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ABSTRACT

It is well known that in a Gaussian sea state for an infinitely narrow
spectrum the crest and the trough heights follow the Rayleigh
distribution, because of linearity of the first order Stokes expansion
solution (Longuet-Higgins 1952). For spectra of finite bandwidth
Boccotti (1981, 2000) obtained, as a corollary of his first formulation of
the theory of quasi-determinism (which is exact to the first order in a
Stokes expansion), that the crest (trough) height still follows
asymptotically the Rayleigh law for high waves in a Gaussian sea
states.
In this paper we extend the theory of quasi-determinism of Boccotti to
the second-order, deriving a new wave-crest distribution that takes in
account non-linear effects and is valid for finite-bandwidth of the
spectrum. The theoretical predictions are finally compared with data of
non-linear numerical simulation.

KEY WORDS: crest height; second-order effect; probability of
exceedance; finite bandwidth; gaussian sea state; quasi-determinism;
wave group.

INTRODUCTION

The first order Stokes solution of the free surface displacement is a
random Gaussian process of time. Longuet-Higgins (1952) showed that
for an infinitely narrow spectrum the wave height follows the Rayleigh
distribution. Because of the symmetry of a gaussian sea state the crest
and trough heights follow the same Rayleigh law for narrow spectra.
For spectra of finite bandwidth, Boccotti (1981, 2000) showed as
corollary of his first formulation of the theory of quasi-determinism that
the crest height still follows asymptotically a Rayleigh law for high
waves in gaussian sea states [see also Lindgreen (1970,1972),
Leadbetter & Rootzen (1988), Kac & Slepian (1959), Sun (1993),
Breitung (1996), Maes & Breitung (1997)]. If the non-linear effects are
not negligible, higher crests are more probable than higher troughs and
the free surface displacement tends to deviate from being gaussian
(Longuet-Higgins, 1963). The latter crest-trough asymmetry was

investigated by Tayfun (1980) and Tung & Huang (1985); they derived
a probability distribution of the second order crest (trough) height under
the hypothesis of narrow-band spectrum. A more general second-order
narrow-band model was proposed by Arena & Fedele (2002); they
obtained the crest and the trough distributions of a general non-linear
stochastic family, which includes many processes in the mechanics of
the sea waves (either in an undisturbed field or in front of a vertical
wall).

Two models (Prevosto et al., 2000; Forristall, 2000) have been
proposed for the crest height distribution of three dimensional waves:
they give results very close to each other and in good agreement with
field data (Prevosto & Forristall, 2002).
In this paper we extend the work of Boccotti (1982, 1983, 2000)
deriving a new wave-crest distribution that takes in account second-
order effects and is valid for finite-bandwidth of the spectrum. In his
work,  Boccotti showed that in a Gaussian sea state, if it is known that a
very high local maximum (very high with respect to the mean crest
height) occurs in some time and location, this implies that a well
defined quasi-deterministic wave group generates the highest local
maximum which tends to be the crest of its wave. As corollary he
derived that the probability of exceedance of the crest (Boccotti, 1981,
1989, 2000) follows asymptotically the Rayleigh distribution.
The authors, starting from the general second order Stokes solution of
the surface displacement, show how the amplitude of the non-linear
crest depends upon the linear crest amplitude. Thus the probability
distribution of the non-linear crest is obtained.
Comparison between theoretical and numerical simulation distributions
is finally proposed.

NON-LINEAR EFFECTS FOR FINITE-BANDWIDTH OF
THE SPECTRUM

The theory of quasi-determinism

We shall derive an asymptotic formula for the non-linear wave crest
distribution, based on the theory of quasi-determinism by Boccotti
(1982, 1989, 1993, 1997, 2000). He showed that, if in a Gaussian sea
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state it is known that a very high local maximum occurs in some
location and time, this implies with high probability that a well defined
wave-group generates the high local maximum (see also Lindgreen
(1970,1972)). In detail if a local wave maximum of given elevation ho

occurs at a time ot  at a fixed point oo yx , , with probability

approaching 1, the surface displacement at YyXx oo ++ ,  is

asymptotically equal to the deterministic form
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if ∞→σ0h , i.e. the crest is very high with respect to the mean crest

height, being σ  the standard deviation of the free surface

displacements. The space-time covariance ),;,,( oo yxTYXΨ  is

defined as
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is the ensemble average. An exceptionally high local maximum, with a
very high degree of probability, is also a wave crest of its wave,
because the absolute maximum of the autocovariance function

),,( TYXΨ  is at 0,0,0 === TYX . A direct consequence is that

the number of wave crests exceeding a fixed threshold b tends to
coincide with the number of local wave maxima exceeding it, provided
the fixed threshold is very high; which in its turns implies: the number
of wave crests exceeding a very high threshold b tends to coincide with
the number of b up-crossings )( +b ; that is
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where );( tbNcr ∆  and );( tbN ∆+  denote respectively the number of

wave crests exceeding the threshold b and the number of +b  in the very

large time interval t∆ ; it follows that
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As regard to the free surface for long-crested random waves in deep
water from Eq. (1), we derive the surface displacement at Xxo +
when an exceptional crest height of given elevation h0 occurs at a time

ot  at a fixed point ox :
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where )(ωS  is the wave spectrum. Let us note that ∫
∞

=
0

2)( σωω dS .

Non-linear free surface displacement in deep water for a

given initial local maximum

For long-crested waves in deep water, the general second order solution
for the surface displacements is (Sharma & Dean 1979; Tayfun 1986)
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in which nnnn TXxk ϑωψ +−+= )( 0  and the coefficients { } ℵ∈nna ,

{ } ℵ∈nnϑ  are undetermined.

Let us assume that the free surface displacement has a local maximum
h at point oxx =  and that this maximum occurs at time ott = . We

shall derive an expression of the free surface displacement ),( TXη  at

point Xxo +  at time instant Tto + , when h is very large with respect

to the standard deviation of the free surface displacement.
The conditions of a stationary point at time ott =  (that is T=0) at the

location point oxx =  (that is 0=X ) are
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The solution of problem (8) (see Appendix) has expression as
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where TkX ωψ −=  and it is valid for high crest height, i.e. for

∞→σ0h . The initial high wave crest is
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Formula (10) is valid as long as the non-linear effects are weak, which

means that 0hk p  has to be smaller, where pk  is a wave number

corresponding to a characteristic frequency pω . For wind wave

spectra, in deep water, pk  can be assumed equal to gp /2ω , being

pω  the peak frequency. If ∞→σ0h , the non-linear effects are

negligible, i.e. 00 →hk p , if the steepness σε pp k=  goes to zero as
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By setting the change of variable pw ωω /11 = , pw ωω /22 =  and

by defining the non-dimensional spectrum 2/)()(
~ σωω wSwS pp=

Eq. (10) is rewritten in the form
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The variance of the second order process is easily derived from (11)
and has expression as
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So we have that the non-dimensional wave crest height ησξ /hhigh =
can be expressed as the following

( ) 2uSuhigh βαβξ += (14)

where the random variable σ/0hu =  has Rayleigh distribution. As

consequence the probability of exceedance of the absolute maximum
(crest) is:

( )































+−−=>

2

2

4
11

8

1
exp

β

ξα

α
ξξ highP (15)

valid for ∞→ξ .

Conditions to have a wave profile

The quasi-deterministic structure defined by Eq. (1) is a wave group as
long as at the location X=0 the time profile is a wave. Following
Boccotti (2000) we shall assume that the autocovariance function,
defined as

ωωω dTST )cos()()(

0
∫
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=Ψ , (16)

is monotonic decreasing in [0,T*], where T* is the first absolute
minimum of )(TΨ . This implies that the linear solution

),0( TXL =η  has a local maximum at T=0 and a local minimum at

T=T* which are respectively the crest and the trough of a wave. For
weakly non-linear effects the latter abscissas T=0 and T=T* are also
respectively the abscissas of local maximum and local minimum of the

non-linear surface ),0( TX =η  as long as the two following

conditions hold
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which are sufficient conditions to have respectively a local maximum at
T=0 and a local minimum at T= T*. The first condition in (17) gives the
following inequality
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which is satisfied with probability 1 for any spectrum and wave height

h0 (Let us observe that dimensionless spectrum wwS ∀≥ 0)(
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The second condition in (17) imposes the following inequality instead
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Let us observe that for typical wind wave spectra πωπ << *2/ Tp

and ( ) 0<Sτ . In this case condition (19) is not satisfied if
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Because σ0hu =  is a random variable with Rayleigh distribution,

the probability failure can be evaluated as
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P(S) can be interpreted as the fraction of the realizations of the non-linear
stochastic process in which there is no local minimum at T=T*. This
probability failure is less or equal to an assigned value P if the steepness

pε  is less than the threshold ( )
limpε defined as
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For the case of narrow band spectrum ( )
limpε  is equal to 0.1345 for

P=1/1000 in agreement with Arena & Fedele (2002). As the spectrum
gets broader the latter upper bound reduces in order to avoid distortion
of the non-linear wave profile. Indeed small steepness is required to
have a non-linear profile smoothly varying like the linear profile.

The rectangular spectrum

In this section we shall specialize to the case of rectangular spectra. The
following spectral form is considered

maxmin
minmax
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with 1,01 maxmin ≥≥≥ ww  (where the dimensionless frequency

pw ωω /≡ , being now pω  the mean frequency

( ) 2/maxmin ωωω +≡m ). The parameter α  can be evaluated

explicitly by solving analytically the double integral in eq. (11),
obtaining the following expression
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Let us observe first that for narrow-band spectrum
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in agreement with the narrow-band probability of exceedance (see, for
example, Arena & Fedele 2002).

APPLICATION

In order to validate formula (15) for the probability of exceedance of
the non-linear crest we have used Monte Carlo method: by using eq. (7)
to generate the realizations of a non-Gaussian sea state, we have
performed four simulations (30000 waves for each simulation). In
figure 1-2 the plots of the theoretical curves evaluated using the
analytical expression (7) are compared to the probabilities of
exceedance derived from the Monte Carlo simulations along with the
corresponding narrow-band curves, centered at the mean frequency

mω . The spectral parameters used are 25.1,75.0 maxmin == ww  with

two different values of the steepness pε  (0.055 and 0.021).

In fig. 3-4 other plots relative to spectra with parameters
50.1,50.0 maxmin == ww  and pε  equal to either 055.0  or 0.021.

The probabilities derived from the simulation agree well with the
analytical probabilities. Moreover the non-linear effects for the finite-
band spectrum are smaller than for narrow-band case, which means that

∞< αα .

CONCLUSIONS

A new analytical expression for the probability of exceedance of crest
in a non-Gaussian sea state has been derived based on the theory of

quasi-determinism of Boccotti (1981-2000). The new proposed formula
considers second order non-linearities due to the finite bandwidth of the
spectrum. Monte Carlo simulations of sea states with rectangular
spectra have been performed and they agree well with the analytical
probabilities.

APPENDIX

In order to solve problem (8) let us apply a perturbation approach. The
assigned height h is expanded as

...........210 +++= hhhh (A1)

where 0h , 1h , 2h , … are unknown parameters to be determined. We

assume that σ∝0h , 2
1 σ∝h , …, 1+∝ n

nh σ ,..., where σ  is the

standard deviation of the surface displacement. From the general
solution (7)   the two following equations are derived
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where nnnn txk εωϑ +−= 00 . Because we assume σ∝na , only the

first two terms in the h expansion are non zero. All the terms higher
than the second order vanish. To the first order, Equations (A2-A3)
give respectively
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The second equation in (A4) is satisfied if nn ∀= 0ϑ  whatever are

the values of the coefficients { } ℵ∈nna .  The latter solution is not

unique. There exist other solutions with non zero phases 
nϑ .

Physically the condition nn ∀= 0ϑ  can be interpreted as linear

focusing. In fact the first equation gives
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which is the highest value that 0h  can reach for an assigned spectrum.

Therefore the condition nn ∀= 0ϑ  implies that an absolute

maximum is reached at a fixed point oxx =  at time instant ott =  by

the first order solution. From Boccotti’s theory if a very large crest
height 0h  occurs at a fixed point oxx =  at time instant ott = , the

free surface displacement [Eq. (6)] in discrete form is given by
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To the second order, Equations (A2-A3) give
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because nn ∀= 0ϑ , the second equation is satisfied while the first

condition becomes of the form
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By considering Eq. (A11), that is ωωσ d)(/ 2
0 nn Sha = , we obtain, in

continuous form
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Finally, we have that, if a very large crest height occurs, the second order

height may be written as:
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More in general, the second order free surface displacement, when a very
high crest occurs at time instant to at point ox , is given by:
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