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ABSTRACT 

A theoretical expression derived previously for describing 
the joint distribution of the envelope and phase of nonlinear 
waves is verified with wind-wave measurements collected in the 
North Sea. The same distribution is explored further to derive 
the marginal and conditional distributions of wave envelopes 
and phases. The nature and implications of these are examined 
with emphasis on the occurrence of large waves and associated 
phases. It is shown that the wave-phase distribution assumes 
two distinct forms depending on whether if envelope elevations 
exceed the significant envelope height or not. For envelope 
elevations sufficiently larger than this threshold, the wave-phase 
distribution approaches a simple limit form, indicating that large 
surface displacements can occur only above the mean sea level. 
Comparisons with the North Sea data confirm these theoretical 
results and also suggest that large surface displacements and 
thus large wave heights arise from the constructive interference 
of spectral components with different amplitudes and phases. 
Further, large waves with high and sharp crests do not display 
any secondary maxima and minima. They appear more regular 
or narrow-banded than relatively low waves, and their heights 
and crests do not violate the Miche-Stokes type upper limits. 
 
INTRODUCTION 
 Suppose that the sea surface displacement )(tη  measured 
from the mean sea level at a fixed point in time t and its 
conjugate or Hilbert transform )(ˆ tη are both normalized with 
their root-mean-square .σ They can then be represented as the 
real and imaginary parts of the complex process  
 

φξφξηηφξ sincosˆ)exp( iii +=+= ,                            (1) 
 

where )(tξ and )(tφ define the wave envelope and phase. The 
explicit expressions forη and η̂  characterized with second-
order nonlinearities are given in Tayfun (1994).  These and the 
theoretical statistics developed from them, including the 
distributions of η and η̂ expanded in Gram-Charlier series, 
related third-order cumulants and thus the resulting probability 
structure of ξ  and φ are all valid for directional wind seas at 
deep and transitional water depths, although Tayfun (1994) 
elaborates them only for deep-water waves. 

To the leading order of approximation, η  is linear 
Gaussian, and the probability density (p.d.) describing ξ and φ  
jointly assumes the form (Rice 1944, 1945) 

 
)2/exp(.)2/1(. 2ξξπξφξφ −== ppp .                      (2)  

                         
Thus, φ and ξ  are statistically independent, φ  by itself is 
uniformly random, say in ),( ππ− , and the envelopeξ  
Rayleigh-distributed.  

In the second-order approximation, η  is weakly nonlinear 
and non-Gaussian, and (2) is modified as (Tayfun 1994) 
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where ≡>=< 3

3 ηλ skewness coefficient. This result is identical 
to earlier approximations derived in Tayfun & Lo (1989, 1990) 
under less general conditions. It also suggests a somewhat more 
complex structure where φ and ξ  are no longer statistically 
independent since ξφξφ ppp .≠ .  
 Some characteristics and implications of (3), such as the 
marginal distributions describing φ andξ  by themselves have 
previously been explored and compared in Tayfun & Lo (1989, 
1990) and Tayfun (1994) with simulations and measurements 
gathered at a  relatively poor sampling rate of 1 Hz in the Gulf 
of Mexico during the passage of hurricane Camille in 1969. One 
of the objectives here is to have a closer look at (3) itself and to 
compare it with more recent measurements from the North Sea.  
The same expression is then used to obtain various theoretical 
expressions describing the conditional distributions of φ andξ , 
with emphasis on large surface displacements and the nature of 
associated phases. Some limited comparisons similar to those in 
the previous studies aforementioned are also given as a further 
verification of theoretical results and for completeness of 
presentation. The validity of Miche-Stokes type bounds that 
limit the occurrences of large wave heights and crests, and 
possible effects due to higher-order nonlinearities such as the 
third-order quasi-resonant interactions elaborated in Socquet-
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Juglard et al. (2005), Mori & Janssen (2006) and Mori et al. 
(2007) are also considered briefly.  
 
DATA 

The measurements that will be used for verifying various 
theoretical results comprise 9-h measurements gathered at 4 Hz 
with a Baylor wave staff from the Meetpost Noordwijk platform 
in 18 m average water depth in the southern North Sea in 
January, 1998 as part of the Wave Crest Sensor Inter-
comparison Study (Forristall et al. 2002). This data, hereafter 
referred to as WACSIS, represents fairly energetic waves at a 
transitional water depth. The frequency spectral density of 
surface displacements is representative of typical wind seas, 
tending to a 4−ω power law for frequencies larger than 
approximately 1~2 times the spectral-peak frequency. 
 The variations of σ and 3λ  estimated from half-hourly 
segments are shown in Fig. 1. WACSIS exhibits relatively 
strong non-stationary and nonlinear characteristics. The 
segmental σ estimates differ from the overall average 

981.0=avgσ m by as much as %17± ; and, 236.03 =avgλ  as 
an overall average, but the half-hourly samples vary from 0.172 
to 0.278. To compensate for non-stationarity at least partially, 
all analyses will be done in half-hourly segments, scaling all 
elevations in each segment with the corresponding .σ   
 
JOINT DISTRIBUTION 

 For 3.03 =λ  as a hypothetical case, the joint p.d. (3) is 

illustrated in Fig. 2 as contours of ξφπ p2 . These differ 
noticeably from the corresponding contours of (2) for linear 
waves because if the latter were plotted in the same figure, they 
would appear as parallel lines. 

It is noted that 0<ξφp  in },||{ mc ξξπφφ >≤<≡Ω , 
where  
 
 ])4(/6[cos 2

3
1 −−= − ξξλφ c  ;  mξξ > ,                       (4) 

 
and mξ  is such that 

 0)4(
6

1 23 =−− mm ξξ
λ

.                                                  (5) 

 
In general, 2>mξ and follows easily in a few iterations from 

3/1
j,31j, ]4)/6([ mm ξλξ +=+ , with j = 0, 1, 2, … and 

.20, =mξ  Clearly, the values of φ andξ  in Ω  lie above the 

curves cφ± . Oceanic values of 3λ  are typically less than 0.3. 

And, numerical computations for 5.005.0 3 ≤< λ  indicate that 

the probability mass over Ω  is less than 310 − in absolute value.  
So, the non-negativity issue is not significant for (3), but it will 
be so later in considering the conditional p.d. of  φ , given ξ , 

  
Fig. 1.  Half-hourly variations of σ and 3λ  in WACSIS: 

m981.0=avgσ   and .236.03 =avgλ  
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Fig. 2. Contours of  constant2 =ξφπ p  from (3) for 3.03 =λ .  

 
whenever mξξ > .  

 The contours of ξφπ p2  observed in WACSIS are 
compared with the corresponding predictions from (3) in Fig. 3.  
Evidently, (3) represents the observed data reasonably well.  
The curves cφ± based on the overall average 236.03 =avgλ , 
and the scatter of wave phases and associated envelopes derived 
from half-hourly segments are also shown in Fig. 4 for 2>ξ . It 
is seen that if mξξ > , then the physically realizable φ tend to 

lie in ),( cc φφ− . Further, 2/πφ →c  and 1}0{Pr →>η as 
∞→ξ .  Thus, exceptionally large surface displacements can 

occur only above the mean sea level. In linear waves, surface 
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displacements, no matter how large, are equally likely both 
above and below the mean level.   
       Also shown in Fig. 4 are the envelopes and phases 
associated with the two largest surface displacements denoted as 

1η and 2η , respectively. The corresponding wave heights, 

envelopes, phases and conjugates are 270.91 =h , 042.61 =ξ , 

028.01 −=φ and 171.0ˆ1 −=η  for 039.61=η ; and, 

955.72 =h , 050.52 =ξ , 347.02 =φ and 715.1ˆ 2 =η  for 

.749.42 =η  The largest four envelope heights in Fig. 3 
congregate around the crest of the largest wave. In general, the 
largest surface displacement does not necessarily occur 
simultaneously with the largest envelope height, as seen in this 
figure, but it does so if 0≅φ  also. In theory, the latter condition 
implies wave focusing, viz. the constructive interference or 
superposition of a sufficiently large number of wave 
components when their phases approach 0 simultaneously. In 
wind seas, this is the most likely process that causes large 
surface displacements and unusually large waves with scaled 
features and proportions quite similar to the largest wave in 
WACSIS, often referred to as freak or rogue waves. 

 
MARGINAL DISTRIBUTIONS 
      The marginal p.d..s describingξ and φ by themselves follow 
by integration from (3) as 
 

)2/exp( 2ξξξ −=p ,                                                       (6) 
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The marginal p.d. (6) is of the Rayleigh form, as in linear 
waves.  However, the nonlinear surface is vertically skewed, 
with higher and sharper crests, and shallower and more rounded 
troughs.  Accordingly, wave envelopes are expected to be higher 
and narrower over the crest segments where 0>η , and 
shallower and wider over the troughs segments where 0≤η .  
Overall, such opposing distortions do not affect the marginal 
distribution of wave envelopes, particularly in the absence of 
higher-order nonlinear effects such as third-order quasi-resonant 
interactions among free waves that amplify the wave envelopes 
over both crest and trough segments (Socquet-Juglard et al. 
2005, Mori & Janssen 2006, Mori et al. 2007). As shown in Fig. 
5, both expressions compare favorably with the WACSIS data 
for the most part. Discrepancies between the observed and 
predicted p.d.s do appear for 4>ξ  and 410 −<ξp , as the data 
become rather sparse.  
 Note that 0>η  if 2/|| πφ ≤ , and 0≤η  otherwise.  Thus, 

}0{Pr >≡+ ηP  and +− −=≤≡ PP 1}0{Pr η  follow  
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Fig. 3. Contours of ξφπ p2 from WACSIS (red) and (3). 
 

 
Fig. 4. The scatter diagram of φ  and 2>ξ  from WACSIS:  
envelope(s) & phase(s) of the two largest waves and their crests 
 
by integration from (7) as 
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By definition, ,1=+ −+ PP  but 2/1>−P  and 2/1<+P  for 
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Fig. 5.  Marginal p.d.s of ξ and φ  observed in WACSIS 
(points) versus  approximations (6) & (7) (continuous curves). 
 

                                                  
.03 >λ  Thus, the sea surface stays somewhat longer below the 

mean sea level than it does above it. Further, (8) can be used to 
estimate 3λ  from a zero-mean surface series directly 
since )21(233

±≅ Pmπλ . With 485.0≅+P  in WACSIS, 
the latter expression gives 230.03 ≅λ , which compares in this 
case quite well with 0.236 computed from the cubic moment of 
the surface time series. 
  
CONDITIONAL DISTRIBUTIONS OF ENVELOPES  

In order to describe how the wave envelope is modified by 
the surface skewness, it is necessary to consider its conditional 
distributions, given that 0>η  and 0≤η , respectively. The 
conditional densities sought, say, +ξ

p for 0>η  and −ξ
p  for 

0≤η  follow from (3) as (Al-Humoud et al. 2002) 
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3
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λ
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where [ ] 1
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exceedance distributions (e.d.) are of the form 
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                                                                                                (10) 
where )2/exp( 2ξξ −=E  corresponds to the Rayleigh e.d., and 

≡erfc complementary error function. In theory, (10) should 
describe crest and trough amplitudes in narrow-band waves just 
as the Rayleigh distribution does for linear narrow-band waves. 
Al-Humoud et al. (2002) and Cherneva et al.  (2005) explore 
this possibility, but for relatively broad-band waves in deep and 
shallow water. Although some comparisons of (10) with 
shallow-water data in Cherneva et al. (2005) appear surprisingly 
favorable, the quantitative accuracy of such approximations is 
generally somewhat poor for typical wind seas with broad-band 
characteristics.     
 
CONDITIONAL DISTRIBUTIONS OF WAVE PHASE 
 The conditional p.d. of φ , given ξ , follows from (3) by 
way of standard probabilistic definitions as 
 

c
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with 2>mξ  as in (4) , and 
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 As ∞→ξ , 2/πφ →c   and so  (13) converges to  
 

2/||,cos)2/1(| πφφξφ ≤=p .                                (14) 
 
 The variation of ξφ |p with ξ  is shown in Fig. 6 

for 3.03 =λ . It is recalled that ≡= 2sξ mean of the 1/3-rd 
largestξ ’s, conventionally referred to as the significant value. 
Clearly, ξφ |p  appears strikingly different depending on 

whether if sξξ ≤  or not. For 0=ξ and sξ , ξφ |p is uniform as 

in linear waves. For 15.13/20 ≅<< ξ , ξφ |p  tends to 
deviate from the uniform p.d. π2/1  up to 1.15. As ξ  increases 
further from 1.15 to sξ , it converges back to π2/1 . In general, 
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ξφ |p displays a slight excess of phases over wave troughs and 
a corresponding deficiency elsewhere. However, when 

sξξ > and as it gets larger, ξφ |p  predicts a progressively 
increasing excess of phases over wave crests, eventually 
converging to the limit form (14). All this suggests that 
physically, the surface stays slightly longer below the mean sea 
level if sξξ < , whereas if sξξ > , the opposite occurs in a more 
pronounced manner asξ  becomes larger. In particular, the limit 
form (14) suggests that exceptionally large surface 
displacements can occur only above the mean sea level. This 
result is entirely consistent with the WACSIS data of Fig. 4. 
        The conditional p.d. ξφ |p can not be estimated from a 

surface time series unless the condition “givenξ ” is 
approximated as “given ξξξξξ ∆+≤<∆− ” such that 

ξξ <<∆ . WACSIS comparisons shown in Fig. 7 use this 

approach for 5.3and3,2=ξ  with 2.0=∆ξ . It is seen that 
(11) describes the wave-phase densities observed reasonably 
well.  
 The p.d. of φ , conditional on }{ 0ξξ >≡A , is given by 
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with 2176.1*

0 >ξ  in general  such that  3
*
0 /6)( λξ =f , and  
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In this case, *

0ξ  follows by iteration from 
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with  j = 0, 1, 2,…,  and 00 ≥x .   
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Fig. 6. The variation of the conditional p.d. ξφ |p  of φ , given 

ξ , with ξ  for .3.03 =λ  
 
  
 The p.d.  of φ , conditional on }{ 0ξξ ≤≡B , has the form  
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where 00 >ξ  , πφ ≤||  and, with ≡erf error function, and 
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The functions f and h are shown in Fig. 8.  In general,  0≥h  
with a maximum 2.5108 at 539.10 ≅ξ , whereas 0≤f  for 

2176.10 <ξ  and 0>f  otherwise. As 00 →ξ , 2/π−→f    
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and φφ pp A →|  of (7). As ∞→0ξ , φφ cos)2/1(| →Ap ; 

and, if 2176.10 ≅ξ , then πφ 2/1| →Ap  for any 3λ  . In 

comparison, for 10 0 <<< ξ , 0≈h  and πφ 2/1| ≈Bp . If, 

however, 40 >ξ  approximately, 2/π→h  and φφ pp B →|  

of (7) also. 
 The variation of the conditional p.d. Ap |φ  in (15) with 0ξ  

for =3λ 0.3 is shown in Fig. 9, and its comparisons with the 

WACSIS data in Figs. 10. Similarly, the variation of Bp |φ  in 
(20), and its comparisons with WACSIS are shown in Figs. 11 
and 12, respectively.  Both sets of comparisons seem to validate 
the theoretical expressions (15) and (20) reasonably well.  
 To explore the nature of large surface displacements 
further, let }|0{Pr APA >≡+ η  denote the conditional 
probability, given }{ 0ξξ >≡A .  By integration from (15), 
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                                                                                          (22) 
The variation of this probability with 0ξ  and 3λ  is shown in 
Fig. 13, and its comparisons with the WACSIS data in Fig. 14. 
Note that }|0{Pr APA ≤≡− η follows from +− AP1  in both 
figures. By substituting (16) through (18) in (15), it is easily 
verified that 1→+

AP  and 0→−
AP  as ∞→0ξ . Further, Fig. 

13 suggests that these limits are nearly realized for 8~60 ≥ξ , 

depending on 3λ .The WACSIS comparison in Fig. 14 confirms 
this observation and the predictions from (22), if allowance is 
made for the scarcity of the observed surface displacements 
when 40 >ξ . All this formalizes probabilistically the nature of  
large surface displacements, and that very large displacements 
can occur only above the mean sea level.   
 
LARGE WAVES 
       Let ),2,1,0j(j K=m represent the ordinary spectral 

moments such that ,2
0 σ=m ≡= 01 / mmmω spectral-mean 

frequency, and ≡−= 2/12
120 ]1)/([ mmmν spectral bandwidth. 

To the leading order of approximation, t∂∂≡ /ξξ& is 
independent of ξ  and normally distributed with mean zero and 
standard deviation mων  , viz. );0( mNp ωνξ ≈&  for brevity. 

To the same order, t∂∂≡ /φφ& is independent of ξ& , but not ofξ : 
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its conditional p.d. is )/;(| ξωνωξφ mmNp ≈& , given ξ  (Rice 

1944, 1945; Longuet-Higgins 1957). In theory, these 
approximations are modified by nonlinear corrections of )( 3λO , 
but the WACSIS data show that these are practically negligible. 
So, ifν is used as an ordering parameter, then φ  and φ&  

are )1(O , andξ&  is )(νO . At the positive extrema, 0>η , 0=η& , 
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Thus, 1cos →φ  and 0sin →φ  as ∞→ξ , in which 
case 0ˆ →∞→ ηη and  also.  These theoretical limits signify 
that wave focusing is complete in that the phases of all spectral 
components approach zero simultaneously. Obviously, the 
probability for such occurrences is nil. In practice, for 1>>ξ , 

2)/(max ξνξη O+→ and )/(0ˆ ξνη O+→ . Under the same 

condition, φ  increases monotonously since 0>φ& . These 
conditions do in fact occur in WACSIS whenever 25.1 −>ξ , 
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Fig.14. Comparison of }|0{Pr 0ξξη >>=+

AP observed in 

WACSIS with the theoretical expression (22). 
 
approximately. Physically, the corresponding surface profile and 
thus large waves appear more regular or narrow-banded: they do 
not display any secondary maxima or minima, but a single 
dominant crest proceeded by a relatively deeper trough. 
Secondary extrema can occur only during phase reversals when 

0<φ& . All this is illustrated in Fig. 15, where 2>ξ  around the 
largest wave in WACSIS, and in Fig. 16, where 2<ξ  
approximately, for a 30-s segment of the surface time series near 
the beginning of the WACSIS measurements.  
 The theoretical models describing the expected shape of 
large waves, linear and nonlinear, are described in several 
studies. These include Lindgren (1972), Boccotti (1989, 2000), 
Phillips et al. (1993), and Tayfun & Fedele (2007a).  In the 
linear case, the surface profile near a large wave crest is 
approximated by the conditional expectation 
  
 
 )(1|)( tt cc ρξξη ≅〉>>〈 ,                                            (23) 
 
where ≡== max)0( ηηξ c wave crest, and ≡ρ normalized 
autocovariance of η . The corresponding wave height scaled 
with σ , say h , and the wave crest relate to one another as 
 
 )1(/ ahc −≅ξ ,                                                              (24) 
 
where 0)*( <≡ ta ρ , and *t  represents the time at which the 
first minimum of ρ  occurs (Boccotti 1989, 2000). When  
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Fig. 15.  The characteristics of the surface displacements, wave 
envelopes and phases around the largest wave where 2>ξ . 
  
  
nonlinearities due to second-order bound waves become 
significant, (23) and (24) become (Tayfun & Fedele 2007a, b) 
 

 2
6

)()(1)0(|)( cc
ttt ξλρξηη +≅〉>>〈 ,                         (25)                     

 
and 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≅= cc ξ
λ

ξηη
6

1)0( 3
max ,                                      (26) 

 
where )(tλ  is a dimensionless kernel: it has the functional form 
of a quadruple integral in terms of the directional spectral 
density of the sea surface and second-order interaction 
coefficients (c.f. Tayfun & Fedele 2007a,b). In general though, 

3)0()(max λλλ =≤t , as a result of which (26) readily follows 
from (25). 
 The e.d.s of scaled zero-upcrossing wave heights h, crest 

cξ  and trough tξ  amplitudes observed in WACSIS are shown  
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 Fig. 16.  Secondary maxima and minima associated with phase 
reversals when 2<ξ  approximately. 
 
in Fig. 17. The e.d. estimate, say, jE  for the j-th largest value is 

based on the plotting position formula )1(/ +=〉〈 NjE j , 
where ≡N total wave count and  j=1, 2, …, N.  The standard 
deviation of jE  is (Tayfun & Fedele 2007b) 
  

 
2

)1(
1

1
+

+−
+

≅
N

jNj
NjEσ .                                          (27) 

 
For jN >> , )1(/ +≅ NjjEσ , which suggests that the 

variability of the e.d. estimates for the largest 5-10 samples can 
be rather large, as indicated by the jEσ±  error bands in Fig. 

17. Most notably, 1Eσ is as large as 1E  itself, irrespective of 

how large N  is. 
 The theoretical approximations describing e.d.s of scaled 
wave heights, crests, and trough amplitudes are reviewed in 
Tayfun & Fedele (2007b).  For large waves, these include the 
following relatively simple expressions: 
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where mr  and 2Fµ  represent dimensionless wave-height and 
steepness parameters elaborated in Tayfun & Fedele (2007b) 
and Tayfun (2006), respectively.  For WACSIS, 699.0=mr  

and 099.02 =Fµ . The corresponding predictions from (28), 
(29) and (30) are compared with the WACSIS data in Fig. 17. 
Also included in these comparisons are )2/exp( 2ξξ −=E  for 

linear crest and trough amplitudes, and )8/exp( 2
2 hE −=ξ  for 

wave heights based on ξ2≅h , both of which are valid 
as 0→ν . Clearly, (30) describes the observed trough 
amplitudes quite accurately over all waves. Discrepancies do 
appear between the theoretical approximations (28) and (29) and 
the observed wave heights and crests of large waves 
characterized with relatively large variability. This is 
particularly so for the largest wave with a coefficient of 
variability of 100% since )1(/11 +≈ NEσ  and 

)1(/11 +=〉〈 NE . As a result, 0}Pr{ =−〉〈≤ EnEE σ  whereas 
0}Pr{ >+〉〈> EnEE σ  for 1≥n  , suggesting that the largest 

wave observed is more likely to be biased toward larger 
frequencies of occurrence relative to theoretical predictions, as 
in WACSIS.  
 The theoretical mean and standard deviation of the largest 
value, say Z, in a population of N independent samples have the 
general forms (cf. Tayfun & Fedele 2007b) 
 

 
)(ln2

)(ln

011

0

Nccc
Nc

Z γ
+=〉〈 ,                            (31) 

 
)(ln62 01 NccZ

πσ ≅  ,                                                (32) 

 
where ≡= ...577216.0γ Euler’s constant, )1(4/10 mrc +=  and 

mm rrc 2/)1(1 +=  for the largest wave height in N waves, 

each described by a parent distribution of the form (28).  
 For the largest wave crest in N waves, (31) and (32) are 
modified to read 

 ])(ln[
2

1
02

1
Nc

c
ZZ Fc ++〉〈≅〉〈 γµξ ,                   (33) 

 
 ]/)(ln1[ 102 cNcFZcZ µσσ ξ +≅                           (34) 

 
where 10 =c  and 2/11 =c , assuming that each crest amplitude 
is described by (29). For WACSIS,  89.7≈〉〈Z  from (31) 
versus 9.27, the largest wave height observed; and, (33) gives 

16.5≈〉〈 cZ ξ  versus nearly 6.04 for the largest crest observed.  

Thus, the observed values are underestimated about 15% by the 
theoretical approximations, which are shown in Fig. 17 also, 
together with the corresponding errors bars Zσ± and 

cZ ξσ± . 

 Wave heights derived from zero-downcrossings can differ 
noticeably from the zero-upcrossing wave heights, in particular, 
over large waves. Wave crests remain the same in either 
definition, but the zero-upcrossing wave height is the sum of a 
crest and the preceding trough amplitude, which tends to be 
typically smaller than the trough amplitude following the same  
crest, as previously mentioned. Thus, zero-downcrossing wave 
heights can be expected to be somewhat smaller than the 
corresponding zero-upcrossing heights over large waves. This is 
evident in the comparisons of the WACSIS data in Fig. 18, 
where the largest zero-downcrossing wave height observed is 
8.10, which compares more favorably to 89.7≈〉〈Z from (31).  
 
MICHE-STOKE LIMITS   
 In wind seas such as WACSIS, ρ  has the form of a slowly 
decaying modulated narrow-band wave with no secondary 
maxima or minima. Evidently, this is consistent with the 
observed profile of surface displacements around a large wave 
crest, as seen here in WACSIS and in numerous other cases 
described in Phillips et al (1993) and Tayfun & Fedele (2007a).  
But, how large surface displacements and thus wave heights and 
crests can really become is a difficult question, particularly, 
based on the present theoretical model or higher-order 
approximations that ignore surface stresses, wave breaking and 
turbulent dissipation.  The observation that wind-wave spectra 
tend to a 4−ω power law over high frequencies suggests that 
surface gradients are discontinuous in the mean-square sense. 
Thus, some waves reach a limiting steepness, display sharply 
cornered crests, and some break, forming whitecaps. An upper 
limit to wave steepness and thus wave heights is described by 
the Miche limit (Miche1944), given in the present notation by 
 

 
k

kdh tanh
7
2

max σ
π

= ,                                                    (35) 

 
where ≡k wave number and ≡d mean water depth. As 

∞→d , (35) converges to the Stokes limit.                 
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 The applicability of the Miche-Stokes type limits to 
irregular waves has been the subject of numerous studies. These 
are reviewed in Tulin & Li (1992) and references therein. The 
Miche-Stokes limits or their various refinements do not appear 
as consistent indicators of wave breaking or its inception for 
irregular waves. However, they do indicate an upper bound to 
the heights of large waves, breaking or otherwise. The largest 
wave heights in WACSIS, shown in the upper part of Fig. 19 
versus the corresponding scaled zero-upcrossing periods 

mTT /≡τ , where mmT ωπ /2= , do not violate (35).  Similarly, 
the lower part of the same figure shows the scatter of wave 
crests and the associated scaled periods in comparison with the 
approximate limits, say 1maxcξ  and 2maxcξ , which simply 
follow from (23) and (25), respectively, by replacing h with the 
Miche limit maxh of (35) as 
 
 )1(/max1max, ahc −=ξ ,                                              (36) 
 
and 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

−
=

a
h

a
h

c 16
1

1
max3max

2max,
λ

ξ .                                (37)  

 
With 661.0−=a as an overall average value estimated from 
WACSIS, none of the preceding limits, not even the less 
conservative approximation (36) is violated by the largest wave 
crests or surface displacements. When 2<ξ approximately, 
some waves do exceed the upper limits somewhat, but their 
profiles do not appear as regular or narrow-banded as in larger 
waves.  
 The mean 〉〈 h|τ and standard deviation h|τσ  of wave 
periods, conditional on 1>>h , are described reasonably well by 
the empirical approximations (Tayfun 1993) 
 

 
2/32

2

)1(
1|

ν
ντ

+
+≅〉〈 h ,                                               (38) 
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)1(

2
ν
νσ τ

+
≅

h
h .                                                      (39) 

 
As shown in Fig. 20, both expressions appear to approximate the 
WACSIS data well for large wave heights. On this basis, (38) 
can be used in the Miche-Stokes type upper limits to estimate the 
largest possible wave heights and surface displacements. This 
approach gives 07.11max ≈h  from (35) and 62.61max, ≈cξ  

from (36) as the largest possible theoretical expectations in 
comparison with, respectively, 9.27 and 6.04 actually observed 
in WACSIS. The theoretical 60.0)1(/1/ max1max, ≈−≡ ahcξ      

appears reasonable, but it underestimates the observed ratio 
65.027.9/04.6 ≈  of WACSIS largely because (36) tends to  
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Fig. 17.  Zero-upcrossing wave heights ( h ), crest )( cξ and  

trough )( tξ amplitudes observed in WACSIS in comparison  
with the theoretical approximations (28), (29) and (30). 
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Fig. 18.  Comparisons of zero up- and down-crossing wave  
heights uh (+) and dh (+), and crest heights cξ (.) observed in 
WACSIS, and the crest heights predicted from )1(/ ahu −  (.). 
 
underestimate crest heights over large waves somewhat, as seen 
in  Fig. 18. The estimate 41.82max, ≈cξ   from  (37)  is larger  

than 6.04 observed, and it also suggests the more conservative 
ratio  
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THIRD-ORDER EFFECTS 
 In weakly nonlinear seas, third-order corrections to the 
surface displacements, wave envelopes and phases are all 
of )( 2

3λO and thus negligible. The favorable nature of the 

WACSIS comparisons tends to confirm this for the most part. If, 
however, quasi-resonant interactions between free waves 
become at least as significant as the second-order effects,  
surface statistics tend to deviate significantly from the second-
order predictions. Such deviations are generated in lab flume 
experiments or numerically simulated under rather special 
conditions, generally requiring that waves be sufficiently long-
crested and narrow-banded (cf. Socquet-Juglard et al. 2005, 
Mori et al. 2007).  Mori & Janssen (2006) and Mori et al. (2007) 
formalize these conditions using the Benjamin-Feir-Index (BFI), 
which can be expressed in the present notation as 
 
 νσ /2 mkBFI ≡ ,                                                      (41) 

where mk  satisfies dkkg mmm tanh2 =ω with ≡g gravitational  
acceleration. In the deterministic theory, instabilities arise when 

36.1>dk  and 1>BFI , but it is not clear if these thresholds 
are also valid for (41). Since awkward ambiguities arise in 
expressing k in terms of integral spectral properties of wind 
seas at shallower depths, it may be more reasonable to interpret 
the condition 36.1>dk  in terms of zero-crossing wave 
characteristics instead. As for BFI, the wave-flume data in Fig. 5 
of Mori et al. (2007) coupled with their approximate equation (5) 
suggests that instabilities due to third-order interactions between 
free waves tend to become significant when 5.0>BFI  
approximately.   
 Wind seas are neither long-crested nor narrow-banded, 
except possibly when they encounter spatially varying currents 
which can modify the sea surface significantly and cause waves 
to appear long-crested and narrow-banded  (Tayfun et al. 1976). 
Further, modulations associated with third-order instabilities 
tend to follow a rather predictable and systematic pattern: they 
first appear at wave-height and crest levels near their significant 
values and then rapidly amplify over larger waves. This pattern 
is predicted well by the higher-order Gram-Charlier expansions 
describing the distributions of wave envelopes, wave heights 
and crests (Tayfun & Lo 1990, Mori et al. 2007, Tayfun & 
Fedele 2007b). For example, the marginal e.d. of wave heights 

ξ2≅h in narrow-band waves is approximated by 

   ⎥⎦
⎤

⎢⎣
⎡ −

Λ
+= − )16(

1024
1 228/2

hheE h
h  ,                    (42) 

where 
                   042240 2 λλλ ++=Λ ,                                  (43)  

and )1)(3()1(ˆ 2/4
)4( −−−+〉〈= −

− nnnnn
nn ηηλ ; 4,,1,0 K=n  

 
 
Fig. 19.  The scatter diagrams of wave periodsτ  versus wave  
heights h  and crests cξ  observed in WACSIS in comparison 
with the Miche limit (35) and approximateions (36) and (37). 
 
 
represent the fourth-order  joint cumulants.  For 1<<ν , the e.d. 
of wave heights in linear and second-order waves is described by 
the leading term )8/exp( 2h−  in (42). The corresponding 
significant wave height is 4=sh . For 0>Λ  and shh ≥ , 

1)8/exp(/ 2 ≥−hE h  and increases monotonously. Thus, (42) 
for wave heights and similar approximations in Tayfun & Fedele 
(2007b)  for crest and trough amplitudes all suggest that over the 
range where significant values are exceeded, third-order 
instabilities systematically amplify wave heights, and crest and 
trough amplitudes noticeably and, if 1>Λ approximately, well 
beyond the levels predicted by the linear and second-order 
approximations.  
 For wave phases, third-order corrections introduce several 
additional terms in (7). These are proportional to the fourth-
order cumulants nn)4( −λ  )4,,1,0( K=n  (Tayfun & Lo 1990).   
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 As a result, (7) is modified as   
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where it was assumed that ,01331 ≅= λλ   as in WACSIS .  If, 

in addition, 3/4022 λλ ≅  and 4004 λλ ≅ also, as in Mori & 

Janssen (2006), then 3/8 40λ≡Λ→Λ app , and (44) identically 
reduces to (7).  
 The temporal variations of appΛΛ,,,, 042240 λλλ and BFI 
estimated as half-hourly running averages from WACSIS are 
shown in Fig. 21. The BFI estimates lie in a fairly narrow range 
from 0.186 to 0.320. As an overall average, 25.0≅BFI . For the 
largest waves, 173.1| ≈〉〈 hτ  from Fig. 20 leads to 27.1≈kd . 
These do not provide any particularly strong evidence for the 
presence of third-order instabilities. The fourth-order cumulants 
appear to be rather unstable and spike occasionally above the 
overall averages. Such spikes always occur as they are expected 
to whenever the running averages include relatively large surface 
displacements, as indicated in the same figure by the six largest 

values jη  ( j = 1, 2, .., 6) of WACSIS. Similar spikes and even 
larger ones are also observed in simulated series of perfectly 
linear Gaussian surface displacements under similar conditions 
(cf. Tayfun & Fedele 2007b). They simply reflect the highly 
variable nature of fourth-order cumulants and the difficulty of 
estimating them from relatively short time series. Thus, neither 
the BFI estimates nor the nature of fourth-order cumulants from 
WACSIS provide any clear evidence that the largest wave has 
anything to do with third-order instabilities. If they did, the 
largest wave would not just be an isolated outlier or a relatively 
rare occurrence captured by this particular set of measurements. 
It would instead appear as a realization in a larger population of 
waves that follow the systematic pattern alluded to earlier. The 
same conclusion is also valid for the wave-phase statistics 
observed in WACSIS: the average values of fourth-order 
cumulants are either slightly negative or negligible. Further, Fig. 
21 shows that appΛ≅Λ , which in effect simplifies (44) to (7). 
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Fig. 21. Temporal variations of appΛΛ,,,, 042240 λλλ and 
BFI in WACSIS.  
 
CONLUSIONS 
 The validity of theoretical approximations developed for 
describing the joint, marginal and conditional statistics of the 
envelope and phase of wind waves characterized by second-



 14 Copyright © 2008 by ASME 

order nonlinearities is confirmed by the WACSIS comparisons. 
The theoretical results also suggest that wave-phase statistics 
and the nature of surface displacements tend to differ 
appreciably but predictably, depending on whether if envelope 
elevations exceed the significant envelope height or not. For 
elevations sufficiently larger than this particular threshold, 
wave-phase distributions approach a simple limit form which 
shows that large surface displacements can occur only above the 
mean sea level. This is likewise confirmed by the WACSIS data.  
 Larger waves appear more regular or narrow-banded than 
relatively low waves, and their heights and crests do not exceed 
the Miche-Stokes type upper limits. This appears to be so even 
for unusually large waves with scaled features and proportions 
similar to the largest wave captured in the WACSIS 
measurements. The constructive interference of spectral 
components with different amplitudes and phases is the most 
likely mechanism that generates large surface displacements and 
thus such large waves under oceanic conditions. Third-order 
nonlinearities, if any, including quasi-resonant interactions 
between free waves, do not appear to affect the observed 
statistics in any discernable way.  

The largest wave in WACSIS is likely to be a relatively rare 
occurrence. It would not have appeared so unusual, had the 
measurements been maintained sufficiently longer or, if many 
more wave probes had been deployed to gather an ensemble of 
simultaneous measurements. Because of the highly unstable 
nature of statistics associated with the largest observations, a 
sample population of about 5,000 waves gathered at a fixed 
point in time may not always be adequate for reliably estimating 
the occurrence frequencies of such exceptionally large waves.  
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