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ABSTRACT 
 We propose a novel variational Wave Acquisition Stereo 
System (WASS) that exploits new stereo reconstruction 
techniques for accurate estimates of the spatio-temporal 
dynamics of ocean waves. WASS has a significant advantage 
as a low-cost system in both installation and maintenance. A 
stereo camera view provides three-dimensional data (both in 
space and time) whose statistical content is richer than that of 
a time series retrieved from wave gauges, ultrasonic 
instruments or buoys, the latter being expensive to install and 
maintain. Indeed, wave spectra can be easily estimated from 
the multi-dimensional images obtained with WASS.  The 
estimated spectra present an inertial range that decays as k-2.5, 
k being the wave number, in agreement with wave turbulence 
theory (Zakharov 1999, Socquet-Juglard et al. 2005). Further, 
the empirical probability density functions derived from the 
reconstructed surface data compare very well with theoretical 
models (Tayfun & Fedele 2007, Fedele 2008).  The variational 
WASS is a promising technology with broader impacts in 
offshore engineering since it will enrich the understanding of 
the statistics of waves for an improved design of offshore 
structures.  
 
 
STEREO VIDEO IMAGERY – AN OVERVIEW 

The Wave Acquisition Stereo System (WASS) 
(Benetazzo 2006) utilizes stereo vision based on two 
calibrated views for providing time series of scattered 3-
D points of the water surface (see Figures 1, 2). Water 

surface topography can be measured from the 
conventional stereographic technique algorithms (Ma et 
al., 2004) used to survey geodetical surfaces or static 
objects. The major difference is that the water surface is 
a specular object in rapid movement. Thus, each stereo-
pair is acquired simultaneously. First experiments with 
cameras mounted on an ocean going ship are by 
Schumacher (1939) and Cote’ et al. (1960). Shemdin et 
al. (1988,1992) proposed the directional measurements 
of short ocean waves applying stereography. This 
experiment used a pair of cameras mounted on an 
oceanographic offshore tower near San Diego (USA) to 
create 3D model of the sea surface and then, via spectral 
analysis, to extract directional information of waves. The 
most recent integration of stereographic techniques into 
the field of oceanography has been the WAVESCAN 
project (Santel et al. 2004). 

The reconstruction of the wave surface from stereo 
pairs of ocean wave images is a classical problem in 
computer vision commonly known as the 
correspondence problem (Klette et al., 1998, Ma et al. 
2004). Its solution is based on epipolar geometry 
techniques that find corresponding points in the two 
images, from which one obtains the estimate of the real 
point in the three dimensional terrestrial coordinate 
system. WASS will process multi-dimensional image 
data and obtain a 4-D (space and time) reconstruction of 
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the sea surface. Benetazzo (2006) successfully used 
WASS in experiments offshore the California Coast and 
at the Venice coast in Italy. He was able to estimate 
wave spectra from the extracted time series of the 
surface fluctuations at one fixed point from the data 
images. The accuracy of such spectral estimates is as 
good as that from ultrasonic transducer measurements, as 
shown in Figure 3. 

 
Figure 1: WASS physical set-up of two calibrated cameras. 

 

 
Figure 2:  Set-up of two camera stereometric intersection 
(From Benetazzo, 2006). Mathematical pinhole camera model. 
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Figure 3:  Wave spectra as function of the frequency f 
estimated from both stereo data and ultrasonic measurements. 
(From Benetazzo 2006). 

THE STEREO RECONSTRUCTION OF OCEAN 
WAVES   

In this paper, a variational approach is considered to 
address the reconstruction problem in a different way 
from the traditional correspondence problem based on 
epipolar geometries. Consider the water surface 
supporting a Lambertian radiance function. The latter is 
approximately true on a cloudy day because, at a given 
point on the water surface, the same amount of light is 
received from all possible directions and reflected 
towards the observer causing a visual blurring of the 
specularities of the water. Under these conditions, the 
traditional stereographic algorithm based on epipolar 
geometries may fail to provide a smooth surface 
reconstruction because of “holes” corresponding to 
unmatched image regions (Ma et al., 2004, Benetazzo 
2006). 

In this paper, we address this problem by proposing 
a variational WASS that exploits variational partial 
differential equation (PDE) techniques for 3D dense and 
regular stereo reconstructions of the water surface. 
Finally, we present results showing that the variational 
WASS yields accurate estimates of the spatio-temporal 
ocean dynamics and of the associated wave spectra and 
statistics. 
 

THE VARIATIONAL GEOMETRIC METHOD    
Under the assumptions of a Lambertian surface, 

following the seminal work by (Faugeras et al. 1998), 
the 3-D reconstruction of the water surface is obtained in 
the context of active surfaces by evolving an initial 
surface through a PDE derived from the gradient descent 
flow of a cost functional designed for the stereo 
reconstruction problem. 

To be more specific, the energy being maximized is 
the normalized cross correlation between the image 
intensities obtained by projecting the same water surface 
patch onto both image planes of the cameras. It is clear 
that such energy depends on the shape of the water 
surface. Therefore, the active surface establishes an 
evolving correspondence between the pixels in both 
images. Hence, the correspondence will be obtained by 
evolving a surface in 3-D instead of just performing 
image-to-image intensity comparisons without an 
explicit 3-D model of the target surface being 
reconstructed. 
 
 
Notation 



 3 Copyright © 2008 by ASME 

Consider the same set-up of the WASS, in which two 
calibrated cameras are viewing the water surface. 
Quantities corresponding to the left (resp. right) camera 
will be noted with a “1” (resp. “2”) subscript. If the 
projection matrices that model the perspective projection 
of the cameras are known with respect to the left camera 
coordinate system, then )0,(11 IKP =  and 

),(22 tRKP = , where 21, KK  are the intrinsic parameter 
matrices (containing the focal lengths, principal points 
and skews) and ),( tRg =  defines the rigid 
transformation between both camera coordinate systems. 
Let tzyxX ),,(=  represent a generic 3-D point in the 
scene, expressed with respect to the same coordinate 
system as the projection matrices. As it is well known, 
the equations that model the geometry of the image 
formation process are linear in homogeneous coordinates 
form: a 3-D point tzyxX )1,,,(=  maps to the image 
points XPvux i

t
iii ~)1,,(= , (i=1,2), where ~ means 

equality up to a non-zero scale factor. Therefore, 
t

iii vux ),(=  are the pixel coordinates of the image 

points. Let 23: RRi →π  note the perspective projection 
maps: )(Xx ii π= , (i = 1,2). 

The primary object of interest will be a regular 
surface S in R3 (with area element dA), representing the 
water surface. As it will be shown later in the 
implementation of the algorithm, the surface S will be 
represented as the zero level set of a smooth functionÛ : 
R3 →R, i.e., S ={X | Û (X) = 0}. 
 
Cost functional 

To infer the shape of the water surface S, we set up a 
cost functional on the discrepancy between the 
projection of the model surface and the image 
measurements. As previously announced, such cost is 
based on a cross correlation measure between image 
intensities, which will be noted as Edata(S). We conjecture 
that, to have a well-posed problem, a regularization term 
that imposes a geometric prior must also be included, 
Egeom(S). We consider the cost functional to be the 
(weighted) sum: 

E(S) = Edata(S) + Egeom(S).               (1) 
In particular, the geometric term favours surfaces of least 
area:  

Egeom(S) = ∫SdA .                           (2) 

The data fidelity term may be expressed as  
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where only the surface in a region within the field of 
views of both cameras is considered. The unnormalized 
cross-correlation between I1 and I2 corresponding to a 
common 3-D point X that projects on the pixels 

)(11 Xx π= , )(22 Xx π= , is 
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where the integration is over a small patch in the tangent 
plane TS to the water surface S at X and, therefore, the 
averages )( ii xI  are defined as  

∫ ∫
− −

′′+=
p

p

q

q
iiii mdmXI

pq
xI ))((

4
1)( π , (i = 1,2). 

We note III ,2 = . Observe that this definition of 

21, II  is symmetric and, therefore, the term 12 , II  is 
already included in Edata(S). The term +1 in (3) yields a 
positive energy, which prevents antidiffusive terms from 
occurring in the following evolution equation. 
 
Evolution equation 

To find the surface S that minimizes E(S), we start 
from an initial estimate of the surface at time t = 0, S0, 
and set up a gradient flow based on the first variation of 
E(S) that will make the surface evolve towards a 
minimizer of E(S), hopefully converging to the desired 
water surface shape. 

Based on the theorem in (Faugeras et al. 1998) that 
says that for a function Φ : R3 ´ R3→R+ and the energy  

( )∫ Φ=
S

dANXE , ,                         (4) 

where N is the unit normal to S at X, the flow that 
minimizes E is given by the evolution PDE 

NSt β= ,                               (5) 
where tS  is the derivative of S with respect to time and 
the speed function b is 

[ ]
SS TNNTXN
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All quantities are evaluated at the point S=X with normal 
N to the surface. H denotes the mean curvature. NX ΦΦ ,  
are the first-order derivatives of Φ , while NNXN ΦΦ ,  are 
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the second-order derivatives. dN  is the differential of 
the Gauss map of the surface and

ST(·) means “restriction 
to the tangent plane TS to the surface at S=X”.  

Note that our proposed energy (1) can be expressed 
in the form of (4) if  

α+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Φ

21

21

·
,

1
II
II
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where α is just a weight for the geometric prior. In 
practice, we use the flow based on the first-order 
derivatives of Φ  because it provides similar results to 
those of the complete expression, but saves a significant 
amount of computations, 

( )NNNHS XNt ·)·(2 Φ−Φ−Φ= .           (6) 
The level set framework (Osher et al. 1988) has been 

adopted to numerically implement (6). This formulation 
requires an implicit representation of the surface. At each 
time t, the surface S is the zero level set of the level set 
function U: R4 →R, i.e.,  

S at time t is {X ∈ R3  | U(X, t) = 0}. 
The unit normal of the surface is ||/ UUN ∇−∇= , 

where ∇ stands for the derivatives with respect to the 
first three coordinates of U. The evolution equation for 
the level set function U corresponding to the evolution 
equation for the surface (5) is   

|| UU t ∇= β .                           (7) 
In a numerical implementation, the level set function 

U is discretized in a 3-D grid enclosing the volume of 
interest in the world where the water surface is known to 
be. The derivatives of Φ , the mean curvature H, the unit 
normal vector N, etc. are approximated by numerical 
finite difference formulas. After the evolution, the 
surface itself is extracted using the marching cube 
algorithm, which is a very popular routine, such as 
MATLAB’s isosurface command.  
 
Initialization 

As is well known, a good initialization is strongly 
encouraged in gradient descent algorithms to mitigate 
the problem of getting stuck in a local minimum far 
away from the desired solution. A sensible initialization 
for the proposed variational stereo algorithm is to 
consider the surface at time t=0 to be the simplest 
(lowest frequency) approximation to the water surface, 
i.e., a plane (flat surface).  

In the experiments, this approximation is computed 
from a set of 10 to 15 manually matched point 
correspondences n

k
kk xx 121 }{ =↔  between both images. 

Since the cameras are calibrated, a triangulation (back-

projection) algorithm may be used to find the 
approximate location of the 3-D points n

kkX 1}{ =  that 
project onto kk xx 21 ,  because ).,,,( 2121

kk
k xxPPfX =  

Then, a plane can be fitted to this set of 3-D points by 
minimizing a least-square criterion such as the 
orthogonal distance to the points. Once this plane is 
known, the level set function U(X,0) is initialized as the 
signed distance function to the plane and the algorithm 
can be run to evolve the surface.  

Observe that if the plane is known, one may also 
back-project the four corners of each image and intersect 
those optical rays with the plane to obtain an estimate of 
the quadrilateral field of view of the cameras on the 
plane. This is also used to set up the volume where the 
level set function is discretized. 
 
Camera to terrestrial coordinates 

Now, suppose that the variational stereo algorithm 
has converged. Next, the surface must be extracted from 
the level set and prepared for post-processing (statistical 
analysis, etc.). So far, the coordinate system used has 
been that of the (left) camera, but under the assumption 
that the water surface can be expressed in the form of a 
graph ),( yxfz ′′=′  in some terrestrial coordinate system 
(prime notation) related to the former by a rigid 
transformation, we would like to obtain such a 
representation of the reconstructed surface so that 
relevant information contained in the heights of the 
points on the surface may be analyzed.  

The problem now can be posed as the joint 
estimation of the “average” plane through the surface 
and the rigid transformation (R,T) that moves the former 
to its canonical location z′ = 0. We follow a decoupling 
strategy: first, the best plane through the data is 
estimated; second this plane is reoriented by a rigid 
transformation to become the plane z′ = 0. 

We now present a method that estimates the mean 
plane through a set of 3-D points by minimizing the 
geometric orthogonal distance from the points to the 
plane. This is a sensible criterion and provides a plane 
that has zero mean signed distance to the given data 
points. 

The signed perpendicular distance from a 3-D point 
tzyxX )1,,,(=  to a plane whose coefficients (or 

homogeneous coordinates) are tdcbav ),,,(=  is 

222222
),(

cba

dczbyax

cba

vXvXsd
t

++

+++
=

++
=          (8) 

and the perpendicular distance is its absolute value, 
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|),(|),( vXsdvXd = .                      (9) 
Given m points, the plane that minimizes 

∑
=

m

i
i vXd

1

2 ),(                           (10) 

is defined up to a scaling of the coefficients. This degree 
of freedom disappears after enforcing 

1|| 2222 =++= cban  on the magnitude of the normal 
to the plane, tcban ),,(= . It can be shown that the 
minimizer of (10) satisfies a generalized eigenvalue 
equation. However, the following simpler procedure 
gives the same results. 

 Given m³3 points t
iiii zyxX ),,(= , 

1) Normalization. Apply a similarity transformation HS 
(rotation, translation and isotropic scaling) to the points 
such that the new centroid of the points is placed at the 
origin and the average distance of the transformed points 
to the origin is 3 . 
2) Estimation. Compute the Singular Value 
Decomposition of the m´3 matrix A whose i-th row 
is ),,( iii zyx , i.e., tUDVA = . Set tcbav )0,,,(~ = , where 

tcban ),,(~ =  is the unit right singular vector of A 
associated to its smallest singular value. 
3) Denormalization. Set vHv t

S
~= , where HS is the 4x4 

matrix of the similarity transformation (in homogeneous 
coordinates).  
It can be shown that the plane estimated this way 
minimizes (10) and is one of the mean planes with 
respect to signed distance, i.e., satisfies 

0),(
1

=∑
=

m

i
i vXsd .                       (11) 

Once the plane v is known, the goal is to find the 
Euclidean transformation (R,T) that moves the plane v to 
its canonical location in the terrestrial coordinate system. 
Let tt dnv ),(= , if points X  transform as 

XHX E=′ , where ⎥
⎦

⎤
⎢
⎣

⎡
=

10tE
TR

H          (12) 

is the 4´4 matrix of the Euclidean transformation 
between coordinate systems, then planes transform as 

vHv t
E
−=′ . The goal is to find R and T such that 

ttt dnv )0,1,0,0(),( =′′=′ . This yields two equations: 
Rnn t ==′ )1,0,0(  and dRnT t = . Observe that R is the 

mapping between normal vectors. The angle and axis of 
rotation are given by the magnitude and direction of the 

cross product nnw ′×= . Rodrigues’ rotation formula 
can be used to compute R: 

[ ] [ ]2ˆ)cos1(ˆsin ×× −++= wwIR θθ ,        (13) 
where ||/ˆ www =  and [ ]×a is the antisymmetric matrix 
such that [ ] baba ×=×  "b. If 1|| =n , then the expression 
for R in (13) simplifies to 

⎥
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−−−
−−−

=
cba
bqbabq
aabqqa

R 2

2

1
1
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where  

22
1

ba
cq

+
−

= . 

The second equation, dRnT t = , has an infinite 
number of solutions since only the third coordinate of T 
is relevant. The first two coordinates of T may be used to 
specify the origin of terrestrial coordinates on the 
plane z′ = 0. We may choose tdT ),0,0(= . 

Finally, convert the water surface points from the 
camera coordinate system to the terrestrial coordinate 
system by TRXX +=′ . 

The reconstruction process described above is 
repeated for each pair of images acquired by the 
calibrated cameras. So far, no dynamics of the physics of 
the waves have been included in the model to make a 
joint spatio-temporal reconstruction of the water surface. 
This approach is postponed for future research. 
 
EXPERIMENTS 

The data used to test the variational reconstruction 
algorithm is a set of images acquired by the WASS 
developed by Benetazzo (2006a,b); in particular, the San 
Diego experiment described therein. The images of 
waves, on water depth of 8 meters, were cropped to 
504x336 pixels to decrease the depth of the field of view 
of the cameras, i.e., to focus in the region close to the 
cameras. The baseline between the cameras is 3.04 
meters and the reconstructed surface occupies a rectangle 
of approximately 8x8.7 m2.  
Figure 4 shows the domain of the reconstructed surface 
on each pair of input images to the algorithm. The level 
set function was discretized on a 3-D grid of 2563 points 
and evolved during 100 iterations for every pair of 
images, with a time step of 0.25.
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Figure 4: Input stereo pair images to the algorithm (left and center columns). The rectangular domain (8 m ´ 8.7 m) of the reconstructed surface or 
elevation map (right column) has been superimposed. The height of the waves is in the range ±0.2 cm. 

 
The distance between adjacent grid points is 8.2 cm, 

which is related to the maximum quantization error. The 
distance between adjacent grid points is 8.2 cm, which is 
related to the maximum quantization error. The surface is 
then extracted and reoriented for post-processing, as 
explained in the previous section. The reconstructed 
surface, as elevation maps is also displayed in Figure 4 
(right column). The variational algorithm runs on a 
Intel® CoreTM  single Processor (2.60GHz) and the CPU 
time spent for the surface reconstruction is of the order 
of 0.5-1 minutes. On-going research effort is put in to 
developing faster algorithms that run on multi-core 
parallel machines.   

 
 
WAVE SPECTRA & STATISTICS 

Herein, we elaborate the nature of the reconstructed 
wave surface shown in Figure 4. We point out that the 
following statistical analysis only exploits data from the 
reconstructed spatial snapshot of the ocean surface at a 
fixed instant of the time. We show that information 
content of a single spatial snapshot of the ocean surface 
is richer than that of traditional time series 
measurements. Indeed, we compute estimates of the 
wave spectra and provide evidences that recent 
probabilistic wave models (Tayfun & Fedele 2007, 
Fedele 2008) well explain realistic oceanic conditions.  

In particular, the wave spectrum S(k) as function of 
the wave number k is given in Figure 5. Its tail shows an 
inertial range that decays as k-2.5 in agreement with wave 
turbulence theory (Zakharov 1999, Janssen 2003, 
Socquet-Juglard et al. 2005). Deviations of large surface 
heights from the Gaussian conditions are expected since 
water waves present steep crests and shallow troughs 
(Longuet-Higgins 1963, Tayfun 1980;1986, Tayfun & 
Fedele 2007, Fedele 2008). This is also confirmed by our 
analysis. Indeed, Figure 6 shows that the empirical 
probability density function pη derived from the 

reconstructed surface η compare very well with the 
Gram-Charlier models (Longuet-Higgins 1963, Tayfun 
& Fedele, 2007) given by 
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where 3λ  and 4λ are the skewness and kurtosis of the 
wave surface, respectively. These parameters 
characterize the nonlinear features of ocean waves and 
can be estimated from the video data as follows.  

Drawing on Tayfun (1994), we first evaluate the 
probability of positive wave elevations given by 

π
λ

η
262

1}0Pr{ 3−=>=+P ,                                       (14)              

where we have used  
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 (15)  

Note that 2/1<+P reflecting the asymmetry of wave 
crest and troughs. Estimates for 3λ  follow from (14) as 

( )+−= P21233 πλ ,                                                  (16) 
where +P is estimated from the surface data. The 
kurtosis 4λ  could be estimated from the average positive 
wave height 0| >ηη , but this leads to overestimation. 
We thus simply estimate 4λ  from data.  
Further, in Figure 7 it is plotted the conditional 
probability p(η>z|η>0) which agrees with the Gram-
Charlier model (Longuet-Higgins 1963). 
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We thus have scientific evidences that the variational 
WASS provides accurate estimates of the spatio-
temporal ocean dynamics.  

 
Figure 5.  Wave spectrum S(k)  as function of the wave number k 
computed from the reconstructed wave surface η  in Figure 4. The 
spectrum tail decays as k-2.5 in agreement with wave turbulence 
theory (Zakharov 1999, Socquet-Juglard et al. 2005).   
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Figure 6.  Probability density p(η) of the reconstructed wave surface 
η in Figure 4: comparisons with the Gram-Charlier model (Longuet-
Higgins 1963, Tayfun & Fedele 2007, Fedele 2008). 
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Figure 7. Conditional probability density p(η>z|η>0) of the 
reconstructed wave surface η in Figure 4: comparisons with the 
Gram-Charlier model (Longuet-Higgins 1963, Fedele & Tayfun 
2007, Fedele 2008). 
 
 
DISCUSSION AND FUTURE WORK 

In this paper we have explored the possibilities of 
applying a variational algorithm for the stereo 
reconstruction of ocean waves. In particular, we have 
proposed a variational WASS which has the following 
main advantages: i) it provides a dense reconstruction of 
the water surface (there are no “holes” corresponding to 
unmatched image regions); ii) it has built in regularity 
due to the mean curvature component of the flow (6); iii) 
it yields reliable statistics of ocean waves due to the rich 
information content of video data. 

However, this method is sensitive to specular 
reflections and time consuming (non real-time). These 
issues are subject of future work that aims improving the 
reconstruction algorithm by considering the dynamics of 
the waves and the estimation of the surface radiance 
function (Yezzi et al. 2001). These may be included in 
the cost functional and will ultimately provide a robust 
generative model of the images.  

Further, the proposed variational geometric 
algorithm is very general and allows for the 
reconstruction of complicated surfaces. It has not been 
particularized yet for the case of water surface, which 
admits a simplified representation in the form of a graph, 
i.e., a point on the surface may represented 
as tyxzyxX )),(,,(= . This is a topic of future research.  

We thus strongly believe that the variational WASS 
technology and its generalization are beneficial to 
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offshore industries. More accurate predictions of wave 
spectra and large waves in sea storms around offshore 
structures can be provided.  In particular, reliable 
estimates of the highest wave expected over an area 
(Forristall 2005) can be computed by processing wave 
surface data extracted from video-imagery. Further, 
video data will also support the validation of theoretical 
models for crest or wave height exceedances (Tayfun 
1986,2006, Fedele 2006, Tayfun & Fedele 2007).  We 
point out that the highest expected wave over an area is 
naturally higher than the expected wave height at one 
point (Forristall 2005). This reflects the common sense 
of the surfers that wander around a site, and always find 
their big waves. Thus, the probability to encounter a big 
wave within an area of the ocean increases with its size. 
The proposed variational WASS will allow a better 
understanding of the statistics of large waves over an 
area, and it may yield new insights for an improved 
design of platforms that avoid the localized damages 
sometime observed on their lower decks after storms.  
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