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Abstract

This study develops a stochastic approach to model short-crestey steas as random
fields both in space and time. Defining a space-time extraméhe largest surface
displacement over a given sea-surface area during a storrapciaded statistical
properties are derived by means of the theory of Euler Chasdictgriof random
excursion sets in combination with the Equivalent Power Storm model. rasult, an
analytical solution for the return period of space-time extsermeyiven. Subsequently,
the relative validity of the new model and its predictionseaq@ored by analyzing wave
data retrieved from NOAA buoy 42003, located in the easterroptre Gulf of Mexico,
offshore Naples, Florida. The results indicate that as the stearrecreases under short-
crested wave conditions, space-time extremes noticeably exoeesighificant wave
height of the most probable sea state in which they likely ocedriheat they also do not

violate Stokes-Miche type upper limits on wave heights.
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1. Introduction

One of the key elements in the analysis of long-term predictioestedfme wave crest
events is the probability of exceedance of the maximum kbesght C__ observed at a

point Q in time t during a storm. Following Borgman (1973), this probability can be

expressed as

_ Inf1- P(z|H, = h(t))]
P{C,. > 7 = p{ [ o] dt}, (1)

where h(t) is the time series of the significant wave height recorded aQ, T(h) is
the mean zero up-crossing perio@ is the storm duration ané(z|H, =h) is the
exceedance probability of the crest heightn a sea state wherél_=h. This is

described reasonably well by the Rayleigh law or the Tayhadel for linear or
nonlinear waves, respectively (Tayfun 1986, Tayfun and Fedele 2007, Fedele 2008,
Fedele and Tayfun 2009).

Borgman’'s formulation (1) is the starting point of various diaéis methods
developed for predicting occurrences of extreme events in stormylsegystad, 1985;
Prevosto et al., 2000; Boccotti 2000; Isaacson and Mackenzie, 1981; Guedes Soare
1989; Goda, 1999; Arena and Pavone 2006, 2009; Fedele and Arena, 2010). These
assume that the effects of the sea state observed duringhteneals of the short-term
scales offs~ 1-3 hours can be accumulated to predict the wave conditions for the long
term scales off| ~ years. One of the drawbacks of such stochastic analyskatim
short-crested seas, surface time series gatheredxadapint tend to underestimate the

true actual wave surface maximum that can occur over a gig@nref aresEs around
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Q. A large crest observed in timeQ@trepresents a maximum observed at that point, but it
may not even be a local maximum in the actual crest segmanthoée dimensional (3-
D) wave group. The actual crest representing the global niaxiatcurs at another point
located without or withirEs. Certainly, the elevation of the actual crest is alwaygelar
than that measured &. Thus, (1) underestimates the maximum wave surface height

N attained oveEs, which is also not the highest crest height of the group, unless the
area is large enough for all wave-group dynamics to develop foadleed,7,.., can also

occur on the region‘s boundaries, and this is usually the caseag@rsmaller size than
the average size of wave groups. Thus, wave extremes should be modsi¢id $pace
and time as maxima of random fields rather than those of randoniohsmaf time
(Adler, 1981, Piterbarg 1995, Adler and Taylor, 2007). Since in 3-D randads fit is
not possible to define a wave easily or unambiguously, as is possible in tiese isetinis

work we refer to a space-time extreme as the largesacgudisplacemenf__ over a

given sea-surface area during a storm.

Note that the application of such advanced stochastic theoriesalistic oceanic
conditions has been limited because it requires the availabilityagk surface data
measurements collected both in space and time, in particularighactvave spectra
(Baxevani and Richlik, 2004). Only at large spatial scales, SyntAperture Radar
(SAR), or Interferometric SAR (INSAR) remote sensing provigieicient resolution
for measuring waves longer than 100 m (see, e.g. Marom et al., 12806mMet al.,
1991; Dankert et al.,, 2003). However, it is insufficient to correetlfimate spectral
properties at smaller scales. At such scales, up to daterfeddurements for estimating

directional wave spectra are challenging or inaccurate éeelmnear or two-dimensional
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(2-D) wave probe-type arrays could be used, though expensive to arsfathaintain
(Allender et al., 1989; O'Relilly et al., 1996). Recently, stereo videbriiques have been
proposed as an effective low-cost alternative for such preciasum@nents (Benetazzo,
2006; Wanek and Wu, 2006; Fedele et al., 2011; Gallego et al. 2011, Badhua
2011, de Vries et al. 2011; Benetazzo et al. 2012). Indeed, a sterex@ céenv provides
both spatial and temporal data whose statistical contenherrilsan that of a time series
retrieved from wave gauges. For example, Gallego et al. (2011) éstumated
directional spectra by a variational variant of the Wave AcquisiStereo System
(WASS) proposed by Benetazzo (2006). Further, WASS was used by Eedel¢2011)
to prove that in short-crested seas the maximum surface heightaoy®en area is
generally larger than that observed in time by point measutenigee also Forristall,
2006). The fact that the spatial extremes are larger than those measufi@dcpoint is
not only because there are more waves in a spatial domain.diheeason is that fixed
point measurements cannot detect true extremes in short csestedTheories due to
Adler (1981) and Piterbarg (1995) follow from both reasons, especiam this
essential difference between fixed-point versus true spatialr@icdn extreme observed
at a fixed probe in time in short-crested seas indicates thaiva crest section just
propagated through the probe, and the probability that the actuaimextf that crest
section coincides with the extreme observed in time is simpty. zeis only in long-
crested seas that one can equate the extremes observed inittinteevactual spatial

extremes.
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As pointed out by Baxevani and Richlik (2004), the occurrence of tanex in a
Gaussian field is analogous to that of a big wave that a garfarsearch and always
finds. Indeed, his likelihood to encounter a big wave increases if hesraomend a large
area instead of waiting to be hit by it. Indeed, if he spansga larea the chances to
encounter the largest crest of a wave group increase, in agreement with tigsfofdhe

recent European Union ‘MaxWave’ project (Rosenthal and Lehner 2008).

In this work, the main focus is on characterizing the statistical prepeftspace-time
extremes in short-crested sea states and their long-termctppesi The paper is
structured as follows. First, the essential elements of theytloédtuler Characteristics
(Adler, 1981) are introduced. Then, their application is presented inotitext of the
Equivalent Power Storm (EPS) model of Fedele and Arena (2010). tahstical
properties of space-time extremes are then derived. Furtheelthiwe validity of the
new model and its predictions are assessed by analyzing wawarereants and

directional spectra retrieved from NOAA buoy 42003 (East Gulf).

2. Euler characteristics and extremes

A significant result on the geometry of multidimensional randeldsf follows from
the so-called Euler CharacteristidsQ) of their excursion sets (Adl&r981) and the
relation to extremes. To keep the presentation simple, hereafidom fields in three
dimensions or lower are considered, but the theory is valid in amgndions (Adler and

Taylor 2007). Consider a homogenous Gaussian wave /ietdy,t) over the bounded

space-time volume&2 with zero mean and standard deviation(see Figure 1). Here,
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homogeneity simply means tht is stationary in time and homogenous in space. Thus,

the associated probability distributions at any points of the domeirtha same and

Gaussian, irrespective of the domain’s size. Given a threghdkfine the excursion set

U,, as that part o within which 77 is abovez, viz.

Uy, ={(xy)0Q:n(xyt)>7. 2)

In 3-D sets, theEC counts the number of connected volumetric components of the
excursion setJ, minus the number of holes that pass through it, plus the number of
hollows inside. For two dimensional (2-D) random fields instead Efiecounts the
number of connected components minus the number of holes of the respentistoa

set. In one dimension (1-D), th&C simply counts the number afupcrossings, thus
providing their generalization to higher dimensions (Adler 1981).

Worsley (1996) presented various applicationsEGQr theory to characterize the
anomalies in the cosmic microwave background radiation, galémpiclogies and
cerebral activities in biomedical imaging (Taylor and WeysP007).EC theory is also
relevant to oceanic applications because Adig81) and Adler and Taylog2007) have

shown that the probability of exceedariedr, ., > z|Q} that the global maximury

max

of /7 over Q exceeds a thresholdz depends on the domain size and it is well
approximated by the expect&q of the excursion sat , , provided that the threshold is
high. The expectedEC approximation to the exceedance probability/Qf can be

explained heuristically as follows. Asincreases, the holes and hollows in the excursion

set U,, disappear until each of its connected components includes just one loca

maximum of /7, and theEC counts the number of local maxima. For very large
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thresholds, th&C equals 1 if the global maximum exceeds the threshold and O otherwise.

Thus, EC(U,,) of large excursion sets is a binary random variable witkssttand 1,

and, forz>>0 ,
PR > 2] Q} =P{ECU,,) =1} =< EC(U,,) >, )

where angled brackets denote expectation. This heuristic iddragtybeen proved
rigorously to hold up to an error that is in general exponensatigller than any of the

terms of the expectddiC approximation, viz. (Taylor et al. 2005)

PH, > 2]Q} =< EC(U,,,) > +O(exp(-u*(L+ x)/2)), (4)

whereu =z/ 0 >>1 and the constany > 0. Piterbard1995) also derived an asymptotic
expansion of the probability in (3) for large Gaussian maxima vieergézed Rice
formulas (Rice 1945) valid for higher dimensions. In the following, vlefinst apply
the preceding results to homogenous 3-D Gaussian fields and themleconen-

stationary space-time extremes observed during a sea storm.

a. Extremes of Gaussian Fields

Consider the Gaussian fielt(x,y,t) homogenous over the space-time volurfk of

sizeXYD (see Figure 1). Drawing upon Adler and Taylor (2007), define

M, (D, X,Y[H.) =272 2 Y

a ()
Xyt
TLL,
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as the average number of ‘3-D waves’ witlih. Here, T is the mean wave perioEx

and [y are the mean wave lengths alon@ndy, respectively. These, as well as the

parametera,, are all estimated from the moments of the directional speatfuth (see

appendix A). The probability that one of the ‘3-D waves’ exceedthtlesholdz is given

by

R (zIH,)=[16(z/H,)* -1]P(z|H,), (6)
where

P(z|H.,) :exp[—Sé—sz (7)

is the Rayleigh law.
If Q is not large, then the threshatdcan also be exceeded on the boundary surface

S=0Q with probability
P (z|H,)=4(z/H,)P(z|H,), (8)
by one of the ‘2-D waves’. The average number of such occurrences is given by

M,(D,X,Y|H)=M, +M (9a)

2,h?

where

X Y
|\/|2'V :1/277D[T1[1—an2 + 1/:L—Q'WZ} (9b)

TL,

and

== XY
MZ,H - ZHTL_Y 1—0’Xy . (9C)
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Here, M,, (M,,) is the average number of ‘2-D waves’ that occur on the vertical
(horizontal) faces oPdQ, and the parameters, a, and a,, also depend upon the

directional spectrum (see appendix A).
The threshold can also be exceeded along the perimBterdS of the surfacé&. In this
case, the number of such occurrences follows the Rayleigbflé#). And, the average

number of ‘1-D waves’ that exceeds given by

X Y
+ + (10)

M,(D,X,Y|H,) == +—+—.
A |H,) LT

—| O

There is no clear geometric criterion, such as that of zero gegssfor 1-D waves, for
defining 2-D or 3-D waves. In simple terms, this can be thougbh@a®f the space-time
cells in which the map of the wave surfagéx, y,t) can be portioned within a given
volume or area.

For large thresholdg >> g, the probability of exceedance of the absolute maximum

n.... of the wave surfacg over Q is given by

P{fe > 2|1Q} = P11, > Z|V} + Pr{1,, > 2| S} + Pr{1,, > 2| P}. (11)

max max

Here, each term on the right-hand side of the preceding equatioreslefiotn left to
right, the probability thaty__ is exceeded over the interior voluiMef Q , its surfaces

or the perimeterP, respectively. The three terms can be derived as follows. The
probability thats,, does not exceedin V is equal to the probability that all the 3-D

waves inV have amplitudes less than or equalztolf one assume the stochastic
independence among waves (which holds for Iaygéhen the first term in (11) can be

expressed as

10
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Pr{ > 2|V} =1-Pr{n,, < 2|V} =1-[1- R, (z| H )", (12)

max

and similarly for the other two terms, that is
Pr{#) e > 2| S} =1-PH{1,,,, < 2| S} =1-[1- P, (z| H )" (13)

and

Pr{n. .. >z|P}=1-Pr{n . <z|P}=1-[1-P(z|H)]"™. (14)

max

For z >> o, the preceding will lead to

Pr{’]max> Z|Q}[M3R/ (Zl Hs)+M2F>S(Z| Hs)+M1P(Z| Hs)’ (15)

in agreement with Adler and Taylor (2007).

b. Scale dimension of extremes

A statistical indicator of the geometry of space-time ené® in the volume can be
defined as (see appendix B)

~ 4M ,Z, +2M
16M {2 +4M,{, +M '

£=3 (16)

where ¢, relates to the expected maximum surface height. The parameterf
represents a scale dimension of waves, i.e. the relative stal space-time wave with
respect to the volume’s size. From (16) it is easily seenltkig® < 3. In particular, if
£ =3 wave extremes are fully 3-D and they are expected to octhinwie volumev
away from the boundaries. F@r< <3, extremes intersect also the lateral surfacé. of
The limiting case of =2 is attained when one of the three sifesX or Y is null, say

D=0, for example. In this case, the extreme can occur within aiftgg¥Y and it is 2-D.

11



216  When the area’s boundaries are touched by the extrem@& hgre 2. The limiting case
217 of 1-D extremes  =1) occurs when the arda collapses to a lineXE0 or Y=0). As an
218 example, Figure 2 shows the wave dimensidrcomputed for each hourly sea state of
219 the Hssequence recorded during the period 2007-2009 by NOAA buoy 42003, moored
220  off the East Gulf, foD=1 hour and squarets = 10 m®. Clearly, in milder or low sea
221 states extremes are quasi 3-D since mean wavelengths (~80Qdnperiods (~3 s) are
222  much smaller than the lateral lendthand duratiorD, respectively. As the intensity of
223 the sea state increases, so do both the associated mean whselepdgbd ~190 m) and
224  periods (up to ~12 s) and the wave dimension reduces; at the highestiates,S is
225 roughly 2.6 and waves appear more long-crested. However, their = &t broad-
226 banded and modulational effects are negligible. In this casejmedrare expected to
227  occur on the surface&T or Y-T of the volumev.

228 In the following sections, (15) is extended for a random wave fjfeltbmogenous in
229 space but non-stationary in time, thus providing a means of predit@nghaximum
230 value of/77 over an area during a storm under more realistic conditions. Foisealds to
231 a generalization of the Borgman model (1) for predicting spate-¢xtremes in storm
232 seas with dominant second-order nonlinearities. As discussed aboveyethieiaé
233 application of such approach requires spatial data, specificedigtidinal spectra that can
234  be estimated, for example via non-invasive stereo imaging tpretmi(Benetazzo 2006,
235 Gallego et al. 2011; Fedele et al. 2011) or via SAR/INSAR rersetsing (see, e.qg.

236  Marom et al., 1990; Marom et al., 1991; Dankert et al., 2003).

12



237  C. Space-time extremes during storms

238 Consider the space-time volunf® of Figure 1, and regard as the wave surface

239 generated by an actual storm passing through theEgre& during a time intervabD.

240 Assuming that/] is spatially homogenous over the area but non-stationary in time,
241 partitionD into J=D/At time intervals each centeredtatt , as shown in Figure 1.
242 Next, assume thay is locally or piecewise stationary in any time interft@a)t, + At] ,

243  with At usually equal to 1 hour or so. The sea storm is then defined @semse of 3-D

244  stochastically independeidtt -sea stateaQ ; with piecewise time-varying mean period
245 T(t) and wavelengthsL,(t)andL,(t). Such parameters can be estimated from the
246  directional spectrum (see appendix A). The surfas of AQ consists of four
247 ‘vertical’ faces aligned along thteaxis and surrounding the interiwy, . The perimeter
248  0AS, consists of four ‘vertical’ segments, each of ledi§th With this setting in mind,
249  the volumeQ is partitioned in disjoint subse@ =S, 0S OV OS,, where S, and

250 S are the upper and bottom surface area® adit t=0 andD, respectively, and the

251 lateral surfaceS_and interior volumeé/ are given by

252 §=UAS, V=UAV, (17)

=13 =13
253 The exceedance probability of the global maximum  of /7 over Q can then be
254  expressed as

Pr{fle > 2|} =1=PH{(77,0, < ZIV) 0 (7,0, = 2| S) N
255 (18)
(’7ma>( S ZlaSL) n (”max S leb) n (”max S leu)}!

13
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where S is the perimeter ofS . Assuming stochastic independence,/ds— O, or

J - o0, (18) yields the extended Borgman’s exceedance probabilityacegime (see

appendix C for derivation)

P(7,..|E.)>2) ﬂ—exp{f(e P+ a)dt}, (19)

where

P (2|, =hy="E" P(_?[LZ)S]: ho) (20)
p.(z|H, =h) = N, ML= PS%J]:)S] =h®)] (21)
P (2IH, =) =N, ML F’V(—Tzh']:;] =ho) 22)

where the coefficientdN, and N, are given in appendix Adere, to account for second-
order nonlinearities, the linear amplitudeg is related to the nonlinear amplituderia
the quadratic equatioz=z + uz’ /20 (Tayfun 1980,1986; Fedele and Tayfun 2009),
where i = A, /3 represents an integral measure of steepness depemdthe skewness
coefficient], of 1 .

Note that (19) is a normalized probability meassinee P(;, |E, >0)=1. As E_ - O,

max

it reduces to

P(#n.. >2=1- exp{T P dt} , (23)

14
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which is the Borgman'’s probability in (1) for thearimum wave cresCnyax observed in

time at pointQ. The expected maximumt

max

of the actual storm follows by integrating

(19) overz as

O Sy 8

ﬁmax = P(,7max | ES > Z) dZ (24)

As z - o, (19) tends asymptotically to
D

P(1,0|E.>2) ~ ~[(R+P,+P)dt, (25)
0

which is the extension of Adler’s probability (1t6)sea storms.

Note that the exceedance probability in (19) rebesthe assumption of stochastic
independence of large waves, which holds for weakly-Gaussian fields dominated by
second order nonlinearities, or short-crested semsidered in this work. Indeed,
realizations of maxima typically occur at times dochtions typically well separated to
render them largely independent of one anothenma weas. Clearly, in long-crested sea
states the areal effects are negligible and (1@)aes to the time Borgman formulation
(1). However, in this case the wave surface isctdfe by nonlinear quasi-resonant
interactions and fourth-order cumulants increasgoihé the Gaussian threshold if the
spectrum is narrow (see, for example, Fedele &04ll). To account for such deviations,
an obvious modification would be to simply replare (1) the Rayleigh/Tayfun
distribution with Gram-Charlier (GC) type modelsch as those developed by Mori and
Janssen (2006), Tayfun and Fedele (2007) or F€@6e@8). Indeed, GC models have
been shown to describe the effects of quasi-resanteractions on the wave statistics

(see, for example, Fedele et al., 2011). Howewersuch long-crested sea states

15
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individual waves are correlated (see for examg@assen, 2003) and (1), even with a GC
model, loses its validity and yields conservatigéreates as an upper bound. The space-
time stochastic model proposed herein can be eateol smoothly bridge long- and
short-crested conditions. This would require takimg account the correlation between
neighboring waves and it should depend upon thet jprobability distribution of
successive extremes (see, for example, Fedele .2808h a model would be beneficial
for estimating extreme waves in rapid developmdnibong-crested sea states in time.
Some work on marine accidents suggests that suaiiitmms may occur (Tamura et al.
2008). The development of such a stochastic miedal progress and will be discussed

elsewhere.

3. Prediction and properties of space-time extremes

In the following, (19) will be applied in the comteof the EPS model of Fedele and
Arena (2010) to predict the long-term statistics sphce-time extremes, namely the

largest surface elevatiayp,  that can occur over the arBacentered at poir@ during a
storm. To do so, consider a time intervadduring whichN(7) storms sweep throudh,
and assume that the time series of significant waeights H,) at Q as well as the

directional spectrum are given as measurements, Tdefine a succession of storms
where each storm, according to Boccotti (2000),idientified as a non-stationary

sequence of sea states in whid exceeds 1.5 times the mean annual significant wave

height at the site, and it does not fall below ttraeshold during an interval of time

16
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longer than 12 hours (see also Arena, 2004). Gaveaccession of storm events in time,
each event is described as an EPS storm of durhtimmd peak amplituda at, say,

t = t,. The significant wave heiglhtvaries in time according to a power lat(t)~ft-to|

, where A (>0) is a shape parameter (Fedele and Arena 20h@)EPS storm has sharp
cusps forO0< A <1 and rounded peaks fot =1. ForA =1, the ETS model of Boccaotti
with linear cusps is recovered (Boccotti, 2000}. islthen assumed thatandb are
realizations of two random variables, s&yand B, respectively. Then, the storm peak

probability density function (pdfp,(a) is not fitted directly to the observed storm peak

data via ad-hoc regressions, but it follows anedyty by requiring that the average times

spent by the equivalent and actual storm sequeriimse any threshold be identical, viz.

T a

N B -

p.(8) =

Here, the functiorG(4,a) (see Appendix D) depends on the exceedance distnibof
significant wave heightsP(h)=Pr{H_>h} and the conditional average duration
b(a|E.)=B|A=a, both of which are estimated via regression. Ii@aar, a Weibull

fit is adopted forP(h) as

P(h) = ex;{— [%” (27)

where u, w and hy are regression parameters (see Fedele and Areh@).28s a
consequence, the analytical form of the storm mkadsity p, is defined via (26). For

example, for triangular stormsgl(=1)

17
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_a d®P_ u (a-h)" a-h\) _(a-hY
P, (a) t_)(a)daz_wt_)(a)( - J H - J+u 1}ex;{ ( - ” (28)

and p, depends upon the Weibull parameters and the conéltb (a) . For comparison,
both the Generalized Extreme Value (GEV) and GuniB¢lmodels are used to fit the
observed storm peak data. In particular, the GERNsitlg and cumulative distribution

function are given by

dP.
a) = — &
pGEV( ) da
(29)
P, (a) =Pr{A<a} = exp{— (1+ k(a—,u)/a)‘l’k], azu-olk,
where (K, 4, 0) are the GEV parameters. For Gumbel,
dP.
a)=—=,
P (a) da
(30)

P.(a) =Pr{A<a} = exd— exp(a—-u,)/ o, ]], a=0,
where (4, ,0,) are regression parameters. Note that GEV tendsa®iG- 0.

The conditional storm base is estimated as follom@. largez, the probability that

n... > zduring an EPS storm is given by

b iP1(2|h)+P2(Z|h)+P3(Z|h)dh}. (31)

P E > b} =1-exp—
{”maxl S Za’ } %Aao (1_h/a)1—1//1

This follows from (19) specializing the significawave height histora(t) to that of the

EPS storm (see Fedele and Arena 2010)EAs 0, (31) reduces to the time-based

Borgman’s probability (1) specialized to point esies of the maximum crest height

C... =... In EPS storms, viz.
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b2 P,(z|h
P > b} =1- — | —+—~=~dh¢. 32
{,7max Z3 } ex AaJ.( _h/a)l—ll/l } ( )

The expected maximumi__ (E,) of the EPS storm then follows by integration ag2).

max

For a given areB_, the statistical equivalence between an actuainsémd the associated
EPS is achieved by requiring thmequal the actual maximurd ; in the storm, and is
chosen so that the expected maximgm during the storm is the same as that of the
EPS storm (Fedele and Arena, 2010). Oncerfihe of the true storm is estimated from
data by means of (19) and (26), a good approximatfob is given by imposing the

exceedance probabilities of the actual and EP#stty be equal at =77

max !

P{nmax IES> /7max; a b} = P(,7max | ES >,7max) ) (33)

From this b follows as

D

[(R+P,+R)dt

b(E,,A) =1a? , for z=p__. (34)

P PARP
01 h/ 11//]

'—;

It is observed thab depends upon the storm shape, but it slightly gasmwith the area
E. as expected, sindeand the storm peak density,  are unique tempoogleuties of
the given location, as a result of the assumedasgaimogeneity. Thus, hereafteris
estimated ad(E_, 1) =b(0,1), based on the Borgman’s time-based model (32)arAs

example, Figure 3 (top panel) shows one of theekirgbserved actual storms and the
associated EPS. In the same Figure, the exceegeabability (32) of the maximum
crest height expected in time at the buoy locasarompared for both the actual and EPS

storms.
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Given A, the conditional average(a) at the buoy location is then described by
B(a) = bm eXp[sm(a - ao)] 1 (35)

whereb,,s,,8, are regression parameters (Boccotti 2000) .

Note that the EPS model depends on the measuradubtvia the observe®(h) and

the densityp, is estimated by way of (26) for an arbitrdryy 0. As a result, the EPS

model is defined in a probabilistic setting and fodher data fitting is necessary for
estimating extremes and associated statistics,hwtan be expressed explicitly as a
function of p,. Indeed, the return perioB(H_ > h) of an actual storm whose peak is

greater than a given threshdldan be expressed as (Fedele and Arena, 2010)

T

N@)| p.(a)da

R(H,>h) = (36)
This can also be derived exploiting compound Poigsocesses (Tayfun 1979).

The return periodR(7,. |E, >2z) of an actual storm in which the maximum wave

surface height exceedscan be derived a follows. Consider the number(z|E,) of
equivalent storms where the maximum surface elewabiver E, during the storm is

greater thaz. Then, R(77, ., | E, > 2) of an actual storm is defined as that of an edeinta

max

storm whose global maximuwp _ exceedg. Thus,

R |E>2) = 37)

_
N,(zIE)’

where N, (z) can be explicitly formulated by following the sarwical steps as in

Fedele and Arena (2010). It is given by
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N, 2IE) = 2] p,@)PL(7,.. |E. > 22, (@) da. (38)

Using (38), (37) is simplified further to

R(7,0 | E, >2) = : . (39)
I _a G(4,a)P[(n,., | E, > z;a,b(a)]da
: b(a)

AsE_, - 0, this expression reduces to that for point measengs, i.e.R(7 . > 2) (see

Arena and Pavone, 2006), and thus yields the rgteinod of a storm whose largest crest
height exceeds at a given location in time. Drawing upon Fedmatel Arena (2010) and
from probabilistic principles, one can also estentite most probable value of the peak

significant wave heighf of the storm during which the maximug),, exceeds a given

threshold, sayz, over the ared&, . Indeed, given thak ={n__ >z|E}, the conditional

max

probability density function describing the relatifrequency of occurrence of the

extreme event in the equivalent storm whose pdakgityA is in [a,a+da] is given by

0, (a2) = Pa@PUu|E = zal_)(a)) _ (40)

[ P.(@P(7,, | E, = zab(a))da
The conditional meany,. (z,E,) and standard deviatian,. (z, E,) are both function of
z and are&, . If the coefficient of variationy =,/ ,, <<1, then an exceptionally

high surface elevation most likely occurs duringtarm whose maximum significant

wave height, i.e. the storm pedk is very close t@, . Most likely this is also the

intensity of the sea state in which the expecteteme occurs. In the applications to

follow, it will be shown that theoretical prediati® such as these implied by the EPS
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models are approximately satisfied in actual stdata. Moreover, to compare the EPS
predictions with those based on GEV and G modets réturn periodR(H, > h) and
R(#... | E. > 2) will be also estimated replacing, with p., and p., which follow

from the storm-peak data via (29-30).

4. Long-term extremes in the East Gulf

Hereafter, the space-time EPS model will beliegpto elaborate some wave
measurements retrieved by the NOAA buoy 42003 nabovest of Naples, Florida
during 1976-2009. The data indicates that the eksesea states at the buoy location are
short-crested in agreement with the analysis ofigtafl (2007) (see also Forristall and
Ewans 1998). Indeed, their angular spreadiéy estimated as in O’Reilly et al. (1996),
is in the range of [30°-60°]The time series of long-term wave statistics foinpo
measurements have been elaborated showing thaxtesdance distributio(h) of
significant wave heights is well represented by Weibull law (27) with parameters
u=0.591,w=0.201 m andy=0 m. Further, directional data available for pegiod 2000-
2009 are used to fit the wave paramet?e_*rsifx andL, from the hourly measured

directional spectra as

= — =2 — =2
T=y4H, /9, L«i=y,oT , Ly=y,dT, (41)
wherey, = 242, y, = 0171, y, = 0172. From the analysis of the estimated directional

spectra of the hourly sea states, the spectraingdessa,, , a,, anda,, are on average
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very small and can be set equal to zero, whesigas- 0.7 as an averaggor the data at

hand, quasi-triangular storms are optimal+ 0.9) (see Figure 3, top panel), and the
conditional baséy(a) can be estimated from a sequencé\Ngf) = 627 storms, and it is

reported in Figure 3 (bottom panel).

GivenP(h) andb(a), one can now compute the pgf(a) of the storm peak intensity
A from (26) and predict the return perid{H_ >h) from (36) for the NOAA buoy
42003. Figure 4 illustrates such predictions lgdelas EPS. For comparison, the
predictions based on the estimates mf directly from the observed storm peak data
using GEV and Gumbel (G) models (cf. Eqgs. 29 andaB@ also reported. Note that EPS
and G vyield similar predictions, whereas GEV letm®verestimation at large. The
associated return peri®{y, ., | E, > z) of the largest surface height over a square Byea
= L2 with L=10° m, is computed from (39) and shown in Figure 5E®S, GEV and
Gumbel. For comparisons, the associated ‘time’ iptieths of the return period
R(n... >2) (E ,=0) are also shown. Clearly, the expected wave height attained
over Es is larger than that expected at given point nmeti Further, as the area increases
the predictions tend to deviate from the ‘time’ man’s counterpart as shown in the
right panel of Figure 6, which reports the EPS utezhs of 7., as function oR over
increasing areas with=10?, 10° and 1d m, respectively. Over such large areas, the
wave dimensionf is expected to be roughly 3 [see Figure 2 for theet=100 m].
Thus, drawing upon Boccotti (2000), most likejy, is the highest crest height of the
central wave of a group that focuses within thea.afen estimate of the associated

steepnesg;, is needed to assess if the large crest violateStiblees-Miche upper limit
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for breaking. To do so, giveR we need an estimate of the most probable va|ye of
the peak significant wave heiglt of the storm during which such maximum
exceeds. This can be inferred using Eq. (40), which alldavspredict the mean, . of
the conditional pdfp,. (& z) of A given F ={z,_,. > z|E, = L’} . The stability bands for
such estimate proceed from the standard deviatign. Figure 6 (center) shows the
associated ratigy,_ /a,  as function ofR for the predictions in the right panel of the

same figure. For the largest area considered@ m), this ratio increases to roughly 1.4
independently of, thus significantly exceeding the predictions a@fi\aen point in time,
i.e. 0.9-1.1, in agreement with the stereo measemé&nof ocean waves (Fedele et al.

2011). Givena__ , the expected steepness can be expresseq-ak 7, where the

max !

wavenumberk can be estimated in various ways. For examplecaneextract its value

from the actual wave profile if available. Equivatly, the theory of quasi-determinism
(Boccotti 2000, Fedele and Tayfun 2009) suggestsaHarge crest at focusing tends to
assume the same shape as the spatial covarianeeifiGly, one can take the
wavelength and thus the corresponding wavenumbdae\aong the direction with the

shortest zero-crossing wavelength (Method 1). Adgvely, the periodr, of the largest
wave can be estimated from the time covariance d@&tic 2000), andk, follows from
the dispersion relation ag&, = (277/T,)?/g (Method 2). For NOAA buoy 42003,
T. ~126T = 333/4H_/g is a decent fit, especially for intense sea statae left panel

of Figure 6 reports both the expected steepaessid the associated confidence intervals

as function ofR (estimates from th&, -fit). It is seen that the Stokes-Miche upper timi

24



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

£, ~044 (Stokes 1880, Michell 1893) is not violated bygmwaves (see also Tayfun
2008). This result clearly suggests that exceptioraves with; __ /a__ >1 can occur

over larger areas. Clearly, such analysis proveledence that exceptional waves with

n.../a,. >1 can occur over larger areas. However, a more @rigmalysis of the

breaking conditions is required, but this goes beythie scopes of this paper.

Finally, to confirm the above long-term predictiahg Hs-sequence of hourly sea-states
recorded by NOAA buoy 42003 during the period 2@009 has been analyzed. In
particular, the top panel of Figure 7 reports thersterm D=1 h) expected maximum

surface heighty__ /H_ attained overE = XY (X=Y=10® m) for each hourly sea-state.

max

The associated; (bottom panel of the same Figure) is also estichdirectly from the

directional spectrum using Methods 1 and 2, witfiedénces less than 2%. Clearly,
extremes of intense sea-states do not violate tileeSMiche upper limit in agreement

with the long-term predictions of Figure 6.

5. Conclusions

The stochastic model developed herein extends dingniBan time-domain model (1)
to space-time extremes and demonstrates the iectdielihood of large waves over a
given area in short-crested seas (see also Baxew@hRichlick 2004). The proposed
model was applied to several storms recorded byNIBAA buoy 42003. The results
reveal that given a return period, the associdtegsholdz exceeded by the maximum

surface heighty __ over a given area is greater than that predictetthd&yorgman time-

max

domain model. In particular, for the largest areasidered (=10 m), ;7 exceeds 1.4
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times the significant wave heiglt  of the sea state where the maximum occurs,
significantly exceeding the ratigy, _/a, ~ 0.9-1.1 predicted from the Borgman model.

These results are in agreement with those obtdmed the recent stereo measurements
by Fedele et al. (2011). In intense sea statéleifirea is large enough compared to the
mean wavelength, a space-time extreme most likeehcaes with the crest of a focusing
wave group that passes through the area. Furtstenages of the steepness of such large
crests suggest that they do not violate the Stbkeke upper limit.

The present EPS model provides another ‘hand onelghant’ for the subject of
extreme waves (see, for example, Boccotti 1981719800, Fedele 2008, Fedele and
Tayfun 2009, Fedele 2008, Gemmrich and Garrett P@38demonstrating that the
occurrence of large waves over an area can beiegglen terms of extremes in space-
time. In particular, the proposed model is of ralese as a practical tool for identifying
safer shipping routes, and for improving the desiga safety of offshore facilities.

The correlation or stochastic dependence of waveemes is not an issue for the
statistics of maxima because realizations of matypeally occur at times and locations
typically well separated to render them largelyeipeindent of one another in wind seas.
However, under conditions conducive to the rapinketment of long-crested sea states
such as those studied numerically by Tamura €R@lL1), stochastic dependence can be
an important factor in analysis. In this regara §ipace-time stochastic model proposed
here can be extended to smoothly bridge long- hod-srested conditions by taking into

account the correlation between neighboring wases, (for example, Fedele 2005).
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513

514 APPENDIX A

515 Wave parameters

516 Drawing from Baxevani and Richlik (2004), the megmamiod and wavelengths are given

517 by

518 fzsz@, E:Zn\/@, Ezzn\/@ (A1)
Mo, m,,, m,,

519 Here,

520 M, = j j K k. &fW(aw,6)dedd (A2)

521 are spectral moments of the directional spectvvdm

522 In (21-22) the coefficient® and N, are given by

XY

523 N, = 27TL_X L_y s (A3)

524 N :\/Z{Léw/l—axf +LL«/1‘%2 , (A4)
x y

525  with

526 @, =.1-a.-a.-a.,+2a.0.0,, (A5)

o2 where

528 Mhor = Mo q, =Moo (A6)

axt = ! ayt - ' Xy — °
m200 m002 mOZO m002 m200 020

27



529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

APPENDIX B

Scale dimension of extremes

Consider the maximum wave surface height over Q. From the associated
probability of exceedance (15), the expected valye is given, according to the theory

of extremes (Gumbel 1958), by

et ey
s 1 — 0
o F({,

S

(B1)

where y, = 0.5772 is the Euler-Mascaroni constant, the prime dendts/ative with

respect to{ = z/ H_and the dimensionles, satisfies

F({)exp(-8{%) =1, (B2)
with
F(Z):16M3Z2+4MZZ+M1. (B3)

Consider now as a reference the order statistidd afaves whose parent distribution

follows an exceedance distribution of the form

P(71H, >2)=(4{)""exp(-8("), (B4)
where the parametg 1. In particular, for5 =1 (B4) reduces to the Rayleigh law (7)
for 1-D waves, and fof3 =2 and 3 to the distributio® andPy, in (7-8) for 2-D and 3-D
waves respectively. Thugj is interpreted as a scale dimension of wavestheerelative

scale of the wave with respect to the volume’s.size

28



548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

In the following, £ is related to the mean wavelengths and periods elk as the
volume’s geometry by equating the expected maxinmnof N ‘beta-waves’ to the true
maximumyz,__ in (B1). Indeed, from (B4) according to the theof extremes (Gumbel,

1958) the expected maximum) of N ‘beta-waves'is given by

g —poy Ve
H. ZN+165N—/J’/ZN’ (BS)

where from (B4) ,¢, satisfies N (4)” exp8¢?) =1. The two expected maxima,

andn,.,, are identical if 3 andN are chosen, respectively, as

Fl(Zo)::g_ 4M2Z0+2M1

B=1+, £ 1002 +4M 7+ M. (B6)
and
N=M:4MSZO+MZ+M1. (B7)

4, 4

0

Here,N is the average number of waves of dimensibthat occur withinQ .

APPENDIX C

Derivation of pr{y _ >z|Q}

max

In (18) assume the stochastic independence ofvibiet®{77 .. < 2|V}, {7, < Z|1S.},
N £210S}, (N £21S} and {n,.,.<z|S} (valid for large z). Then the

probability of exceedance can be rewritten as
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P, > 2| Q} =1-PHn,, < |V} P, < 2| S }IPn,, < z|dS }I
566 (C1)

567 Further, the last two terms on the right-hand s@e be set equal to 1, assuming that the
568 significant wave height is null or small in the begng and at the end of the storm (

569 M,, =0in (9)). This simplifies (C1) to
s70  Pr{g. >z|Q=1-Pqn, . <z|V}IP{n, . <z|S}Pdn,.<z|0S} (C2)

571 Here, the terms on the right-hand side can nowobmulated a laBorgman as in (12-
572 14) assuming the stochastic independence of thstataevents, namely

573 A :{I7ma><S ZlA\/J} 1 Bj :{nmax S z | ASJ} ! Cj :{,7maxS ZlaASJ} " (CS)

574  As a result,

575 Pr‘{/]mElx < ZlV} = Pr{jDJ Aj}: |_l []_— R/ (Z1 | HS = hj )]Ms(At,X,Yle:hj), (C4)
=1, -
576 Prin,.. <715} =P B |= [ =Ptz [H, =n e, (cs)
. -
577 and
578 Pr{y,. <2|0S}= Pr{jQJCJ. }: []0-PG [, =h)" (C6)
= -

579 whereh =h(t,), andR,, P, andP follow from (6),(8) and (7) as the probabilitidsat

580 a‘3-D wave’, 2-D wave’ and ‘1-D wave'’ has an piitude larger tharnz in AV, , AS

581 and along its perimetedAS, , respectively (see Figure 1). The linear ampétu is
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related to the nonlinear amplitudevia the quadratic equation=z + 1z’ /20, where
4 1S an integral measure of steepness (Tayfun 198felE and Tayfun 2009).

Taking the limit of At -~ 0, or J - o in (C3-C6) yields the extended Borgman’s

exceedance probability (19) to space-time.

APPENDIX D

Function G(4,a)

sin(z/%) f 9Pl (o) o, is1

nli 4 dZ

ax

G(4,a) = % , =1 (D1)

(1) a sin(nc‘)jd”*zﬂ (x-1" dx, 4=

= <1,
n! & 4 dz'™?

1
n+é&

with (integer)n>1 and0<¢ <1. If A=1/nis rational, i.e.{ =0, then from (D1),

_1 n an dn+lP
( ) n+l " ZD

n! da

G(},a) =-
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