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In this study we compute numerical traveling wave solutions to a compact version of the Zakharov equation

for unidirectional deep-water waves recently derived by Dyachenko & Zakharov [7]. Furthermore, by means of

an accurate Fourier-type spectral scheme we find that solitary waves appear to collide elastically, suggesting

the integrability of the Zakharov equation.

1. INTRODUCTION

In water waves theory, the Euler equations describe

the irrotational flow of an ideal incompressible fluid

of infinite depth with a free surface. Their symplec-

tic formulation was discovered by [20] in terms of the

free-surface elevation η(x, t) and the velocity potential

ϕ(x, t) = φ(x, z = η(x, t), t) evaluated at the free sur-

face of the fluid. Here, η(x, t) and ϕ(x, t) are conju-

gated canonical variables with respect to the Hamilto-

nian H given by the total wave energy. It is well known

that the Euler equations are completely integrable in

several important limiting cases. For example, in a

two-dimensional (2-D) ideal fluid, unidirectional weakly

nonlinear narrowband wave trains are governed by the

Nonlinear Schrödinger (NLS) equation, which is inte-

grable [23]. Integrability also holds for certain equations

that models long waves in shallow waters, in particular

the Korteweg–de Vries (KdV) equation (see, for exam-

ple, [1, 2, 5, 18]) or the Camassa–Holm (CH) equation

[4]. For these equations, the associated Lax-pairs have

been discovered and the Inverse Scattering Transform

[1, 2, 5, 18] unveiled the dynamics of solitons, which

elastically interact under the invariance of an infinite

number of time-conserving quantities.

An important limiting case of the Euler equations

for an ideal free-surface flow was formulated by Za-

kharov [20, 21]. By expanding the Hamiltonian H up

to third order in the wave steepness, he derived an

integro-differential equation in terms of canonical con-

jugate Fourier amplitudes, which has no restrictions on

the spectral bandwidth. To derive the Zakharov (Z)

equation, fast non-resonant interactions are eliminated

via a canonical transformation that preserves the Hamil-

tonian structure [14, 21]. The integrability of the Z
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equation is still an open question, but the fully non-

linear Euler equations are non-integrable [6]. Indeed,

non-integrability can be easily proven by considering the

terms of the perturbation series of the Hamiltonian in

powers of the wave steepness limited on their resonant

manifolds. Integrability does not hold if at least one of

these amplitudes is nonzero. In this regard, [6] conjec-

tured that the Z equation for unidirectional water waves

(2-D) is integrable since the nonlinear fourth-order term

of the Hamiltonian vanishes on the resonant manifold

leaving only trivial wave-wave interactions, which just

cause nonlinear frequency shifts of the Fourier ampli-

tudes. Recently, Dyachenko & Zakharov realized that

such trivial resonant quartet-interactions can be further

removed by a canonical transformation [7]. This drasti-

cally simplifies the Z equation to the compact form

ibt = Ωb+
i

8

(

b∗(b2x)x −
(

b∗x(b
2)x

)

x

)

−
1

4

[

bK{|bx|
2} −

(

bxK{|b|2}
)

x

]

, (1)

where the canonical variable b scales with the wave sur-

face η as b ∼
√

2g
ω0

η and the subscripts t and x denote

partial derivatives with respect to space and time, re-

spectively. The symbols of the pseudo-differential op-

erators Ω and K are given, respectively, by
√

g|k| and
|k|, where k is the Fourier transform parameter. In this

study, we wish to explore (1), hereafter referred to as

cDZ, for a numerical investigation of special solutions

in the form of solitary waves. This Letter is structured

as follows. We first derive the envelope equation asso-

ciated to cDZ. Then, ground states and traveling waves

are numerically computed by means of the Petviashvili

method [15, 19]. Finally, their nonlinear interactions

are discussed.
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2. ENVELOPE EQUATION

Consider the following ansatz for wave trains in deep

water

b(X,T ) = ε

√

2g

ω0
a0B(X,T )ei(X−T ), (2)

where B is the envelope of the carrier wave ei(X−T ), and

X = εk0(x − cgt), T = ε2ω0t, with k0 = ω0

g
and ω0 as

characteristic wavenumber and frequencies. The small

parameter ε = k0a0 is a characteristic wave steepness

and cg is the wave group velocity in deep water. Using

ansatz (2), the cDZ equation (1) reduces to the envelope

form

iBT = ΩεB −
ε

2

[

BK{|SB|2} − S
(

SBK{|B|2}
)

]

+
i

4

(

B∗S((SB)2) + iB∗(SB)2 − 2S
(

B|SB|2
))

, (3)

where S = ε∂X + i. The approximate dispersion opera-

tor Ωε is defined as follows

Ωε :=
1

8
∂XX +

i

16
ε∂XXX −

5

128
ε2∂XXXX +O(ε3),

where o(ε3) dispersion terms are neglected. Equation

(3) admits three invariants, viz. the action A, momen-

tum M and the Hamiltonian H given, respectively, by

A =

∫

R

B∗B dx, M =

∫

R

i
(

B∗SB −B(SB)∗
)

dx,

and

H =

∫

R

[

B∗ΩεB +
i

4
|SB|2[B(SB)∗ −B∗SB]

−
ε

2
|SB|2K(|B|2)

]

dx.

If we expand the operator S in terms of ε, (3) can

be written in the form of the generalized derivative NLS

equation

iBT = ΩεB + |B|2B − 3iε|B|2BX

−
ε

2
BK{|B|2}+ ε2N2(B) + ε3N3(B) = 0,

where

N2(B) = −
3

2
B∗(BX)2 +B|BX |2 − |B|2BXX+

1

2
B2B∗

XX +
i

2

(

BK|B|2
)

X
+

i

2

[

BK(B∗BX −BB∗
X) +BXK|B|2

]

,

and

N3(B) = −
i

2
|BX |2BX +

i

2
BXX(B∗BX −BB∗

X)

−
1

2
BBXB∗

XX −
1

2

[

BK|BX |2 −
(

BXK|B|2
)

X

]

.

To leading order the NLS equation is recovered, and

keeping terms up to O(ε) yields a Hamiltonian version

of the Dysthe equation [9], viz.

iBT =
(1

8
∂XX +

iε

16
∂XXX

)

B + |B|2B

− 3iε|B|2BX −
1

2
εBK|B|2, (4)

hereafter referred to as cDZ-Dysthe (see also [13]). Note

that the original temporal Dysthe equation [9] is not

Hamiltonian since expressed in terms of multiscale vari-

ables, which are usually non canonical (see, for example,

[10]).

3. GROUND STATES AND TRAVELLING

WAVES

Consider the envelope cDZ equation (3). We con-

struct numerically ground states and traveling waves

(TW) of the form B(X,T ) = F (X − cT )e−iωT , where

c and ω are generic parameters and the function F (·)
is in general complex. After substituting this ansatz in

(3) we obtain the following nonlinear steady equation

(in the moving frame X − cT )

LF = N (F ),

where L = ω − ic − Ωε and N (F ) denotes the nonlin-

ear part of the right-hand side of (3). This equation is

solved using the Petviashvili method [15, 19], which has

been successfully applied in deriving TWs of the spatial

version of the Dysthe equation [10]. Without loosing

generality, hereafter we just consider the leading term

of the dispersion operator, viz. Ωε = 1
8∂xx, since the

soliton shape is only marginally sensitive to the higher

order dispersion terms (see [11] for more details). The

dependence of the invariant A on the frequency ω is

shown on Figure 1 for different values of the propagation

speed c = 0, 0.1 and 0.2, respectively. In the same Fig-

ure we also report the action A of solitary waves of the

cDZ-Dysthe equation (4), which shows a similar quali-

tative behaviour as that of cDZ. The monotonic increase

of A with ω indicates that ground states are stable in

agreement with the Vakhitov–Kolokolov criterion [17],

since dA
dω > 0 (see also [22, 19]). This conclusion is also

confirmed by direct numerical simulations of the evo-

lution of ground states under the cDZ dynamics using
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Figure 1. Action A dependence on the frequency ω for

ε = 0.2 and several values of the propagation speed:

c = 0, 0.1 and 0.2.

a highly-accurate Fourier-type spectral scheme [3, 16],

see also [10]. In particular, to improve the stability of

the time marching scheme, we employ the integrating

factor technique [12], and the resulting system of ODEs

is discretized in space by the Verner’s embedded adap-

tive 9(8) Runge–Kutta scheme. In all the performed

simulations the accuracy has been checked by following

the evolution of the invariants A, M and H. From a

numerical point of view the cDZ equation becomes grad-

ually stiffer as the steepness parameter ε increases. As

a consequence, the number of Fourier modes was always

chosen to ensure the conservation of the invariants close

to ∼ 10−13.

We also investigate the interaction of smooth trav-

eling waves under the cDZ dynamics (3) using the de-

veloped Fourier-type pseudo-spectral method. Consider

the interaction of a system of four travelling wave solu-

tions under the cDZ equation dynamics for ε = 0.10,

where a solitary wave (ω = 0.20, c = 0.30) travels

through an array of three equally spaced ground states

(ω = 0.05, c = 0). Figure 2 shows the evolution of

the system in time. One can see how the solitary wave

passes through the ground states without altering its

shape, but with a slight phase shift. The interaction

appears elastic as clearly seen in Figure 3 (see also the

zoomed detail in the left upper corner). This suggests

the integrability of the cDZ equation (3) in agreement

with the recent results of Dyachenko et al. [8]. We

also perform a similar numerical experiment for the as-

sociated Hamiltonian version of the Dysthe equation,

viz. (4). Namely, the numerical set-up consists of two

counter-propagating solitary waves (ε = 0.1, ω = 0.20

and c = ±0.20), which encounter two ground states

X

Figure 2. Elastic collision of four solitary waves under

the cDZ dynamics (ε = 0.10).
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Figure 3. Initial shape (1) and after the collision (2)

of a travelling wave (ω = 0.20, c = 0.30, ε = 0.1) with

three equally spaced ground states (ω = 0.05, c = 0,

ε = 0.1).

(c = 0) along their paths. The space-time plot of the

envelope evolution is shown on Figure 4, and in Figure

5 one can observe that the collision is inelastic.

X

Figure 4. Solitary waves collision under the cDZ-Dysthe

dynamics (ε = 0.10).
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Figure 5. Inelastic collision of four solitary waves under

the cDZ-Dysthe dynamics (ε = 0.10).

4. CONCLUSIONS

Special travelling wave solutions of the cDZ equation

derived by Dyachenko & Zakharov [7] are numerically

constructed using the Petviashvili method. The stabil-

ity of ground states agrees with the Vakhitov-Kolokolov

criterion [17]. Furthermore, by means of an accurate

Fourier-type pseudo-spectral scheme, it is shown that

solitary waves appear to collide elastically, suggesting

the integrability of the cDZ equation, but not that of

the associated Hamiltonian Dysthe equation.
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