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ABSTRACT
A stochastic model of wave groups is presented to explain

the occurrence of exceptionally large waves, usually referred to
as rogue waves. The model leads to the description of the non-
Gaussian statistics of large waves in oceanic turbulence and to
a new asymptotic distribution of their crest heights in a form
that generalizes the Tayfun model. The new model explains the
unusually large crests observed in flume experiments of narrow-
band waves. However, comparisons with realistic oceanic mea-
surements gathered in the North Sea during an intense storm
indicate that the generalized model do not appear to improve
upon the original Tayfun distribution.

Keywords: rogue wave; stochastic wave group; wave
turbulence; probability of exceedance; Gaussian sea; quasi-
determinism, Slepian model.

1 INTRODUCTION

Rogue waves are extreme events with potentially dev-
astating effects on offshore structures and ships. A rogue
wave event occurred on January 1st 1995 at the Draupner
platform in the North Sea provides evidence that such waves
can occur in the open ocean. Theoretical models attempt to
explain various physical mechanisms that can produce such
a focussing of wave energy in a small area of the ocean.
When nonlinearities are negligible, ocean waves are usually
modeled by the linear superimposition of a large number of
elementary waves having amplitudes related to a given spec-
trum and random phases. In this case, large waves are due
to the linear focussing of a wave group (Lindgren 1972, Boc-
cotti 2000) and their crests and troughs are both Rayleigh-
distributed. If second-order nonlinearities are dominant,
then the sea surface displays sharper narrower crests and
shallower more rounded troughs. As a result, the skewness
of surface elevations is positive (Longuet-Higgins 1963), and
wave crests are distributed according to the Tayfun model
(Tayfun 1980). If, however, elementary waves also exchange

energy nonlinearly via third order four-wave resonances,
narrowband wave trains can undergo intense modulational
instability enhancing the occurrence of large waves (Fedele
2008, Tayfun & Fedele 2007, Janssen 2003) and the distrib-
ution of crest heights deviates from the Tayfun model. This
is confirmed by the wave-flume experiments in (Onorato et
al. 2006) and the numerical simulations of the Dysthe equa-
tion (Socquet-Juglard et al. 2005), a special case of the Za-
kharov equation (Zakharov 1999). However, in broadband
waves the Tayfun distribution appears to explain crest sta-
tistics well (Fedele 2008, Tayfun & Fedele 2007, Onorato
et al. 2005, Socquet-Juglard et al. 2005). The unusually
wave crests observed in both the latter experiments and
simulations are well explained by a recent Gram-Charlier
approximation of the crest distribution proposed in (Tay-
fun & Fedele 2007), which is based on heuristic arguments.
The derivation of this crest model stems from the general
Hermite expansion of random variables, and it does relate
to the physics of nonlinear waves only through the statis-
tical estimations of both the skewness and kurtosis of the
wave surface. Could such type of Gram-Charlier crest mod-
els be derived directly from the basic equations governing
the ocean dynamics, without any use of Hermite-type ex-
pansions ?

An answer to this question is attempted in this pa-
per. The main contribution of this work is the formulation
of a new model of stochastic wave groups which provides
a theoretical framework for the non-Gaussian statistics of
large waves in oceanic turbulence. This is defined as the
chaotic behavior of a sea of weakly nonlinear coupled dis-
persive wave trains in evolution according to the Zakharov
equation. Stochastic wave groups describe the dynamics
of the wave surface around a randomly chosen large crest
(Lindgren 1972, Boccotti 2000), and their nonlinear space-
time evolution reveals the statistical structure of large wave
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crests and thus their expected shape. A generalization of
the Tayfun model for the statistical distribution of crest
heights over large waves is then derived. Finally, compar-
isons with the experimental data of (Onorato et al. 2006),
numerical simulations of (Socquet-Juglard et al. 2005) and
data collected in the North Sea are presented.

2 OCEANIC TURBULENCE

Consider weakly nonlinear random waves propagating
in water of uniform depth d. The sea surface displacement
ζ from the mean sea level is given by

ζ (x, t) = ζ1 (x, t) + ζ2 (x, t) , (1)

where

ζ1 (x, t) =

Z
b(k, t)eiθdk+ c.c. (2)

is the first order component with θ = k · x− ωt, b a time-
varying complex coefficient and

ζ2 (x, t) =
1

4

Z
b1b2

h
A+12e

i(θ1+θ2) +A−12e
i(θ1−θ2)

i
dk1,2+c.c.

represents the second-order correction; for brevity b1 =
b(k1, t), θ1 = k1 · x − ω1t, A

+
12 = A±(k1,k2) are inter-

action coefficients (see e.g. Forristall 2000), k=horizontal
wave-number vector, with k = |k|, x = (x, y) is the hori-
zontal position vector, ω is the angular frequency related to
k via gk tanh kd = ω2. Further, the complex amplitude b1
varies in time according to the Zakharov system (Zakharov
1999)

i
∂b1
∂t

= 2

Z
gW 12

34

r
ω1

ω2ω3ω4
b̄2b3b4δ

12
34 exp

¡
iω1234t

¢
dk2,3,4

whereW 12
34 is the interaction kernel, ω

12
34 = ω1+ω2−ω3−ω4,

δ1234 = δ (k1 + k2 − k3 − k4), and a characteristic wave
steepness. Drawing upon (Choi et al. 2005), the pertur-
bation expansion of b1 in small is given, correct to O( ),
by

b1(t) = C1(t)(1 + iΩ1t)− 2
Z

gW 12
34 · (3)

·
r

ω1
ω2ω3ω4

C̄2C3C4δ
12
34

exp
¡−iω̃1234t¢− 1

ω̃1234
dk2,3,4,

and the long-term behavior of the surface ζ is known up to
times of O(1/ ). Here,

C1(t) = A1 exp (iΩ1t) , Ω1 = 2 ω1

Z
W 12
12 |A2|2 dk1

with C1(t) = C1(k1, t), A1 = A(k1), Ω1 as the renormal-
ization frequency arising from the nonlinear frequency shift
due to self-interactions and ω̃1234 = ω1234 +Ω1+Ω2−Ω3−Ω4.

If nonlinear effects are neglected, i.e. = 0, then
the linear surface displacement ζ1 is an ergodic, stationary
Gaussian process. The mean frequency ωm and bandwidth
ν of the wave spectral density S (k) of ζ1 irrespective of
direction are given, respectively, as

ωm =
m1

m0
, ν =

r
m0m2

m2
1

− 1, (4)

where mj =
R
ωjS (k) dk is the jth order spectral moment.

The space-time covariance Ψ of ζ1 is given by

Ψ(X, T ) =

Z
S (k) cos(k · x− ωT )dk, (5)

and ψ(T ) = Ψ(0, T ) is the time covariance for brevity. It
is assumed that the first absolute minimum of ψ(T ) occurs
at time T = T ∗ and that ψ(T ) decreases monotonically
between T = 0 when the absolute maximum is attained
and T = T ∗. Clearly hζ1i = 0, and the variance of ζ1 is
given by


ζ21
®
= Ψ(0, 0) = m0 = σ2, where h·i stands for

expected value. The small steepness parameter = μ2m,
where μm = σω2m/g.

3 LARGE CRESTS IN GAUSSIAN SEAS

Assume that a large wave crest of amplitude h is
recorded at x = x0 and t = t0 during a sea storm. What
happened in the space-time neighborhood of (x0, t0) when
the large crest is observed ? Boccotti (2000) showed that as
h/σ → ∞, with probability approaching 1, the large crest
occurs when a well defined wave group ζc, in transit through
x0, reaches its apex. The large crest h is also the largest
crest height of ζc. The surface displacement of ζc around
x = x0 +X and t = t0 + T is asymptotically described by
the sum of a deterministic part ζdet of O(h) and a residual
random process Rζ of O(1) (Lindgren 1972, Boccotti 2000),
viz.

ζc(X, T ) = ζdet(X, T ) +Rζ(X, T ), (6)
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where

ζdet(X, T ) = hζ1(X, T ) |ζ1(0, 0) = h i = h

σ2
Ψ(X, T ).

Thus, ζc represents
the conditional process ζ1(X, T ) |ζ1(0, 0) = h and ζdet is its
conditional expectation. As h/σ → ∞, the residual Rζ in
(6) becomes negligible relative to the first term, and a high
local maximum also corresponds to a local wave crest since
ζdet attains its absolute maximum at (T = 0,X = 0). More-
over, ζc can also be interpreted as the wave surface around a
randomly chosen large crest (Lindgren 1972, Boccotti 1989,
2000) if h is assumed to be a random variable described by
the Rayleigh probability density. Thus, ζc ≈ ζdet is asymp-
totically correct to O(h), and either represents the wave
surface locally to a given crest height h, or it defines the
conditional process of the wave surface around a randomly
chosen crest if h is Rayleigh-distributed.

4 STOCHASTIC WAVE GROUPS

Physically, ζc represents a wave group in which the
largest crest occurs as waves, growing from the tail of the
group, reach its apex and then decay at the front of the
group (Boccotti 1989,2000). This section is devoted to the
asymptotic characterization of the O(h0)-random residual
Rζ of (6) in terms of the space-time covariance Ψ. This shall
lead to an improved expression of the wave group ζc, where
the random residual Rζ is explicitly determined. First, the
wave profile ηc(T ) atX = 0 is expressed in terms of an O(h)
contribution ηdet(T ) = ζdet (0, T ) and the random residual
r(T ) = Rζ(0, T ) of O(h

0) as

ηc(T ) = ηdet(T ) + r(T ) (7)

where ηdet(T ) = ζdet(0, T ) = hψ(T )/σ2. Drawing upon (1),
the effects of the residual r(T ) on ηc are now determined.
Specifically, as h/σ → ∞, with probability approaching 1,
the surface profile locally near a large crest tends to as-
sume the shape given by ηdet(T ) (Lindgren 1972, Boccotti
2000). The latter represents a wave profile with a crest of
amplitude h at time T = 0 followed by a local minimum of
amplitude ηdet(T

∗) at T = T ∗, with T ∗ being the abscissa
of the first local minimum of ψ(T ) (see point P in figure
1). Further, when the absolute minimum of ψ(T ) occurs
at T = T ∗, then ηdet(T ) represents a large wave with pe-
riod Th ≈ 2T ∗ and a crest-to-trough amplitude given by
h
¡
1− ψ(T ∗)/σ2

¢
. For large values of h, the wave trough

of the profile ηc(T ) following the crest of amplitude h shall
now occur at time T = T ∗ + u, shown as point P 0 in figure

1, with u being random. As h/σ →∞, a crest of amplitude
h that occurs at T = 0, is followed after a time lag T ∗ + u
by a trough, and ηc(T ) and its first time derivative η̇c(T )
at T = T ∗ attain values given, correct to O

¡
h0
¢
, by

ηc(T
∗) = ηdet(T

∗) +∆+O
¡
h−1

¢
, (8)

η̇c(T
∗) = −η̈det(T ∗)u+O

¡
h−1

¢
.

Conversely, if the conditions in (8) hold, then a crest of am-
plitude h at time T = 0 is followed by a trough at time
T = T ∗ + u. For linear Gaussian functions, an approxima-
tion to ηc(T ) satisfying both sets of the preceding conditions
exactly is given by

ηc(T ) = ηdet(T ) +
∆

σ2
−ψ∗ψ(T ) + ψ(T − T ∗)

1− ψ∗2
, (9)

where u drops out ignoring terms of O(h−1), and ψ∗ ≡
ψ(T ∗)/ψ(0). With the random residual r of O(1) explic-
itly determined now, it can be differentiated from ηdet(T )
of O(h) in (9). It is straightforward to extend the above
time formulation to the space-time domain obtaining a new
approximation of the wave group ζc in (6) in the form

ζc(X, T ) = ζdet(X, T ) +
∆

σ2
−ψ∗ Ψ(X, T ) +Ψ(X, T − T ∗)

1− ψ∗2
.

(10)
Evidently, this is an improved expression of the wave surface
locally around a large crest, where the random residual Rζ

in (6) is explicitly determined as ∆/h → 0, and terms of
O(h−1) have been neglected. Note that from (10), for a
given h, averaging over ∆ yields the conditional mean ζdet
as expected.

For a given h, ζc is the conditional process locally
around a given crest, i.e. ζ1(X, T ) |ζ1(0, 0) = h . Instead, if
h and ∆ are interpreted as random, then ζc identifies a sto-
chastic wave group, describing the dynamics locally around
a randomly chosen crest. As h/σ → ∞, the dimensionless
variables ξ = h/σ and ∆̃ = ∆/σ are stochastically indepen-
dent. Moreover, ξ is Rayleigh-distributed and ∆̃ is Gaussian
with zero mean and variance equal to 1− ψ∗2.

5 NONLINEAR STOCHASTIC GROUPS AND LARGE

CRESTS

Consider now waves in oceanic turbulence. The linear
structure of the surface ζ1 is distorted by second order non-
linearities and third order four-wave resonances, to yields
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Figure 1. Wave profile ηc locally around a large crest.

the nonlinear surface ζ. Moreover, the crest statistics devi-
ates from the Rayleigh conditions. Drawing upon (Fedele
2006,2008 and Fedele & Arena 2005), the non-Gaussianity
of the wave crest heights can be quantified by investigating
the structure of ζ locally around a large crest of amplitude
hnl recorded at x = x0 + X and t = t0 + T during a sea
storm. One can still ask what happened in the space-time
neighborhood of (x0, t0) when the large crest is observed.
The answer to this query is given by the following nonlinear
conditional process

ζnc = (ζ(X, T ) |ζ(0, 0) = hnl ) .

In general ζ1 assumes some amplitude value h at (X =
0, T = 0), and this implies that

ζnc = (ζ(X, T ) |ζ1(0, 0) = h ) ,

but the relationship between h and hnl is unknown, and
generally ζ1 does not attain a crest at (X = 0, T = 0) if
ζnc does. However, stationary points of ζ1 corresponding to
large maxima, are also the critical points of large maxima
of ζ, correct to O( ), because waves are weakly nonlinear
(Fedele 2008). In weakly nonlinear waves, if a large crest
of the nonlinear ζ occurs with amplitude hnl, then most
likely the linear ζ1 attains also a crest with an amplitude
h. Thus, the occurrence of a large crest of ζ is due to the
weakly nonlinear evolution of ζc, that is

ζnc = (ζ |ζ1 = ζc ) = f(ζc)

where ζc is the Gaussian group in (10), and f(ζ1) is the
nonlinear mapping between ζ1 and ζ known from both (1)
and the perturbation expansion (3). In physical terms, ζnc
is a nonlinear group that, prior to focussing, tends to reflect
the characteristics of the Gaussian group ζc. As ξ → ∞,
f(ζc) is obtained by setting the linear component ζ1 in (1)
equal to ζc (x− x0, t− t0).

The amplitude hnl of the largest crest of ζnc occurs
approximately at x = x0 and t = t0 and neglecting O(∆̃

3)
terms it is a function of the linear h via the dimensionless
equation

ξmax = ξ +
μ

2
ξ2 + I(t0) ξ3 +A(t0)ξ2∆̃+ B(t0)ξ∆̃2, (11)

where ξmax = hnl/σ, and μ = λ3/3 is related to the skew-
ness coefficient λ3 =


ζ3
®
/σ3 of the wave surface. Moreover

I, A and B are multidimensional integrals in (k2,k3,k4)
space, viz.

I = P
Z

Q1234S2S3S4dk2,3,4,

A = P
Z

Q1234S2S3S4 (g1 + g2 + g3) dk2,3,4,

B = P
Z

Q1234S2S3S4 (ḡ1g2 + ḡ1g3 + g2g3) dk2,3,4,

where P means principal value, and

Q1234 =
1

2

g

m2
0

W 12
34

r
ω1

ω2ω3ω4
δ1234
1− cos ¡ω1234t0¢

ω1234
.

where P means principal value. Drawing upon Janssen
(2003), the coefficient I relates to the fourth-order cumu-
lant λ40 = μ4−3 of the wave surface as λ40 = 24I , μ4 being
the kurtosis. In the narrowband limit, as ν → 0, A ≈ O(ν)
and B = −3I/ ¡1− ψ∗2

¢
+O(ν). As ξ →∞, ignoring terms

of O(∆̃3) and averaging over ∆̃ yield the probability of ex-
ceedance for the nonlinear wave crest height as

Pr {ξmax > ξ} = exp
µ
−1
2
ξ20

¶µ
1 +

λ40
24

ξ2
¡
ξ2 − 3¢¶

(12)
where ξ = ξ0 +

μ
2 ξ
2
0 . We shall refer to this asymptotic

result, as the generalized Tayfun (GT) distribution, which is
similar to the Gram-Charlier (GC) approximation proposed
in (14), viz.

PGC (ξ) = exp

µ
−1
2
ξ20

¶µ
1 +

λ40
24

ξ2
¡
ξ2 − 4¢¶ . (13)
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Figure 2. Crest exceedances from Tern in comparison with the Tayfun, gen-

eralized Tayfun and Gram-Charlier models. Labels: R=Rayleigh, T = Tayfun

(μ), GT= generalized Tayfun (μ, λ40), GC= Gram-Charlier.

Note that, the GC model in Tayfun & Fedele (2007) is based
on the Hermite expansion of random variables and it does
not lead to an explicit expression for λ40 in terms of spectral
properties of ζ as it does in the case of the GT model, which
is instead based on the physics of the Zakharov equation.

For directional broad-band waves, wave number
quadruplets are in perfect resonance, i.e. ω1234 = 0, and
the Tayfun (T) model (Tayfun 1980) is recovered in (12)
since λ40 = 0. Deviations from the Tayfun distribution
can occur in long-crested narrowband waves due to mod-
ulational instability (Janssen 2003). The expected shape
of large waves is given by the the nonlinear conditional ex-
pectation hζ |ζ1 = ζc i = hζ(X, T ) |ζ1(0, 0) = hi that follows
from averaging over ∆̃ as

hζ |ζ1 = ζc i = f(ζdet) +O
¡
σ2c
¢
, (14)

where σ2c the linear conditional variance of ζc.

6 COMPARISONS

Consider the data set which comprises 9 hours of mea-
surements gathered during a severe storm in January, 1993
with a Marex radar from the Tern platform located in the
northern North Sea in 167 m water depth. This data set is
hereafter simply referred to as Tern. Tern represents storm
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Figure 3. Crest height distribution from wave-flume experiments (figure 2 in

Onorato et al. 2006) in comparison with the Tayfun, generalized Tayfun and

Gram-Charlier models. Labels are as for figure 2.

seas under fairly steady conditions with broadband spec-
tra characterized with σ = 3.024 m, spectral bandwidth ν
= 0.629 and observed λ3 = 0.174. A stable estimate of
the steepness μ in terms of spectral properties is given by
μa = μm

¡
1− ν + ν2

¢
. In figure 2, the empirical distribu-

tion from Tern is compared with the T (μ ' μa = 0.073
), GT (μ ' μa = 0.073, λ40 ' 0.023) and GC models
respectively. It is observed that both the GT and GC mod-
els doe not appear to improve significantly the predictions
derived from the simpler T model. For most practical appli-
cations, the differences between the models appear insignif-
icant, falling within a band of 1-2 %. Consider now the
case of unidirectional narrowband waves. The trend of the
experimental wave-flume data of figure 2 in (Onorato et al.
2006) is reproduced and shown in figure 3 together with the
predictions based on GT, GC (μ ' 0.075, λ40 ' 0.80) and
T (μ ' 0.075) models. The original T model tends to un-
derestimate the data whereas both the GT and GC models
appear to explain data qualitatively well. The latter models
also describe well the crest height distribution from figure
9 (case C) of Socquet-Juglard et al. (2005) obtained from
numerical simulations of the Dysthe equation. This is re-
produced and shown in figure 4 in comparison with the GT,
GC (μ ' 0.07, λ40 ' 0.40) and T (μ ' 0.07) models.
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Figure 4. Crest exceedances from numerical simulations (figure 9, case C

in Socquet-Juglard et al. 2005) in comparison with the Tayfun, generalized

Tayfun and Gram-Charlier models. Labels are as for figure 2.

7 CONCLUSIONS

A new theoretical framework for the non-Gaussian sta-
tistics of large waves in oceanic turbulence is proposed based
on the concept of stochastic wave group. A generalized Tay-
fun model for the statistical distribution of crest heights
over large waves is then presented. The new crest model
can explain the large deviations from the Tayfun distribu-
tion observed in flume experiments of narrowband waves,
but for realistic oceanic sea states its improvement on the
predictions of the Tayfun model appear to be insignificant.
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