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ABSTRACT 
 
      The theoretical expected structure of large nonlinear waves 
can be described, using the Gram-Charlier approximations of 
Jensen et al. (1995) and Jensen (1996, 2005), and the quasi-
deterministic model of Fedele & Arena (2005). The second-
order narrow-band approximation offers a simpler alternative to 
these models, as recently suggested in Tayfun & Fedele (2006). 
Herein, this latter alternative is elaborated further, deriving 
theoretical expressions for predicting the expected shape of 
large waves, conditional on somewhat more general constraints 
than those previously considered. The theoretical results are 
verified favorably with oceanic measurements gathered at deep 
and transitional water depths in the North Sea. Some 
comparisons of the present model with those of Jensen et al. 
(1995) and Fedele & Arena (2005) are also given, showing that 
all three models do in fact reasonably well in representing the 
expected profile of large waves in storm seas.  
 
 
INTRODUCTION 
 

The expected configuration of the nonlinear sea surface 
over the region of large waves in extreme seas has been of 
increasing practical and theoretical interest in recent years (see 
e.g. Fedele & Arena 2005; Fedele & Tayfun 2006; Guedes 
Soares & Pascoal 2005; Jensen et al. 1995; Jensen 1996, 2005; 
Petrova et al. 2006; Socquet-Juglard et al. 2005; Tayfun & 
Fedele 2007). In the linear Gaussian case, the conditional 
expected shapes of large waves are predicted well by the linear 
models devised by Lindgren (1972), Boccotti (2000), and  
Phillips et al. (1993). Although the formulations and constraints 
used in deriving these models differ somewhat, particularly in 
Phillips et al. (1993), it appears that they all yield essentially the 
same description for the conditional expected shape of large 
linear waves.  

The conditional expected shape of large waves in second-
order nonlinear seas has been considered more recently by 
Jensen et al. (1995) and Jensen (1996, 2005), using 
approximations based on the Edgeworth form of Gram-Charlier 

series, and by Fedele & Arena (2005), who generalized and 
extended the linear quasi-deterministic theories (QD 1) of 
Lindgren (1972) and Boccotti (2000) to second-order seas. The 
Fedele-Arena model (QD 2) satisfies the second-order Stokes 
wave theory exactly. So, it would seem that it should be a more 
accurate representation for the expected structure of large waves 
and wave groups than those derived from the Gram-Charlier 
type approximations. But, there have been no comparisons to 
show if that is really the case. Jensen’s 1995 and 2005 models 
are essentially the same and also more elaborate than the earlier 
Jensen et al. (1995) model.  However, comparisons demonstrate 
that the differences between these models tend to diminish for 
large waves (see e.g.  Jensen 1996). 

 A simpler alternative to the Jensen et al. (1995), Jensen 
(1996, 2005) and Fedele-Arena QD 2 models is offered by the 
narrow-band (NB) model (Tayfun 1980, 1986). The NB model 
appears to be quite effective in describing the probability 
structure of the sea surface and its various extremal features, 
particularly, over the region of large waves ( Socquet-Juglard et 
al. 2005; Tayfun 2006; Tayfun & Fedele 2007). Herein, the 
same model is elaborated further, following Tayfun & Fedele 
(2006), to develop a third model and theoretical expressions for 
describing the conditional expected shape of large waves in 
storm seas under more general conditions than those considered 
in the previous second-order models. These are verified with 
two different sets of oceanic data collected at deep and 
transitional water depths in the North Sea, and also with 
comparisons to the 1995 Jensen et al. (J) model, QD 1 models of 
Lindgren (1972), Boccotti (2000) and Phillips et al. (1993), and 
the QD 2 model of Fedele & Arena (2005).  

 
 
MODEL, DEFINITIONS & PROBABILITY STRUCTURE 
 
       The zero-mean free surface elevation measured at a fixed 
point in time t and scaled with by its rms value, say, σ is 
approximated as  
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where χη cos1 r= and  χη sinˆ1 r=  describe, respectively,  the  
first-order Gaussian  profile and its Hilbert transform exactly; 

2η is the second-order correction to η   for long-crested seas 

correct to )( 0νO , with ≡−= 2/12
120 ]1/[ mmmν  spectral 

bandwidth ,  and ≡jm  j-th ordinary moment of the spectral 
density )(1 ωS  of 1η  as a function of circular frequency ω ; 

≡+= 2/12
1

2
1 ]ˆ[)( ηηtr  Rayleigh-distributed random amplitude of 

1η , scaled with 2/1
0m=σ ; ≡= − )/ˆ(tan 11

1 ηηχ  random wave-
phase, independent of r and uniformly distributed in (0, )2π ; 

and, ≡== gk mm /2ωσσµ  steepness parameter = rms surface 
slope of 1η , with 8.9=g  m/s2 and  01 / mmm =ω .  Further,  
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yields the skewness coefficient of η , correct to )(µO , as  an 

upper bound to the observational values of 〉〈= 3
3 ηλ in 

directional seas under deep-water conditions (Tayfun  2006). 
Using µ as an ordering parameter, 1η is )1(O  whereas 2η  is 

)(µO .  Thus, 1ˆ 2
1

2
1 =〉〈=〉〈 ηη and 021 =〉〈 ηη .  All this 

suggests that the rms values, spectral densities, associated 
moments jm , and the normalized auto- and cross-correlation 
kernels of η  are the same as those of 1η , correct to ).(µO  
         The first-order variables 1η  and 1η̂  are independent 
Gaussian, and the total wave-phase function can also be 
rewritten as φωχ += tm , where ≡)(tφ wave-phase function, 
uniformly distributed in (0, )2π . Both derivatives trr ∂∂= /&  

and t∂∂= /φφ&  are )(νO  (Tayfun 1986). Assuming that the 

higher-order derivatives r&&  and φ&& are )( 2νO , then at  wave 

crests or maxima of 1η , )(1cos 2νχ O+= , )(0sin νχ O+= , 

)(0ˆ1 νη O+= , )(01 νη O+=& , and 0)( 22
1 <+−= νωη Or m&& . 

Thus, max )(}{ 2
1 νη Or += .  However, because 2η  is an NB 

representation correct to )1(O ,  max ).(2/}{ 2
2 νµη Or +=  As a 

result, the maxima or crests ofη  are given by  
 

       max )(
2
1}{ 2 νµη Orry ++=≡ .                                   (3)  

 
An immediate implication of all these is that at the crests of 1η , 
the marginal probability densities (p.d.) of 1η̂ and η& , 
conditional on r=1η , are both given by )0(δ to )1(O , whereas 

the p.d. of 1η&&  under the same condition is )( 2
1 mrωηδ +&& . 

Similarly, at the crests y of η , the p.d. of η& , conditional on 
r=1η  or  y=η , is also  )0(δ  to )1(O , and the p.d. of η&&  takes 

the form )]21[( 2 rr m µωηδ ++&& . Thus, given  r=1η  or y=η ,  

1η̂ , 1η&  and η&  are zero, and 1η&&  and η&&  are always negative with 
probability 1 for the NB model. These are consistent with the 
conditions for the occurrence of maxima or wave crests, as they 
should be.  
 The p.d. and exceedance distribution (e.d.) of r  are  
 
 
 )2/exp( 2rrpr −= ,   )2/exp( 2rEr −=  ,                (4) 
 
 
where 0≥r . Thus, the p.d. and e.d. of  y can be expressed, 
respectively, as 
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 The preceding expressions can be used to develop the mean 
of y, conditional on the threshold value )/1(1 nEy yn

−=  for 
1≥n  corresponding to the largest (100 / n) % of wave crests, as 

in Tayfun  (2006), viz. 
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where erfc stands for the complementary error function. Clearly, 
Eq. (6a) reduces to nr /1  appropriate to linear narrow-band wave 
crests if 0=µ . Further, let 〉〈 NR and 〉〈 NY  represent the mean 
largest wave crests in N linear and nonlinear waves, 
respectively.  These have the forms  (see. e.g. Tayfun  2004) 
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 For simplicity, let )(11 tηξ = , )(12 τηξ += t , )(ˆˆ

11 tηξ = and 

)(ˆˆ
12 τηξ += t . On this basis,  
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 ∫=〉〈=〉〈= ωωωξξξξτρ dS cos)(ˆˆ)( 2121 ,                  (8a) 

 ∫=〉〈=〉〈= ωωωξξξξτρ dS sin)(ˆˆ)(ˆ 2121 .                   (8b)  

The conditional p.d. of 2ξ ,  given 1ξ , is 
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The conditional p.d. of 2ξ̂ , given 1̂ξ  is exactly the same as  Eq. 

(9), but the p.d. of 2ξ̂ , conditional on 1ξ , has the form 
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EXPECTED SHAPE OF NB NONLINEAR WAVES 
  
       Consider Eq. (1), let )(1 tηζ = , )(2 τηζ += t , and define 
the events }{ 1 γζ =≡a and }{ 111 γξ =≡a . On this basis, 
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where, from Eqs. (9) and (10), ργγξξ 1112 | =〉=〈 ; 

)1(1| 2
1

2
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2
2 −+=〉〈 γρξ a ; and, )1(ˆ1|ˆ 2

1
2

1
2
2 −+=〉〈 γρξ a . 

Since )(2 τηζ += t  and  })({ γη =≡ ta , these simplify Eq.  (11)  
to 
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For 12

1 >>γ ,   the preceding expression  reduces to 
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At 0=τ , γγηη =〉=〈 )(|)( tt , 1)0( =ρ , 0)0(ˆ =ρ .  Thus, 
 

 2
11 2
γµγγ +≈ ,                                                           (14a) 

   
 µγµγ /)211(1 ++−≈  .                                        (14b) 
 
These results also follow from Eq. (1) directly by taking the 
conditional expected values, given γη =)(t  and 11 )( γη =t . So, 

Eq. (13) is theoretically more consistent than Eq. (12) with the 
NB approximations assumed in Eq. (1), and thus  with the 
conditional p.d. )0(δ of )(ˆ1 τη +t as 0→τ , given 11 )( γη =t , as 
discussed before. Evidently, setting 0=µ in Eq. (13) reduces it 
identically to the QD 1 model in Lindgren (1972) and Boccotti 
(1989, 2000). 
       The relative simplicity of the NB model allows derivations 
of the expected shapes of large waves, conditional on different 
type of constraints. For example, consider 〉>〈 γζζ 12 | . 
Defining the events }{ 1 γζ >≡A and }{ 111 γξ >≡A , it is 
immediate from Eq. (1) that 
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Using Eqs. (9) and (10),  
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where  
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As a result,  Eq. (15) can be expressed in the form 
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As 0→τ , this expression leads to  
 

 )()
2

1()()(|)( 11 γγµγβγηη Ctt +=≡〉>〈 .               (20) 



                                                                                                                                    Copyright © 2007 by ASME             4

 
Given µ  and β , 1γ  follows via successive substitutions from   
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where =i 0, 1, 2, …  and  β=0z .   
 As 0→µ ,  Eq. (19) reduces to the QD 1 model in Phillips 
et al. (1993a). In either case, it is tempting to use the expansion 

L+−= −2
111 1/)( γγγC , and thus set 11 )( γγ ≅C  for 12

1 >>γ . 
But, this approximation really requires unrealistically large 
values of 1γ  for it to differ negligibly, say, e.g. by less than 1-2 
%, from the exact form of )( 1γC , as shown in the upper part of 
Fig. 1 below. 
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Fig. 1. (a) Asymptotic behavior of xxC /)(  versus x.  (b) )( nrC   
             in comparison with nr /1  and % error in .)( /1 nn rrC ≅  
 
 In practice, γ and β need to be estimated via wave-by-
wave analysis from observational data, for example, for the 
largest ( n/100 ) % wave crests. Clearly, this would correspond 
to an empirical or data-dependent application of the NB model, 
hereafter referred to as NB-data. If the surface spectral density is 
given, then a simpler alternative and one that should be 
preferable to the NB-data model of Eqs. (19)-(21) is to 
implement it in a data-independent  predictive mode, by 
replacing β , γ , 1γ  and C in Eq. (19) with their theoretical 

values, viz. ny /1=β , ny=γ , nr=1γ and 1
/1 )()( −−= nnn rrrC .  

Further, setting nn rrC /1)( ≅  causes errors less than 2 % when 
10≥n , as shown in the lower part of Fig. 1.  All these simplify 

Eq. (19) to  
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hereafter referred to as NB-theory.   
 A further application of NB-theory via Eq. (13) would be to 
predict the expected profile of the largest wave in N waves. This 
would simply require setting 〉〈= NR1γ  and 〉〈= NYγ from 
Eqs. (7b) and (7b), respectively. 
 Finally, it is worthwhile to mention that the NB model and 
its fairly simple probability structure would easily allow for the 
formulation of the theoretically expected shape of large waves 
conditional on other types of constraints.  These include, for 
example, 〉≤<+〈 ba tt γηγτη )(|)(  and possible others, but 
they will not pursued here due to limited space. 
 
 
JENSEN et al. (J) & FEDELE-ARENA (QD 2) MODELS 
 
        Jensen et al. (1995) consider second-order nonlinear sea 
surfaces, approximating the p.d. of )( τη +t , given γη =)(t  at a 
maximum or wave crest, in terms of Gram-Charlier series. The 
resulting model (J)  is of the form   
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2
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2 ρλλγργγητη −−+=〉=+〈 tt  ,   (23) 

 
where 〉+〈= )()(2

21 tt ητηλ .  
       The QD 2 model of Fedele & Arena (2005) generalizes the 
linear quasi-deterministic models of Lindgren (1972) and 
Boccotti (1989) to derive the second-order conditional expected 
shape of  )( τη +t , given γη =)(t  and  1>>γ . This result can 
be expressed as  
 

 λγργγητη 2
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where (Tayfun 2006; Tayfun & Fedele 2007)   
 

,)()(]coscos[
2
3

)()(3)( 2
1

kkkk ′′∫∫ +=

〉+〈=

−−++ ddKK

tt

ΨΨΦΦ

τηητλ
  (25)  

 
with ≡k wave-number vector, ≡Ψ  wave-number spectral 
density, τωωΦ )( ′±=± , and  ≡±K  second-order interaction 
kernels (Sharma & Dean 1979). Now, first note that 

3
32

13)0()( ληηηλτλ =〉〈=〉〈=≤  and  µλ 30 3 <<  in the 
most general case (Tayfun 2006). More significantly, QD 2 is 
consistent with the second-order theory under general conditions 
for directional seas at deep and transitional water depths. Setting 

0=τ and 3/)0(λµ =a in Eq. (24) will lead to  
 
       aa µγµγ /)211(1 ++−=  .                                        (26) 
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This result has the same form as Eq. (14b), but µµ <a  since  

µµλλ 33)0(3 <== a  in the most general case. Nonetheless, as 
0→ν , then µλ 33 →  and so µµ →a  as an upper bound. In 

the latter case, NB and QD 2 models both lead to the same 
representation for second-order wave crests and troughs.  
       The formulations of J and QD 2 models do not include the 
conditional expected shape of large waves under different 
constraints. In particular, formulating 〉>+〈 γητη )(|)( tt via 
Jensen’s approach can require rather cumbersome algebra. In 
contrast, the same formulation via the QD theory is surprisingly 
easy. To elaborate this, compare the Phillips et al. (1993) type 
QD 1 model  for  11 >>γ , viz.,  
 
      =〉>+〈 111 )(|)( γητη tt kk dC ωτΨγ cos)()( 1 ∫            (27) 
 
with the random spectral representation  
 
 ∫ += )()](cos[)(1 kk dZtt εωη ,                                     (28) 
                                
where ≡)(kε independent random phases distributed uniformly 
in )2,0( π , and =)(kdZ random amplitudes with orthogonal 

increments such that .)(|)(| 2 kkk ddZ Ψ=〉〈  Evidently, QD 1 is 
fully consistent with the first-order equations of wave motion 
since it has the same functional representation as 1η except that 
the random phases are all set to 0, and the random amplitudes 

)(kdZ  are replaced with kk dC )()( 1 Ψγ . Proceeding further, 
the second-order correction 2η  to 1η  is of the form 
 
    ∫∫ ′Ω+Ω= −−++ )()(]coscos[)4/1(2 kk dZdZKKη ,   (29) 

 
where )()()( kk ′±+′±=± εεωωΩ t . The latter expression with 
all phases set to 0 and )(kdZ  replaced by kk dC )()( 1 Ψγ  
likewise satisfies the second-order equations of wave motion, 
thus leading to the QD 2 form given simply by 
 

 ])()(
6
1[)()(|)( 11 τλγργγητη CCtt +=〉>+〈  .     (30) 

 
 As in the case of the NB model, the QD 2 models of Eqs. 
(24) and (30) can be applied either as data-dependent models or 
in a data-independent predictive mode, given the surface 
spectral density. The predictive mode of QD 2 will henceforth 
be referred to as QD 2-theory.  In using Eq. (30) in the latter 
case, the empirical parameters are replaced by their theoretical 
values from Eqs. (6a)-(6d) corresponding to aµµ = , viz. 

〉>+〈≡ γητη )(|)(/1 tty n , ny≡γ , and nrC /11 )( ≅γ  to predict 
the expected profile of  the largest  ( n/100 ) % wave crests. 
Similarly, for the expected profile of the largest in N waves, it 

suffices to use QD 2 form of Eq. (24), setting in this case 
aµµ = , 〉〈= NR1γ  and 〉〈= NYγ  from Eqs. (7a) and (7b), 

respectively.    
 In theory, the NB model describes long-crested waves. Its   
potential usefulness in describing short-crested waves has not so 
far been tested fully. Clearly, the first-order NB component is 
valid for such waves under general conditions. And, the long-
crestedness constraint is inherent in approximating the second-
order nonlinear effects due to bound modes arising from the 
frequency-sum terms of the first-order field, correct to 

)( 0νO only. In practice, however, oceanic data seem to suggest 
that relatively large waves often display features associated with 
long-crested waves locally, behaving as slowly varying Stokian 
waves with essentially no secondary crests or troughs, unlike 
short-crested wider-band waves. So, this may at least partially 
explain the relative success of the second-order NB model in 
predicting large surface elevations, wave crests and wave-crest 
groups under oceanic conditions (Socquet-Juglard et al. 2005; 
Tayfun  2006; Tayfun & Fedele 2007). If this is indeed the case, 
then the NB model may also be used in approximating the 
expected 3D spatial configuration of large storm waves, 
replacing the temporal auto- and cross-correlation kernels with  
their most general forms 〉++〈= ),(),( 0 xXx 0tt ητηρ and              

,),(ˆ),(ˆ 0 〉++〈= xXx 0tt ητηρ  with ),( yx=x and ).,( YX=X  
An additional modification required for the NB-theory to predict 
the expected shape of the largest of N waves in 3D wave fields 
is that instead of Eq. (7b), the latter statistic assumes the form 
 ( Socquet-Juglard et al. 2005) 
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y
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++≅〉〈
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where 
 
  ))ln2ln(ln2(lnln2 L+++= NNNy N  .            (31b) 
 
  Theoretically, QD 2 has wider range of applicability for 
long- and short-crested waves in deep and transitional water 
depths. In particular, given the directional spectral density, the 
expected structure of large waves, and the evolution of their 
groups in 3D spatial fields are described by Eq. (24), including 
the spatial variables x and X in the definitions ρ and λ  , and 
defining 〉〈 NY  via  Eqs. (31a)  and (31b) as for the NB model.  
 
 
COMPARISONS 
 
 Of the two data sets to be analyzed here, the first comprises 
9-h continuous measurements gathered at 5.12 Hz during a 
severe storm in January, 1993 with a Marex radar from the Tern 
platform in the northern North Sea in 167 m water depth. This 
data will hereafter be referred to as TERN 93. The second set 
represents 4.5-h measurements gathered at 4 Hz as part of the 
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Wave Crest Sensor Intercomparison Study (WACSIS) in 
January, 1998 with a Baylor wave staff from Meetpost 
Noordwijk in 18 m average water depth in the southern North 
Sea. TERN 93 is an extremely severe, but fairly stationary deep-
water sea state. The WACSIS data set is also fairly stationary, 
but more typical of a transitional water depth situation.  
 The analyses of both data for zero-up crossing  waves were 
based on ½-h segments scaled by the corresponding rms values. 
This process gives 3157 zero-up-crossing waves for TERN 93 
and 2389 for WACSIS. In the comparisons below, the observed 
profiles of the maximum waves measured in both cases, the 
average profiles of 1% highest waves in TERN 93 and 10% 
highest waves in WACSIS are compared with the QD 1, QD 2, J 
and NB model predictions. Obviously, the maximum profiles 
are random in contrast with the theoretical predictions.  
 The results for the largest wave of TERN 93 are shown in 
Fig. 2. The comparisons between the average profile of 1% 
highest waves in TERN 93 and model predictions are in Fig. 3, 
where the model predictions use the observed statistics, 
including the NB model (NB-data). The same profile is repeated 
in Fig. 4 again, comparing it in this case with NB-data and NB-
theory based on the theoretical statistics for µ =0.096 and 
n =100 corresponding to 1% highest waves. In all three figures, 
the second-order models do compare reasonably well with the 
observed data and evidently better than the linear QD 1 
predictions. Further, all model predictions appear fairly close for 
the most part, with J doing possibly somewhat better than QD 2 
and NB in representing the sharper slopes along the central 
wave crest.  The NB-theory and NB-data predictions, and the 
observed and predicted parameters in Fig. 4 also compare quite 
favorably.  
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Fig. 2. TERN 93: largest wave  (.) vs. model predictions 
            derived from a 30-min series symmetrical about      
           85.4max ==ηγ . 
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Fig. 3. TERN 93: average profile (.) of 1% highest waves  
            observed vs. model predictions based on observed  
            statistics.  

-20 -15 -10 -5 0 5 10 15 20
-3

-2

-1

0

1

2

3

4

τ   [ s ]

< 
η  

( t
 +

 τ  
) |

 η
 ( 

t )
 >

 γ  
 >

QD 1                       
NB - data                 
NB - theory              σ  = 3.024 m   

λ 3 = 0.174

---- 

__ 

NB-data parameters                                             
γ  = 3.41                                 
< η | η >γ  > = 3.80        
γ1 = 3.04     
C(γ1) = 3.32                       

µ  = 0.096          
__ 

NB-theory parameters     
yn = 3.48  
y1/n = 3.87
rn = 3.04  
r1/n = 3.34

 

Fig. 4. TERN 93: average profile (.) of 1% highest waves  
            observed vs. model predictions based on theoretical  
            statistics. 
 
 The profile of the maximum wave and  the expected profile 
of the 10% largest waves observed in WACSIS versus model 
predictions are shown in Figs. 5 and 6, respectively, and with 
the latter case repeated in Fig. 7 to show the comparison 
between the predictions from NB-data and NB-theory. The 
overall nature of the WACSIS results is similar to that of TERN 
93, except for the somewhat irregular and asymmetric profile of 
the maximum wave in Fig. 5. 
  Finally, the profile of the largest wave in TERN 93 is 
repeated in Fig. 8 in a comparison with the theoretically 
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expected profile of the maximum of 3,157 waves implied by the 
QD 1, NB and QD 2 models. As an additional and somewhat 
extreme example, the theoretically expected profiles for the 
largest in N=105  hypothetical waves representative of  TERN 93 
are shown in Fig. 9, as predicted with the NB, QD 1 and QD 2 
models. There are obviously no such waves actually observed 
during the TERN measurements, and the predicted profiles 
suggest the possibility that such waves could have been 
observed, e.g. had the measurements continued much longer 
and/or if many simultaneous gauges had been used for 
measuring about 105 waves altogether.  
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Fig. 5. WACSIS: largest wave  (.)  vs. model predictions  
           derived from a 30-min series symmetrical about  
          07.6max ≅=ηγ . 
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Fig. 6. WACSIS: average profile (.) of 10% highest waves  
           observed vs. model predictions based on observed  
           statistics.  
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 Fig. 7. WACSIS: average profile (.) of 10% highest waves  
            observed vs. model predictions based on theoretical  
            statistics.  
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Fig. 8.  TERN 93: expected profile of the largest in N = 3,157  
            waves from model predictions vs. the largest wave  
            actually observed. 
 
 
CONCLUSIONS 
 
      The second-order NB model appears as a simple model well 
suited for describing and/or predicting the expected shape of 
large waves, conditional on a variety of possible constraints. 
The present comparisons of this model and those due to Jensen 
et al. (1995) and Fedele & Arena (2005) indicate that all three 
models do reasonably well and certainly far better than any  
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Fig. 9. TERN 93: theoretically expected profile of the largest in  
            N = 105 waves predicted from NB and QD 2 models.  
 
 
linear model in representing the profiles of large oceanic waves. 
Most notably, the quasi-deterministic model of Fedele & Arena  
 (2005) is exact to second-order. Thus, it can be used for 
describing and/or predicting the expected configuration of large 
waves in 2D and 3D spatial wave fields in deep or transitional 
water depths, given the directional spectrum of the sea surface. 
The same model also lends strong support to the relative validity 
of the NB model, particularly, in representing the surface 
elevations, crests and troughs of large waves.  
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