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ABSTRACT  

We propose a novel Variational Wave Acquisition Stereo System (VWASS) that 
exploits new stereo reconstruction techniques for accurate estimates of the space-time 
dynamics of oceanic sea states.  The rich information content of the acquired three-
dimensional video data is used to make predictions on directional spectra and large 
waves over an area. To do so, we present a new statistical analysis based on the Euler 
Characteristic of excursion sets of random fields. The broader impact of these results 
for oceanic applications is finally discussed. 

 

1 INTRODUCTION  

The prediction of large waves is typically based on the statistical analysis of time 
series of the wave surface displacement retrieved from wave gauges, ultrasonic 
instruments or buoys at a fixed point P of the ocean.  However, the largest wave crest 
predicted in time at P underestimates the highest crest expected over the area nearby P. 
Indeed, large waves travel on top of wave groups, and the probability that the group 
passes at its apex through P is practically null. The large crest height recorded in time at 
P is simply due to the dynamical effects of a group that focuses nearby that location 
forming a larger wave crest. Can we predict the largest wave expected over a given 
area?  

In this paper, we address this question by proposing a novel variational Wave 
Acquisition Stereo System (VWASS) for the reconstruction of the water surface of 
oceanic sea states. The rich information content of the acquired three-dimensional video 
data is exploited to compute reliable estimates of the expected global maximum (largest 
crest height) over an area using the Euler Characteristic of random excursion sets (Adler 
1981, Taylor & Adler 2007). The paper is structured as follows. We first discuss the 
mathematical formulation of VWASS and how it is used in applications. We then 
introduce Euler Characteristics (EC) of the excursion sets (Adler 1981)  
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of a two dimensional (2D) random field η, and its relation to the expected number of 
maxima and h-upcrossings over an area S . We then analyze the EC of the excursion 
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sets of the spatial snapshots η of oceanic sea states acquired via VWASS. We present 
new estimates from video data of both directional wave spectra and empirical 
exceedance probabilities of the global maximum of η over S. The broader impact of 
these results to oceanic applications is finally discussed.    
 

2 THE STEREO VARIATIONAL GEOMETRIC METHOD   

The reconstruction of the wave surface from stereo pairs of ocean wave images is a 
classical problem in computer vision commonly known as the correspondence problem 
(Ma et al. 2004). Its solution is based on epipolar geometry techniques that find 
corresponding points in the two images, from which one obtains the estimate of the real 
point in the three dimensional terrestrial coordinate system. The Wave Acquisition 
Stereo System (WASS) developed by Benetazzo (2006) utilizes the ‘epipolar algorithm’ 
for the space-time reconstruction of the sea surface. However, this approach may fail to 
provide a smooth surface reconstruction because of “holes” corresponding to 
unmatched image regions (Ma et al. 2004, Benetazzo 2006). For example, this can 
occur when, at a given point on the water surface, the same amount of light is received 
from all possible directions and reflected towards the observer causing a visual blurring 
of the specularities of the water. This is typical of cloudy days, and the water surface is 
said to support a Lambertian radiance function (Ma et al. 2004). We address this 
problem by proposing a novel formulation of WASS based on variational principles 
(VWASS). Under the assumptions of a Lambertian surface, following the seminal work 
by (Faugeras et al. 1998), the 3-D reconstruction of the water surface is obtained in the 
context of active surfaces by evolving an initial surface through a PDE derived from the 
gradient descent flow of a cost functional designed for the stereo reconstruction 
problem. 

To be more specific, the energy being maximized is the normalized cross correlation 
between the image intensities obtained by projecting the same water surface patch onto 
both image planes of the cameras. It is clear that such energy depends on the shape of 
the water surface. Therefore, the active surface establishes an evolving correspondence 
between the pixels in both images. Hence, the correspondence will be obtained by 
evolving a surface in 3-D instead of just performing image-to-image intensity 
comparisons without an explicit 3-D model of the target surface being reconstructed. 

To infer the shape of the water surface ),( yxη  at the location (x,y) over an area S, 
we set up a cost functional on the discrepancy between the projection of the model 
surface and the image measurements. As previously announced, such cost is based on a 
cross correlation measure between image intensities, which will be noted as Edata(η). We 
conjecture that, to have a well-posed problem, a regularization term that imposes a 
geometric prior must also be included, Egeom(η). We consider the cost functional to be 
the (weighted) sum: 

E(η) = Edata(η) + Egeom(η).                                               (2) 
In particular, the geometric term favors surfaces of least area:  

Egeom(η) = .                                                      (3) ∫ηdA

The data fidelity term may be expressed as  
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where η is the wave surface region within the field of views of both cameras, and  
21, II  is the cross-correlation between the image intensities I1 and I2 .  

To find the surface η that minimizes E, we start from an initial estimate of the 
surface at time t = 0, η0, and set up a gradient flow based on the first variation of E that 
will make the surface evolve towards a minimizer of E, hopefully converging to the 
desired water surface shape. 

Based on the theorem in (Faugeras et al. 1998) that says that for a function : R3 ´ 
R3→R+ and the energy  

Φ
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where N is the unit normal to η at X, the flow that minimizes E is given by the evolution 
PDE 

Nt β=η ,                                                           (6) 
where  is the derivative of η with respect to a fictitious time variable and the speed β 
in the normal direction to the surface that drives the evolution is 

tη
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All quantities are evaluated at the point η =X with normal N to the surface. H denotes 
the mean curvature.  are the first-order derivatives of NX ΦΦ , Φ , while NNXN ΦΦ ,  are 
the second-order derivatives. dN  is the differential of the Gauss map of the surface 
and means “restriction to the tangent plane Tη to the surface at η=X”. Note that our 

proposed energy (2) can be expressed in the form of (5) if 
ηT(·)
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= 1 ,                              
where α is just a weight for the geometric prior. In practice, we use the flow based on 
the first-order derivatives of  because it provides similar results to those of the 
complete expression, but saves a significant amount of computations, 

Φ

( NNNH XNt ·)·(2 Φ−Φ−Φ=η .                                       (8) 

The level set framework has been adopted to numerically implement (8). For the 
technical description of the variational stereo algorithm implementation we refer to 
Gallego et al. (2008). We have tested the variational reconstruction algorithm using a 
set of images, shown in Fig. 1, acquired by Benetazzo (2006) on a water depth of 8 
meters. Fig. 2 shows the successful reconstructed surface and the associated directional 
wave spectrum. Hereafter, we introduce the concept of the Euler characteristic (EC) that 
will be applied to predict the expected number of large maxima in oceanic sea states 
exploiting the high statistical content of the acquired video data via VWASS.  

3 EULER CHARACTERISTIC  OF RANDOM EXCURSION SETS 

In algebraic topology, the Euler characteristic EC is classically defined for 
polyhedra according to the formula  

FEVEC +−= ,                                                          (9) 
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where V, E, and F are respectively the numbers of vertices, edges and faces in the given 
polyhedron. The same definition given in (9) can be adapted to 2D surfaces which are 
the focus of this paper. In this case, the EC is also equivalent to the difference between 
the number connected components (CC) and holes (H) of the given set, viz.   

#H.-#CCEC =                                                       (10) 

  
Figure 1: Input stereo pair images to the algorithm. The rectangular domain (8 m x 8.7 m) of the 
reconstructed surface or elevation map (right column) has been superimposed. The height of the 
waves is in the range ±0.2 cm. 
 
 

 
Figure 2: (left) Reconstructed normalized wave surface η via VWASS; (right) estimate 
directional wave spectrum of η. 
 
For a generic 2D set Σ with complicated regions, computing the EC from the definition 
(10) presents some challenges. A computationally efficient approach can be devised 
based on (9). Following Adler (1981), we first define a Cartesian mesh grid Г of size 
(Δx, Δy) that approximates the complicated domain of the given set Σ. The EC(Г) is 
then computed as follows. Denote F as the number of squares (faces) composing Г, Eh 
(Ev) as the number of horizontal (vertical) segments between two neighboring mesh 
points and V the number of grid points. The EC(Г) then follows from (9) setting E= Eh + 
Ev. As the grid cell size ΔxΔy tends to zero, EC(Г)  EC(Σ).  For example, for a square 
EC=4-4+1=1 according to (9), which is in agreement with (10) since there is only 1 
connected component and no holes.  

In general, the EC of an excursion set depends very strongly on the threshold. If 
this is low, then EC counts the number of holes in the given set. If the threshold is high, 
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then all the holes tend to disappear and the EC counts the number of connected 
components, or local maxima of the random field. For a stationary Gaussian field η, an 
exact formula for the expected value of EC, valid for any threshold, was discovered by 
Adler (1981). For 2D Gaussian fields defined over the region S  

( ) 2/2/12/3
,

2
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η ξπ= eAAEC Sh Λ ,                                     (11) 

where )(•  means expectation, σ=ξ /h  is the normalized threshold amplitude, σ is the 
standard deviation of η,  is the area of region S, and  is the covariance matrix of 
the gradient .  If the excursion set touches the boundary of the area S, correction 
terms need to be added (Worsley 1995), but hereafter these will be neglected without 
loosing accuracy in the final results. Why the EC of random excursion sets is relevant to 
oceanic applications?  

SA Λ
η∇

Adler (1981) and Adler & Taylor (2007) have shown that the probability that the global 
maximum of a random field η exceeds a threshold h is well approximated by the 
expected EC of the excursion set , provided the threshold is high. Indeed, as the 
threshold h increases, the holes in the excursion set  disappear until each of its 
connected components includes just one local maximum, and the EC counts the number 
of local maxima. For very large thresholds, the EC equals 1 if the global maximum 
exceeds the threshold and 0 if it is below. Thus, the  of large excursion sets is 
a binary random variable with states 0 and 1, and for h>>1 
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Piterbarg (1995) also derived (12) by studying large Gaussian maxima over infinite 
areas. If η represents realizations of oceanic sea states at fixed time (snapshots), then the 
global maximum of η is the largest wave crest expected over the area S. Thus, (12) 
provides the basis for accurate estimates of exceedance probabilities of large waves by 
means of the EC of excursion sets of video images retrieved via VWASS (see Fig. 2).  
A consequence of (12) is that, for h>>1 

,)()( ,max hAEChEX η≈                                                   (13) 

that is, the expected number  of large local maxima equals that of the EC of 
large excursion sets. 

maxEX

 

3.2 UPCROSSINGS AND MAXIMA OF RANDOM FIELDS 

Note that for one-dimensional (1D) random processes, the EC of excursion sets 
counts the number of upcrossings. Thus, (13) simply states that the expected number of 
large maxima equals that of large h-upcrossings, implying the well known one-to-one 
correspondence between h-upcrossings and maxima at large thresholds. For two 
dimensional (2D) random fields this correspondence does not hold since upcrossings are 
contour levels. However, the definition of a 2D upcrossing is somehow vague. Can we 
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define an appropriate 2D h-upcrossing for random fields so that the correspondence 
with large maxima is also one-to-one?   

The answer to this question follows from the seminal work of Adler (1976) on 
generalizing upcrossings to higher dimensions. Without loosing generality, consider the 
Gaussian field η on a cartesian coordinate system (t,s) so that the covariance matrix  
of  is diagonal with spectral moments mtt and mss, mtt > mss, and 

Λ
η∇ ssttmm=Λ . Note 

that the t-axis is along the principal direction θ  (with respect to the original x axis) 
where the second spectral moment along θ  attains its maximum. The partial derivatives 
η∂ t  and η∂ s  of η are thus uncorrelated and stochastically independent. With this 

setting in mind, a 2D h-upcrossing occurs at a point SP∈  if  i) a 1D h-upcrossing 
occurs along  t ( 0, >∂= ηη th

0
 at P)  and  ii) η attains a 1D local maximum along s, 

i.e. η is convex along s ( 0, <∂=∂ ηη sss  at P). Note that the extra condition (ii) is 
necessary to guaranty that, locally at P, η is a rising function. Further, this definition 
does not depend on the particular choice of the coordinate axes, and for large thresholds 
each 2D upcrossing corresponds uniquely to a large local maximum of η.  Indeed, 
following Rice logic (Adler 1981), the expected number of 2D h-upcrossings is 
given by the following generalized Rice formula 
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where  is the joint probability density function (pdf) of ( )•p η∂η∂η∂η ssst ,,, . For an 
exact solution of (14) we refer to Adler (1981). Instead, an asymptotic solution for h>>1 
can be derived as follows. By Gaussianity, η∂ t  and  are independent of each other 
and from 

η∂s

η∂ ss  andη . This implies that    
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The first integral on the left is equal to π2/ttm , and the term within square brackets 
equals the expected number, per unit length along s, of 1D local maxima with amplitude 
h. This is given, for large h, by )2/exp(2/ 2ξ−ξπssm , with σ=ξ /h  the 

dimensionless threshold. Noting that ssttmm=Λ  is invariant by any axes rotation, we 
conclude that in general  of (15) equals of (11). Thus, for h>>1,  )(hEX+ )( η,hAEC

).()()( ,max hAEChEXhEX η+ ≈≈                                            (16) 

 This proves the existence of a one-to-one correspondence between 2D upcrossings and 
large maxima as in 1D processes. Taylor’s result (11) is thus relevant for applications 
because large upcrossings or maxima of random fields can be counted by simply 
estimating the Euler characteristic of excursion sets.   
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4 EULER CHARACTERISTICS  OF OCEANIC SEA STATES 

In the following we extend (11) to deal with the expected EC of excursion sets of 
spatial snapshots of oceanic sea states measured via VWASS (see fig. 2). To properly 
model oceanic nonlinearities (Fedele 2008), we follow Tayfun (1986) and define the 
wave surface  over S as  nlη

( )22 ˆ
2

η−η
μ

+η=ηnl ,                                                    (17) 

where  is the wave steepness, which relates to the skewness 3/3λ=μ 3λ  of , and 
 is the Hilbert transform of a normalized Gaussian field 

nlη

η̂ η .  For ξ>>1, the excursion 
regions where ξ≥ηnl  include just isolated local maxima. So, the structure of the 
excursion set can be related to the surface field locally to a maximum of  with 
amplitude greater or equal to . Assume that this occurs at t = t0 and s = s0. Then the 
wave surface locally around that maximum is described by the nonlinear conditional 
process 

nlη
ξ

{ }ξ≥ηη=η ),(),( 00 stst nlnlnc .                                            (18) 

From (17) it is clear that the nonlinear quadratic component of  nlη  is phase-coupled to 
the extremes of the Gaussian η . So, a large maximum of nlη  greater or equal to  
occurs simultaneously when  itself is at a large maximum with an amplitude greater 
or equal to, y 1

ξ
η

sa ξ .  Thus, the conditional process (18) is equivalent to the simpler 
process (Tayfun & Fedele 2007) 

{ } ( ) 1ˆ
2

),(),( 1
222

11100 >>ξΨ−Ψξ
μ

+Ψξ=ξ≥ηη=η forststnlnc ,            (19) 

where  is the normalized covariance of η. From (19), the large maximum of  

occurs at t = t0 and s = s0, where 

),( stΨ nlη

1=Ψ  and , with amplitude  .   
Thus, the expected EC of the excursion set 
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excursion set  of . By a variable transformation, from (11) it follows that }1ξ≥η{ η
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Fig. 4 plots the observed EC and the expected EC (Gaussian & non-Gaussian) against 
the threshold h for the oceanic video data collected via VWASS. The data agree with 
the theoretical model (20).  
 

5 CONCLUSIONS 

We have proposed a novel variational image sensor (VWASS) for the stereo 
reconstruction of wave surfaces. The rich information content of the acquired three-
dimensional video data is then exploited to compute reliable estimates the largest crest 
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height over an area using the Euler Characteristic of random excursion sets. They 
provide a new statistical method for more accurate predictions of large waves during 
storms.  
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Figure 4. Observed EC and the expected EC against the threshold, as for the oceanic video data 
collected via VWASS shown in Fig. 2. 
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