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ABSTRACT 
We present a generalization of the equivalent triangular storm 
model of Boccotti for the long-term statistics of extreme wave 
events, where the actual storm is modeled in time t by a power 
law ~ |t|λ, with λ as a shape parameter. Given the largest wave 
height Hmax, we first identify the most probable storm in which 
the largest wave occurs. Then, we derive an explicit expression 
for the return period of a storm in which the maximum wave 
height exceeds a given threshold. We apply the new model for 
the analysis of wave measurements retrieved from some of the 
NOAA buoys in the Atlantic and Pacific oceans. We find that 
extreme event predictions based on the new model are less 
conservative than those from the peaks-over-thresholds 
method.  Estimates of the expected maximum wave energy are 
also provided.  

 
INTRODUCTION 

 Stochastic modeling of significant wave height (Hs) 
time series provides the basis for efficient statistical methods 
for the prediction of extreme wave events during sea storms. In 
these type of analyses, the effects of the sea state on the short-
term scales Ts~3 hours  are nonlinearly cumulated to predict the 
wave conditions on the long-term time scales Tl~years. To do 
so, it is reasonable to assume that on the short-term scale Ts, the 
sea state is a homogenous and stationary stochastic field whose 
properties are fully characterized by the associated directional 
spectrum S(k) in the wave number space k and its spectral 
moments ∫= k)k( dSm j

j ω . Wave parameters such as Hs and 

mean periods can be easily estimated from the sea surface time 
series or the associated wave spectrum. On the long-term scale 
Tl, we then have a succession of sea storms, where each storm, 
according to Boccotti (2000), is identified as a non-stationary 
sequence of sea states in which Hs exceeds the fixed threshold 

sH5.1  and it does not fall below it for a continuous time 

interval greater than 12 hours. Here, sH  is the mean annual 
significant wave height for the examined site.  

Given  a succession of storm events in time, Boccotti 
(1986,2000) proposed the equivalent triangular storm (ETS) 
model to predict the return period of individual extreme wave 
events during sea storms. In the ETS model, a triangle of height 
a and base b is associated to each actual sea storm. The 
equivalence is realized by imposing that a equals the maximum 
Hs of the actual storm, and the associated b is chosen such that 
the maximum expected wave height during the actual storm 
(Borgman, 1970, 1973) equals that of the ETS. In Boccotti’s 
model, the long-term statistics of extreme events is uniquely 
characterized by three key elements: the Weibull distribution 
for the significant wave height Hs , the conditional average base 

)(ab , and the pA(a) distribution of the ETS peak amplitudes a. 
 The ETS model led Boccotti (2000) to obtain analytical 

solutions for the return period R(Hs >h) of a sea storm in which 
the maximum significant wave height Hs exceeds h . Further, 
Boccotti (1989, 2000) derived the return period )(HR  of a sea 
storm in which the maximum individual wave height exceeds a 
fixed threshold H. Recently Arena (2001) extended this 
solution to deal with the return period )(CR  of a sea storm in 
which the maximum nonlinear crest height exceeds the fixed 
threshold C. The solutions for R(Hs >h), )(HR and )(CR solve 
the problem of the prediction of extreme individual waves 
during sea storms. Arena & Pavone (2007) showed that the 
predictions from the ETS model are less conservative than 
those from the standard peaks-over-thresholds (POT) method. 
This is due to the property of the ETS model to accurately 
represent Hs locally at storm peaks. Is it thus possible to 
improve the predictions of extremes by a more accurate 
modelling of storm peaks?  Or equivalently, can we measure 
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the goodness of the ETS model in predicting extremes in sea 
storms?  

In this paper, we provide answers to these queries by 
presenting a generalization of the ETS model of Boccotti where 
each actual storm is modeled in time t by a power law ~ |t|λ, 
with λ as a shape parameter. The paper is structured as follows. 
We first provide an overview of sea storm modeling, and then 
introduce the Equivalent Power Storm (EPS) model for the 
stochastic characterization of extreme wave events in sea 
storms.  In particular, we derive an explicit expression for the 
return period of a storm in which the maximum wave height 
exceeds a given threshold. We then present results from the 
analysis of wave data measurements retrieved from some 
NOAA buoys moored off the Georgia coast, USA. To assess 
the quality of the EPS predictions, a sensitivity analysis is 
performed with respect to the shape parameter λ. We find a 
systematic pattern in the variations of the predictions as λ is 
varied. To further validate our results, we compared the best 
EPS predictions for the return period )( hHR s >  against those 
from the peaks-over-thresholds method (Goda, 1999, Van 
Vleddler et al. (1993). EPS estimates of the expected maximum 
wave energy are finally provided.  

SEA STORM MODELLING AT A GIVEN SITE IN TIME 
 
To model sea storms, consider a time interval τ  during 

which ( )τN  storm events occur at the examined site in time.  
We assume that the probability that recorded Hs stays above the 
threshold h is given by the Weibull law  
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which is defined for lhh ≥ . The parameters lh , w and u are 
estimated by the iterative procedure of Goda (1999). We have 
considered the data of the buoys 46059 and 46006 moored far 
from the coast and the data of the buoys 46022, 46014, 46042, 
46023, 46054 moored close to the coast as well (see Figure 1). 
Figure 2 shows the )( hHP s >  of two buoys plotted on a 
Weibull paper. The parameters ( u , w , lh ) of the )( hHP s >  
have been estimated for each buoy and are showed in Table 1. 
       The statistical properties of waves in the sea storm can be 
easily derived according to Borgman’s theory (1973). Indeed, 
the probability of exceedance of the maximum wave height 

maxH  in a sea storm is given by 
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where D is the storm duration, )(th  is the significant wave 

height at the time t, )(hT  is the mean period (Rice, 1944, 1945) 
and )|( hHHP s =  is the probability of exceedance of the 
individual wave height given a a sea state with hHs = . This is 
the Boccotti wave height distribution valid for finite band 
spectra (Boccotti 1981, 1997, 2000) that tends to the Rayleigh 
law for narrow band waves (Longuet-Higgins, 1952). The 
maximum expected wave height maxH  during the sea storm is 
given by 

∫
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maxmax )( dHHHPH . 

 
The Equivalent Power Storm (EPS) model 
       We define an equivalent model whose significant wave 
height h is defined by the power law  
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where b  is the duration of the storm, a is the peak amplitude 
and ∞<< λ0   is a shape parameter. The EPS model has one 
degree of freedom in λ  to better represent the actual storm 
peak. In particular, (4) has smooth peaks for 10 << λ , and 
sharp cusps for 1≥λ . Further, as λ increases from zero, peaks 
become smoothly sharper, and at λ=1 the ETS model of 
Boccotti with linear cusps is recovered. As λ increases from 1, 
cusps become nonlinearly sharper. For the EPS model (4), the 
probability of exceedance of the maximum individual wave 
height follows from (2) as 
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Then, given an equivalent storm (4) with parameters a  and b, 
the maximum expected wave height maxH  follows by 
integration of (5), with respect to H, as in (3).  We also 
introduce the joint probability density function (pdf) 

),()(),( |, abpapbap ABABA = of a and b and define 
dbdabap BA ),(,  as the fraction of equivalent storms having a 

duration in [ ]dbbb +, and peak amplitude in [ ]daaa +,  during 
a long time intervalτ . Note that the conditional average 
duration 

∫
∞

=
0

| ),()( dbabpab AB  

and the peak distribution )(apA are the key parameters that 
uniquely characterize the EPS model. 
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         The estimation of a, b, )(ab and )(apA  proceed from the 
storm data by imposing the following equivalences between the 
EPS model and the actual storm. The height a (storm intensity) 
of the EPS is equal to the maximum significant wave height 
during the actual storm. The duration b is chosen so that maxH  
of the EPS equals the maximum expected wave height of the 
actual storm. Then, )(ab  can be estimated from the ( )τN  
pairs (aj,bj). Figure 3 shows the actual storm, the associated 
EPS and the respective exceedance probabilities )( max HHP >  
computed from (2) and (5), respectively.  These two 
probabilities are practically the same, implying the full 
equivalence between each actual storm and the associated EPS. 
Note that b is correlated with the storm peak a. In particular, 
short durations b~12-24 hours are typical of very strong and 
fast actual storms (see Figure 3a-b where two sea storms 
having a small base are shown). Long durations b~100-200 
hours generally occurs in sea storms having a large single peak, 
or in a sea storm with multi peaks (see Figure 3c). 
         Finally, the pdf )(apA is obtained by imposing that the 
total time during which the significant wave height is, during a 
given interval τ ,  above any given threshold h is equal in both 
the actual storm and its equivalent EPS model (see Fig. 2). For 
the actual storm, the time TR during which Hs stays above h is 
given by  

( )hHhT sR >= Pr)( τ .     (7) 

For the EPS model, the time GEST  during which Hs is above h 
can be derived as follows. Consider first  

( ) dbdaabpapNbadN ABA ),()(),( |τ=       (8) 

as the number of equivalent storms having a duration in 
[ ]dbbb +, and peak amplitude in [ ]daaa +, , and  recall that 
( )τN  is the total number of storms  in τ . From Fig. 2,  
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where ts(h,a,b) is the time when Hs stays above h,  during an 
equivalent storm.  This follows from (4) as (see also Fig. 1) 
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Thus, from (6) and (8), (9) can be further simplified as  
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To derive )(apA , we impose that )()( hThT RGES = . This leads 
to the following integral Volterra equation of first kind 
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where ( )hHhP s>= Pr)( . The analytical solution of (12) for 
)(apA  is given by (13) (see appendix)  
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and the first three derivatives of P(z) are given by 
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Note that for the case 1<λ , the integer 1>n  and the real 
number 10 << μ  are such that μλ += n/1 . If 0=μ , from 
(14) 
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The return period R(Hs >h) 

Consider a time interval τ  during which ( )τN  storm events 
occur. According to the EPS model, ),( badN  of (8) is the 
number of equivalent storms having a duration in 
[ ]dbbb +, and peak amplitude in [ ]daaa +, . Thus, the number 
of storms ( )haN >;τ  with the peak significant wave height 
a>h is given by  
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Since a is the storm peak amplitude, we define the return 
period R(Hs >h) of a storm in which  the maximum significant 
wave height Hs  exceeds the threshold h as 
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  (16) 
The mean persistence of the significant wave height sH  above 
the threshold h in the storms where this threshold is exceeded, 
is given by the general expression (Boccotti, 2000): 

( ) )()( hHPhHRhD ss >>= .                                       (17)   (17) 

This yields the alternative formulation )( hHR s >  as   
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Some examples of the mean persistence )(hD  off the 
Californian coast are showed in Figure 8.  
 
4. Extreme wave events in sea storms  
    We now proceed with the statistical properties of the largest 
wave occurring during storms. We first derive the conditional 
pdf  pA|Hmax(H,a), which is interpreted as the fraction of 
equivalent storms whose largest wave height Hmax is equal to H 
and the peak intensity A is in [a,a+da]. To do so, consider the 
number ( )baHdNw ,, of equivalent storms, with a duration 
in [ ]dbbb +, and peak amplitude in [ ]daaa +, , during which the 
maximum wave occurs with an height Hmax in [ ]dHHH +, , 
that is 
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Here, ( )baHHp ,;max =  is the pdf of Hmax that follows from 
(5) and dN is given in (8). From (19), we define the 
conditional pdf  pA|Hmax(a,H) as  
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The conditional expected storm intensity, given the largest 
wave height H, is denoted as   max|)( HAHac =  and the 

associated variance is ( )max
2
, |var)( HAHca =σ . We shall show 

via comparisons with buoy data that   
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Thus, the most probable height of the largest wave in a storm is 
as twice as its peak amplitude. To obtain the exact analytical 
solution of ( )HHR >max , consider the number ( )HNw  of 
storms in which the largest wave occurs with a height greater 
than H. This is given by  
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Then, we can define by (23) 
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The return periods )( hHR s >  for some locations off the 
Californian coast are showed in Figure 7. Table 3 shows also 
the significant wave heights for fixed values of the return 
period )( hHR s > , calculated for the buoys of Figure 1. 
 
3 Sea storm modelling over an area in time  

The EPS model can also be extended to predict extreme wave 
events over a given area. To do so, we just need to define the 
exceedance probabilities (2) and (5) of the actual and 
equivalent storms appropriate for the maximum wave height 

maxH  over a given regionΩ . To do so, we model the wave 
height ),(max tH Ω  as a non non-stationary process depending 
on a wave parameter Hs(t), and define the wave height 
exceedance according to (24) 
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Here, the probability dwwHp s )( =  is interpreted as the 
fraction of time during which Hs(t) stays between w and w+dw, 
that is 

ττ

τdww,wHdwwHp s
s

in][iniswhentimelim)( +
==

∞→
, (25) 

and { }wHHH s =>Ω |)(Pr max  is the probability that the wave 
height exceeds the threshold H over the region Ω  in a sea state 
η with Hs=w. This is given by  (Adler 1981, Adler & Taylor 
2007, Piterbarg 1995) 
{ }

( ) 2/2/122/3

max
2

Λ2

|)(Pr
ξξσπ −−−

Ω

==>Ω

eA

wHHH s
              (26)                                     

where, σξ /H=  is the normalized threshold amplitude, σ is 
the standard deviation of η, ΩA  is the area of region Ω, and Λ  
is the covariance matrix of the gradient η∇ .  For each actual 
storm of duration D, during which Hs varies according to h(t), 
we can write 
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where prime denotes time derivative. For the EPS model,   
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Extreme storms recorded off the Californian 
coast 
The analysis of the sea storm recorded off the Californian coast 
has been performed. In particular, for each actual storm the 
height and the base of the equivalent triangular storm have 
been calculated. Some examples of ETS are showed in Figure 
3. The severest storm is showed in Figure 3a: it was recorded 
by buoy 46006 and it had intensity of 16.3m and duration of 
32.2hours. 

Finally, the mean height 10a  and the mean base 10b  of the N’ 
strongest ETS at the examined location are obtained for each 
buoy (N’ is equal to 10 times the number of observation years). 
The values of 10a  and 10b  are showed in Table 1. As we can 
see, we find the highest values of 10a  (and therefore the 
strongest storm) for the buoys 46006 and 46059 far from the 
coast (see Figure 1).  For the buoys close to the coast, 10a  is 
generally smaller, as we can see from Table 1. From Table 1 we 
can see also that 10b  (that is the mean duration of the strongest 
storm) is more uniform than 10a .  

Storm duration  
The storm duration can be estimated by using the exponential 
base-height regression proposed by Boccotti (2000) (see also 
Arena and Barbaro, 1999):  
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where 1K  and 2K  are characteristic parameters of the location 
(these parameters were estimated in the Central Mediterranean 
Sea, in the Northwest Atlantic Ocean and in the Northeast and 
Central Pacific Ocean – see Boccotti, 2000 and Arena and 
Barbaro, 1999). Figure 4 shows the relation between the storm 
duration and the storm intensity for the NOAA buoy 46006. 
Each point in the figure represents an actual storm having 
intensity a and duration b. The parameters 1K , 2K , 10a  and 

10b  of )(ab  for the examined locations off the Californian 
coast are showed in Table 1.  

 

Comparisons with the Total Sample Method  
Consider the estimated )( hHP s > from sH data at the 
sampling rate, say samptΔ . Given the large time intervalτ , 

samp/)( thHP s Δ>τ  is an estimate of the number of records in 

which sH is greater than h, during τ . In the Total Sample 
Method (TSM), the return period )( hHR sts >  of a sea storm in 
which the maximum significant wave heights exceeds h is 
computed as that of a sea state whose hHs > , viz.  

)(
)( samp

hHP
t

hHR
s

sts >

Δ
=> . 

From (18), we clearly see that )( hHR sts >  is obtained 

assuming the mean persistence samp)( thD Δ= .  For NOAA 

buoys data, samptΔ =1 hour. In reality sH  can stay above h for 

several hours. Indeed, )(hD  equals dozens of hours for 

average sHh 5.1= , and it decreases as h increases, as was 
pointed out by Graham (1982), Sobey and Orloff (1999) and 
Boccotti (2000). This tendency can be clearly seen in Fig. 8.  
As a consequence, the TSM tends to overestimate the extreme 
significant wave height during severe storms, as shown in both 
Figure 7 and Table 3, where we report both the predictions 
based on the TSM and EPS models, respectively. 

 
CONCLUSIONS 
In this paper a bi-parametric analysis of sea storms by using the 
data of some NOAA buoys moored off the California is done. 
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The equivalent Power storm (EPS) model is presented. We 
have estimated the return period )( hHR s >  of a sea storm in 
which the maximum wave height exceeds the fixed threshold h 
(Boccotti, 2000), assuming the lower-bounded three parameters 
Weibull distribution for the significant wave height. Therefore 
we have compared the EPS model prediction to the total 
sample method predictions finding that the latter tends to 
overestimate the significant wave height for fixed return 
period.  
Finally in order to predict the direction of the strongest sea 
storms, a directional analysis is done, using the data from the 
directional NOAA buoy 46042. 

 

 

 

Appendix  
In (12) set  
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to obtain an integral Volterra equation of first kind  for )(af , 
that is  
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After we solve for f(a), the solution for )(apA easily follows 
from (a1). To solve for (a2) we distinguish three cases: 
a) 1=λ , b) 1>λ , and c) 10 << λ . 
 

Case a): 1=λ   

Note that (a2) reduces to  
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The solution of f(a) proceed by differentiating both members of 
(a3) twice, with respect to h, and setting h=a. This yield 
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Case b): 1>λ   

Consider the ansatz 
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where g(z), for 0≥z , and H(z-a), for az ≥ , are arbitrary 
functions. Substituting (a5) into (a2) yields the new integral 
equation for g 
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The domain of integration of the double integral in (a6) is 
shown in Fig. A1. If, for given z, we first integrate along a 
within the limits [h,z], and proceed with the integration along z, 
between h and ∞ , then (a6) can be written as  
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where the kernel K is defined as 
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The integral equation (a7) can be easily solved for g(z) if H is 
chosen so that K ~ (z-h). To do so, consider the change of 
variables  
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( ) ( ) θθθθ λ
λ

π

dhzhzhzH

zhK

sin
2

cos1
2

cos1
2

),(

/1
/10

−
+⎟

⎠
⎞

⎜
⎝
⎛ −

⎥⎦
⎤

⎢⎣
⎡ −

−
−

=

∫
 

If we choose  

( )
( ) λ/1

1
az

azH
−

=− ,      (a11) 

Then, for 1>λ , 

( )
( ) ,/sin

sin
cos1
cos1

2
),(

/1

0
λπλ

πθθ
θ
θ λπ

hzdhzzhK −
=⎟

⎠
⎞

⎜
⎝
⎛

−
+−

= ∫    (a12) 

 
and (a7) simplifies to  

( ) ( )∫
∞

−=
h

dzhzzghP )(
/sin

/)(
λπ

λπ .                                 (a13) 

This is the same type of Volterra equation as in case (a). We 
thus solve for g(z) by differentiating both members of (a13) 
twice with respect to h, and then setting h=z. This yield  

( )
2

2

/
/sin)(

dz
Pdzg

λπ
λπ

= .                                               (a14) 
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z

h
 

Figure A1: Domain of integration of the double integral in (a4) 
 
From (a11) and (a14), (a5) yields the final solution of (a2)  
 

( )
( )

.1,1
/

/sin)( /12

2

∫
∞

>
−

=
a

dz
azdz

Pdaf λ
λπ
λπ

λ   (a15) 

 
Case c): 10 << λ   

Find an integer 1>n  and a real number 10 << μ  such that  

μ
λ

+= n1 ;                      (a16) 

then (a2) becomes  

( )∫
∞

+−=
h

n dahaafhP μ)()( .         (a17) 

We first differentiate n times both members of (a17) and get 

 ( ) 10,)(
!
)1(

<<−=
−

∫
∞

μμ

h
n

nn
dahaaf

dh
Pd

n
.        (a18) 

This is the same type of integral equation as in case b). Thus, 

( )
( )

.1sin
!
)1()( 2

2

∫
∞

+

+

−

−
=

a
n

nn
dz

azdz
Pd

n
af μπμ

πμ                (a19) 
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