a 
binary random variable with states 0 and 1, and for h>>1 

 [ ] )(1)(Pr)(maxPr ,, hhSP
AECAEChP ηη∈
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Piterbarg (1995) also derived (13) by studying large Gaussian 
maxima over an infinite area, as ∞→SA . The global maximum 
of η is the largest wave crest expected over the area S. Thus, 
(13) provides the basis for accurate estimates of exceedance 
probabilities of large waves by means of the EC of excursion 
sets of video images retrieved via WASS (see Figure 1). A 
consequence of (13) is that, for h>>1 

,)()( ,max hAEChEX η≈                                                          (14) 

that is, the expected number maxEX  of large local maxima 
greater than h equals the expected EC of large excursion sets. 
This statement can be readily proved as follows (Aldous 1989).  
For a very large threshold h, the excursion set hA ,η of a 
Gaussian field η(x,y) is the union of  isolated connected 
components of all the local maxima above h (see Figure 4). 

hz −

s

t

),( hzΓ

hPlane =η
 

Figure 4: A typical excursion set hA ,η of a gaussian field η(x,y),  
above a very large threshold h.  
 
 
Define dzzEXlm )( as the number of local maxima with height 
in [z,z+dz] so that the expected number )(max hEX of maxima 
larger than h follows as 

.)()(max ∫
∞

=
h

lm dzzEXhEX                                                        (15) 

Further, call ),( hzΓ  the area covered by a local maximum of 
amplitude z>h intersecting with the plane η=h (see figure 5). 
The wave surface around this maximum that occurs at, say, t = 
t0 and s = s0 , is described by the conditional Slepian model 
(Kac & Slepian 1959, Lindgren 1970,1972, Boccotti 2000) 

{ } Rssttzzststc +−−Ψ=== ),(),(),( 00200 σ
ηηη ,           (16) 

where (t,s) are the principal directions of η, Ψ  is the 
covariance and R is a random residual of O(z0).  For z>>1, R 
can be neglected and Taylor-expanding (20) nearby t = t0, s = 
s0 yields  
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Setting hc =η , ),( hzΓ   follows from (21) as the area of the 
ellipse of equation 
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where  Λ  is the covariance matrix of η∇ . The total area 
covered by all the local maxima with amplitude z>h is given by  
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Further, the area As of the excursion set hA ,η is given by 
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where the pdf ( )ηp is Gaussian. For h>>1, hA ,η is the union of 
disjoint elliptical areas covered by only isolated local maxima  
above h (see Figure 4). Thus )()( hAhA m=≥η  and (19) and 
(20) lead to the following Volterra integral equation of first 
kind  
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for the unknown )(zEX lm . Its solution proceeds by 
differentiating both members of (21) twice with respect to h, 
and setting h=z. This yield  

( ) ( ) ( ) 2//22/122/3 2
/2)( σσσπ h

Slm ezAzEX −−−= Λ .                   (22) 

From (15), integration by parts yields   

( ) ( ) ,/2)( 2//2/122/3
max

2σσσπ h
S ehAhEX −−−≅ Λ                      (23) 

which is identical to )( ,hAEC η   of (11) if we set σξ /h= .  
 

UPCROSSINGS & MAXIMA  
Consider now one-dimensional (1D) random processes. In 

this case, the EC of excursion sets counts the number of 
upcrossings. Thus, (14) simply states that the expected number 
of large maxima equals that of large h-upcrossings, implying 
the well known one-to-one correspondence between h-
upcrossings and maxima at large thresholds. For two 
dimensional (2D) random fields this correspondence does not 
hold since upcrossings are contour levels. However, the 
definition of a 2D upcrossing is somehow vague. Can we 
define an appropriate 2D h-upcrossing for random fields so that 
the correspondence with large maxima is also one-to-one?   

The answer to this question follows from the seminal work 
of Adler (1976) on generalizing upcrossings to higher 
dimensions. Without losing generality, consider the Gaussian 

field η(x,y) on a new cartesian coordinate system (t,s) so that 
the covariance matrix Λ  of η∇  is diagonal, viz.  
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where mtt and mss (mtt > mss) are the second order spectral 
moments and the determinant ssttmm=Λ . Note that the t-axis 
is along the principal direction θ  (with respect to the original x 
axis) where the second spectral moment along θ  attains its 
maximum. The partial derivatives η∂ t  and η∂ s are thus 
uncorrelated and stochastically independent. With this setting 
in mind, a 2D h-upcrossing occurs at a point SP ∈  if  

i. a 1D h-upcrossing occurs along  t ( 0, >∂= ηη th  at 
P); 

ii. η attains a 1D local maximum along s, i.e. η is convex 
along s ( 0,0 <∂=∂ ηη sss  at P).  

Note that the extra condition (ii) guaranties that η is increasing 
locally at P. Further, this definition does not depend on the 
particular choice of the coordinate axes, and for large 
thresholds each 2D upcrossing corresponds uniquely to a large 
local maximum of η.  Indeed, following Rice logic (Adler 
1981), the expected number )(hEX + of 2D h-upcrossings is 
given by the following generalized Rice formula 
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where ( )•p  is the joint probability density function (pdf) of 
η∂η∂η∂η ssst ,,, . For an exact solution of (14) we refer to 

Adler (1981). Instead, an asymptotic solution for h>>1 can be 
derived as follows. By Gaussianity, η∂ t  and η∂ s  are 
independent of each other and from η∂ ss  and η . This implies 
that 
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The first integral on the left is equal to )2/( 2πσttm , and the 
underlined terms equal the expected number, per unit length 
along s, of 1D local maxima with amplitude h. This is given, 

for large h, by )2/2exp()2/( 2 ξξπσ −ssm , with σ=ξ /h  
the dimensionless threshold. Since the 
determinant ssttmm=Λ is invariant by any axes rotation, we 
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conclude that in general )(hEX +  of (17) equals )( η,hAEC of 
(11). Thus, for h>>1,  

.)()()( ,max hAEChEXhEX η≈≈+                                         (27) 

 This proves the existence of a one-to-one correspondence 
between 2D upcrossings and large maxima as in 1D processes. 
Adler’s result (11) is thus relevant for applications because 
large upcrossings or maxima of random fields can be counted 
by simply estimating the Euler characteristic of excursion sets.   
 

EC OF OCEANIC SEA STATES 
In the following we extend (13) to deal with the expected EC 
of excursion sets of spatial snapshots of oceanic sea states 
measured by WASS (see Figure 1). To properly model oceanic 
nonlinearities (Fedele 2008), we follow Tayfun (1986) and 
define the nonlinear wave surface nlη  over S as 

( )22 ˆ
2

η−η
μ

+η=ηnl ,                                                           (28) 

where 3/3λ=μ  is the wave steepness, which relates to the 
skewness 3λ  of nlη , and η̂  is the Hilbert transform of a 
normalized Gaussian field η .  For ξ>>1, the excursion regions 
where ξ≥ηnl  include just isolated local maxima. So, the 
structure of the excursion set can be related to the surface field 
locally to a maximum of nlη  with amplitude greater or equal 
to ξ . Assume that this occurs at t = t0 and s = s0. Then, the 
surface locally around that maximum is described by the 
nonlinear Slepian model defined by conditional process 
(Tayfun & Fedele 2007, Fedele 2008, Fedele & Tayfun 2009) 

{ }ξ≥ηη=η ),(),( 00 stst nlnlnc ,                                            (29) 

that unfortunately does not have a straightforward explicit 
solution. A simplification of (29) stems from particular 
structure of the nonlinear surface nlη  as follows. Note that, 
from (28) it is clear that the nonlinear quadratic component of  

nlη  is phase-coupled to the extremes of the Gaussian η . So, a 
large maximum of nlη  greater or equal to ξ  occurs 
simultaneously when η  itself is at a large maximum with an 
amplitude greater or equal to, say, 1ξ .  Thus, the conditional 
process (29), for 11 >>ξ , is equivalent to the simpler process 
(Tayfun & Fedele 2007, Fedele 2008, Fedele & Tayfun 2009) 

{ } ( )222
11100

ˆ
2

),(),( Ψ−Ψ+Ψ=≥= ξμξξηηη ststnlnc ,      (30) 

where Ψ  is the normalized covariance of η .  From (30), the 
nonlinear crest occurs at (t = t0, s = s0), where 1=Ψ  and 

0ˆ =Ψ , and its amplitude is given by   

.
2

2
11 ξμξξ +=               (31) 

 Thus, the expected EC of the excursion set }{ ξ≥ηnl  equal 
that of the EC of the excursion set }{ 1ξ≥η  of the Gaussian η . 
By the variable transformation (35), from (11) it follows that 
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  (32) 

Where wS NAN =  is the total number of ‘waves’ over the area 

SA . In Figure 5 it shown a realization of the nonlinear field 

nlη (μ=0.1) over an area 22100 σ=SA covered by roughly 
N=436 waves.  The nonlinear surface is computed from (32) 
using a Gaussian-shape spectrum for the linear ηwith spectral 
bandwidths 59.0,17.1 == yx νν . Fig. 6 plots the observed EC 
against the threshold h. Further, the expected nonlinear EC in 
(36) is compared against that Gaussian (11). The simulated data 
agree well with the nonlinear model (36) whereas the Gaussian 
EC underestimates data for larger thresholds as expected.  
We point out that the largest crest height nh expected over the 
simulated area can be directly estimated from the observed EC 
without any knowledge of the associated wave spectrum. 
Indeed, nh  depends upon the number of waves N which is in 
general estimated from spectra. An alternative way to indirectly 
estimate N is provided by the observed EC diagram of Figure 6 
and (36) used as an inverse formula for N. Table 1 reports such 
estimates for different values of the observed EC. Good 
agreement with the simulated value N=436 is found for large 
EC amplitudes, whereas the worst estimate is for EC=1.   

 Figure 5: Realization of a typical nonlinear field nlη  (linear 

spectrum is Gaussian with bandwitdhs 59.0,17.1 == yx νν and 
steepness μ=0.1). 
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Hereafter, we analyze the EC of the oceanic video data 
collected by WASS of Figure 1. Figure 7 shows the observed 
EC against the threshold h and the expected theoretical ECs for 
the linear and nonlinear case. In Figure 8 is reported the same 
plot in log scale. The experimental data agree with the 
theoretical model (32).  
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 Figure 6: Observed EC from the simulated field of Fig. 5 and the 
expected EC against the threshold h. 
 
Table 1: Estimates of N thorugh observed EC ( exact N=436)  

EC ξ ξ1      Estimate N 

200 1.75 1.62 ~458 

100 

1 

2.35 

4 

2.13 

3.41 

~450 

~100 
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Figure 7. Observed EC and the expected EC against the threshold, as 
for the oceanic video data collected via WASS of Fig. 1. 
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Figure 8: Same as in Figure 7. 

CONCLUSIONS 
We have presented an application of a novel variational 

image sensor WASS for the stereo reconstruction of wave 
surfaces. WASS technology, combined with statistical tools for 
the computation the Euler Characteristics of  random excursion 
sets, provides reliable estimates of the largest crest of oceanic 
sea states.  
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