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ABSTRACT

Surface wave methods (SWM) are widely used for tmophysical
characterization of geological bodies and tect@tiactures in both Earth Sciences
and Engineering. SWMs exploit the dispersive natiireayleigh waves to indirectly
estimate shear wave velocity profiles from surfae@e measurements, but they are
limited to parallel-layered geometries. To overcasneh limitations, we exploit the
Boundary Element Method (BEM) to define a new clasggeometric inversion
models that allows to go directly from raw measugrta to estimating the shape of
laterally varying soil interfaces. The proposedrapph enables a robust identification
of the subsurface geometry and it aims at filling tgap between the standard
simplistic parallel-layered-based SWM and the nean@plex three-dimensional Full
Wave Inversion (FWI) based on Finite Element Metddlmerical tests on synthetic
data unveil the effectiveness of the inverse algoriand its applicability to wave
measurements. An application to field data is finptesented.

INTRODUCTION

Subsurface mechanical characterization is a crigsak in many fields of both
Earth Sciences and Geotechnical Engineering. Inagemtl knowledge of geological
conditions is fundamental for seismic hazard asses§ seismic microzonation,
foundation and building design. Besides the useligdct investigations, such as
drilling or excavations, which yield pointwise imfoation and are expensive even at
the metric-to-decametric scale, common alternatmathods include the analysis of
active or passive seismic waves. In recent yeardISwive been widely used for
near-surface characterization, especially for tegémation of the velocityl; of
S-waves at depths of 30 m or so,lasdirectly relates to the soil stiffness at small



strain levels. SWMs utilize the dispersive naturBayleigh waves in a heterogeneous
half space to obtaif; from surface wave particle motions excited anadméed on
the ground surface. There are now many variatidnie basic test and inversion
protocol, including the original Spectral AnalysitSurface Waves (Nazarian et al.
1984; Stokoe et al. 1994), multi-channel array mo@sh(Tselentis and Delis 1998;
Park et al. 1999) and passive techniques (Loui@]l 2Park et al., 2005) to enrich data
in the low-frequency band in order to increasernmiation at greater depths. Recently,
wave attenuation has been modeled in the paramegtsion and soil damping ratios
can be estimated as well (Rix et al. 2001, LaileR@02). SWMs usually assume
Rayleigh waves propagating through a stack of bat&l, isotropic and homogenous
soil layers. Such models are well established amdpaitationally efficient (Aki and
Richards 1980); however, they only capture theie@rvvariation of elastic properties,
viz. they are one dimensional (1-D). Further, the-layered model is only an
approximation of the geometry of realistic sitas] & may yield misleading results if
the actual solil is far from the assumed flat geoynéndeed, the major drawback is
that wave propagation is modeled as the linearrpogéion of dispersive Rayleigh
modes in parallel layered media, which cannot dles¢he scattered wave-field when
strong lateral variations occur. Observations andehng of earthquakes confirm, for
example, that seismic waves can be amplified aviall valley edges, and diffraction
effects can be observed because the interface éetsadt sediments and bedrock is
far from being horizontal (Bard and Gabriel 1988)rthermore, surface topography
can alter seismic wave propagation (Bard 1982, &agptet al. 2000). In particular,
amplification is usually expected at hill tops (Bdr982) and complex amplified and
de-amplified patterns occur at hill flanks (Savage4).

There have been several attempts to include latarations via the so-called "
pseudo-2-D" inversion (e.g. Luo et al. 2008, Boiamal Socco 2010), in which data
along the survey line are windowed and successideiriversions are combined by
means of suitable blending kernels. However, tippr@ach still retains the 1-D
approximation of SWMs and can only capture detaiiisa scale comparable to the
extent of the spatial window used for inversion.ad®sult, only weak layer variations
can be observed. Analytical solutions for two-disienal (2-D) media are available
only for a very restricted class of weakly varyggpmetries (Maupin 2007; Dravinski
and Mossessian 1997). As such, these solutionsfdimmited practical value. The
further maturation of SWMs has been thus limitedH®ylack of robust and efficient
computational methods that enable more realistit ®presentations, even in
three-dimensions (3-D). Recently, for crustal aitlibkpheric scale structures, such
limitations have been overcome by a FWI methodoladgiych combines a robust
forward model based on Higher Order Finite Elemdethod (FEM) and adjoint
techniques (Komatitsch, 1998; Fichtner, 2010). WadiEM forward model is used,
complex media are finely discretized into 3-D elatseby a large number of nodes.
Each node is associated with a set of unknown peteam that characterize the
mechanical properties of the soil at that node.idalty, the number of parameters
exceeds the number of measurements available leyadewders of magnitude, and
thus the inverse problem is severely ill-posedpdisedness is usually treated by
regularization procedures. The shortcoming is thase approaches suffer from
problems of slow convergence and are computatypnansive.



In this paper, we propose an alternative inveréowmulation based on BEM
that overcomes the above-mentioned limitationsEWFbased FWIs, and at the same
time exploits a far more realistic modeling thae turrent state-of the-art SWMs
(Bignardi et al, 2011). The proposed approach amslling the gap between the
standard simplistic parallel-layered-based SWM ahé more complex 3-D
FEM-based FWI, enabling a robust and better geametraracterization of soil
subsurfaces. Here, the focus is in identifying temmetry of strongly varying
interfaces in layered media. In particular, wavepagation for the forward model is
solved by BEM (Dominguez 1993), which is an effeetiechnique for soil media
whose properties can be considered as regionalyogenous. Indeed, BEM was
previously exploited to solve problems concerniiguctural vibration analysis,
transient waves, and dynamics of cavities undeintiieence of body or surface waves
(Manolis and Beskos 1983; Beskos et al. 1986) andvestigate the propagation of
seismic waves in laterally varying layered medizgn@a and Manolis 2001b). The
approach is restricted to the frequency domainthedsoil parameters are assumed
known, but they can be easily estimated togeth#r thie geometric properties of the
subsurface. This joint inversion will be discuss&twhere. The paper is structured as
follows: we first outline the analytical formulatiaof the 2-D forward model and the
associated numerical solution. Then, the associatetse problem is introduced to
infer the subsurface interface geometry. Finalppligations to benchmark problems
and to a set of experimental data are presented.

BEM-BASED FORWARD MODEL

Consider monochromatic waves at frequencypropagating through a 2-D
layered subsurface, as shown in Figure 1(a){kebe the generic layer bounded by
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Figure 1. (a) Model setup and (b) BEM-based inversion of a
two-layered media.

the curvelI’=T;_, UIl;, and x and z are horizontal and vertical coordinates,

respectively. In the frequency domain, the wavepagation problem in thg — th
layer can be reformulated in the integral form (&esset al. 1986)



Jo 0D, s, 0)tjn (X, w)dl = [ TO(x,5,0)u;(x, w)dl’ + Cuj(x,w), XE€ET.
Continuity of displacements and stresses at ther liayerfaces requires that
uf (x,0) = uj (x,0), t]?L(NJ,)(x,a)) = —tjnH(xw), XE€I; (1)

where +/— signs refer to the values calculated with resp@¢he upper and lower
layers adjacent to the interfatg, andN is the outward normal. Further, vanishing
normal stresg,y, must be enforced at the free surfdgeexcept at the source
location x, € I'; wheretg ) = fo(w) §(x —xo)N, fo being the Fourier amplitude
of the load along the normal to the surface &ii&) is the Dirac function. The
fundamental tensordU) and TU) are given in Dominiguez (1984), and they depend
upon the elastic parameters of the layethat is the density;, shear modulug;,
Poisson's ratiay; and unit source locatios. The (2 x 2) tensorC accounts for
singular contributions to the influence matrix teriat the element's nodes and for
energy conservation in infinite piecewise domaibsriiiniguez 1993). The BEM
approximation is obtained by discretizing each riatee I'; in e; quadratic
isoparametric elements along which the field valfedisplacements and stresses are
given by

W) =33 Bul), G =330, B, x€T, (2

whereu;,, andt,, are vectors of displacements and stresses at'theode on the

kth elementl’; ,, and B, (n) are interpolating functions with € [—1, 1]. Using (2)
and cycling the point of application of fundamerteisors on all node positions, a
system of linear equations for the layeis obtained

[KOuP} = [GPHHDuP} = {t0)3, (3)

where the matricefG?’], [H?] are given in Beskos (1986) and the vectarS)}
and {tU)} list displacements and tensions at the boundadgsiaespectively. These
are local degrees of freedom (dof). Equations (8) assembled by imposing the
matching conditions (1) as in Beskos (1986). Thaulteng linear system can be
written in compact form as

[Klu,; =tg, (4)
whereug, t, are global dof. The solution of (4) follows afterposing free surface
and source conditions. Weight drop or sledge hansmearces are modeled in Fourier
space as a nodal tension vector of intengjiyw) acting perpendicular to the soil
surface. For massive sources, such as an electbamieal shaker, the generated
stress at the ground surface is giventby mw?d, + F, where the vector§ and d
represent the shaker's force and displacemerntg aburce boundary portidn, and
m is the shaker's mass. We point out that BEM caneésly generalized to
multi-frequency wave propagation in 3-D geometraa®sl viscoelasticity can be



accounted for by the correspondence principle dmsen, 1971; Manolis, 1981).
GEOMETRIC BEM-BASED WAVE INVERSION

Assume that the Fourier amplitudag, (w) of the vector displacements are

known from measurements using,. receivers atx,(:) €ly, k=1,...,Np.. We
consider an equispaced discretization for the faterl; alongX usingn; nodes.
The shape of’; can be inferred directly from the measured datanbymizing the
energy functional

1
PEONG

o) =32 o - w52 14 [(55) + (28) | an

The first term represents the mismatEhbetween measuremens and theoretical
displacements at the receivers based on the formad#l (4). The second term is an
arc-length regularizer to treat ill-posedness when> 2N,.., N;,: IS the number of
interfaces to be estimated aa¢h) is the number of elements of thé&" interface.
The optimal deformation of the interfade that makes the first variation of the
energy€ vanish is obtained by the following iterative aitjum. Firstly, we recall
that each interfacd’; is discretized usingy nodes with coordinates given by
F}O) =Y,z (l)) To minimize £ we restrict the deformation of the curve along the

vertical directlonz i.e., we change the nodal coordinateonly. To do so, set

Zj(i) = z(()l]) +A; Ay << Zél]) ,
where z, ; defines an initial guess an, ; is a small perturbation. Taylor-expanding
(5) to first order with respect ta, ; yields the optimal deformatioA, as a solution
of the linear system of equations

(01017 + a[RD{A} = ~[H{uy, — ug,} — a{q}, (6)

where A, is a column vector that lists the vertical peratitns A, ;, [J] is the the
Jacobian matrix that measures the changes of thie siaplacements at the receivers
due to changes of the interfaﬁé’), the superscripT’ denotes the conjugate transpose
and the matrix entries ifR] and {q} are given in Bignardi et al. (2011). Given an
initial guessl“}o) of the unknown interfacé’;, the energy (5) is minimized by
iteratively evolving the initial interface accordinto (6) until the errore =
max(|Az,j|) is smaller than a given toleraneeRelaxation is introduced to limit the
incrementsA, ; at each iteration by penalizing the squared ndirrfdg}. This adds
an extra termB[I] to the left-hand side of (6), whef§ is the identity matrix ang

is a fixed constant. The weight is initially chosen 10 to 30 times larger than the
value a, that equally weights misfit) and regularizerR), viz. M = a, R, so that



the algorithm reconstructs the large-scale featwfeshe curve. As the errog
reduces, is decreased at a constant rate allowing the ifd=tion of smaller scale
features.

APPLICATIONS

Synthetic data.Consider the two-layered subsurface profile of Fegli(b) and a
typical SWM instrumentation setup. The receiveesequispaced every four meters,
and the source is located three meters away frencltdsest receiver. We assume to
know the source and the elastic characteristitBeotwo layers. Data at the receivers,
which are simulated using the BEM-based forward ehdd), consist of Fourier
amplitudes of both vertical and horizontal displaeats. At this first stage, no noise is
added to the data since we wish to test the coewnergof the algorithm to the exact
target interface. In particular, the algorithm cerges to the exact interface in
approximately 1500 iterations and some of the mé&gliate iterates are also shown in
Figure 1(b).To test the algorithm's performancengislata corrupted with 5 to 10%
random gaussian noise, we consider two data séis. fifst set defines a soil
configuration of a high acoustic impedance contaast elastic parameters given by
V; = 150(800) m/s, V, = 500(2000) m/s and p = 1600(2200)Kg/m® for the
upper (lower) layer, respectively, being the velocity ofP-waves. The second set,
conversely, represents a low impedance contrastfigtwation and V;, =
150(250) m/s, V, = 500(1000) m/s and p = 1600(2000) Kg/m?. Further, the
source intensity i¥,(w) = 1000N at frequencyw = 1rad/s. If noise is added to
the simulated measurements, the algorithm stilveoyes as clearly shown in Figure
2(a) for both
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Figure 2: (a), High/low acoustic impedance jump inversions of 5% noisy data.
(b), Case of 10% noisewith irregular topography and (c), normalized misfit
E/E,.



the high (curves 1,2) and low (3,4) acoustic impedacases. Further, in Figure 2(c)
we also show the normalized misft/E, as a function of the number of iterations,
E, being the misfit of the initial estimate. In pattiar, the algorithm is more sensitive
to noise in the phases (dashed curves) ratheratimg@fitudes (solid curves). Note that
the 5-10% level noise added to the Fourier ampsucbrresponds to an even larger
error in the associated time-based displacemergstalithe nature of the Fourier
transform. In Figure 2(a), curves (5,6) denote twomverged interfaces when
horizontal measurements are discarded. The algoiigheffective in identifying the
major features of the target interface even usinty dalf of the data. In such
conditions, thex parameter is decreased at slower rate fans increased to assure
better convergence. Finally, the algorithm can aksadle irregular ground surfaces in
a natural manner as clearly illustrated in Figut®.2

Field-case study. We inverted a set of experimental data collebe@WM testing at

a site in Alabama in 2004. The source was an ele&chanical shaker operated as a

harmonic source in order to generate signals wétjuencies ranging from about 3 to
100 Hz. Only vertical particle accelerations werasured by means of a linear array

of 15 low-frequency accelerometers located at desia ranging from 2.4 to 32 meters
from the source as shown in Figure 3(a).
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Figure 3: (a) Inversion of experimental data. (b) V, profilefrom classical SWM

Time-series were Fourier-transformed, integrated #men compared with the
expected displacements. Conventional 1-D SWM inwess performed at various
locations of the site suggest a two-layered subsarstructure which is uniform in the
horizontal direction. For example, Figure 3(b) skowne of the estimated



vertical profiles of the shear velocity. Furthéw telastic parameters of the two layers
are estimated using a standard inversion basech@BEM forward model (4)
assuming parallel layers. In particular, for thepep (lower) layer given by, =
335(1369)m/s , V, =664(2001)m/s and p = 1500(2400)Kg/m® . We
intentionally apply our BEM algorithm to test ifig cabable of identifying a parallel
layered structure from the data set. As a reswdtatgorithm converged in 27 iterations
and a two-layered media subsuface is revealedagnsim Figure 3(a) where we also
report some of the intermediate iterates of theligion. Observe that the convergence
occurs by rigid translations, clearly indicatingaththe algorithm is capable of
accurately determining the position of a flat ifdee as a limiting case.

CONCLUSIONS.

We introduced a geometric inversion formulationt theercomes the limitations of
classic SWMs in dealing with laterally varying suldace layers. The proposed
inverse algorithm exploits BEM to model wave praogi#mn through a 2-D layered
subsurface and infers the shape of the interfatedes two layers directly from
measurements at the receivers. Tests on both sinémel experimental data provide
evidence that the BEM-based geometric inversioobsst to noise and it is applicable
to geometries with steep interfaces or irregulae fisurfaces. Furthermore, the
BEM-solution can be exploited as the initial guessFEM-based FWIs in order to
reconstruct higher-order structured heterogenedies improve the robustness and
accuracy of the FEM-based solution. We believe thatapplication of BEM-based
inverse models to geological problems will enakeleearchers and other stakeholders
to investigate the underground geological complexitith a low-cost method. Our
preliminary results are very promising in that we able to identify an irregular
interface in a 2-D layered model. The approach srinciple scale-invariant and has
no space limitations. Work is in progress to exténgb multi-frequency and 3-D
geometries.
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