Euler Characteristics and Maxima of Oceanic Sea States

Francesco Fedele ${ }^{1}$, Guillermo Gallego ${ }^{2}$, Alvise Benetazzo ${ }^{3}$, Anthony Yezzi ${ }^{2}$, and Mehmet A. Tayfun ${ }^{4}$
${ }^{1}$ School of Civil and Environmental Engineering, Georgia Institute of Technology, Savannah campus, USA
${ }^{2}$ School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta campus, USA
${ }^{3}$ Protecno S.r.l, Padua ITALY
${ }^{4}$ College of Engineering, Kuwait University, Kuwait

Abstract

We propose a novel Variational Wave Acquisition Stereo System (VWASS) that exploits new stereo reconstruction techniques for accurate estimates of the space-time dynamics of oceanic sea states. The rich information content of the acquired three-dimensional video data is exploited to make predictions on directional spectra and large waves over an area. These are based on a new statistical analysis that stems from the theory of Euler Characteristics of random fields. The broader impact of these results for oceanic applications is finally discussed.

1 Introduction

The prediction of large waves is typically based on the statistical analysis of time series of the wave surface displacement retrieved from wave gauges, ultrasonic instruments or buoys at a fixed point P of the ocean. However, the largest wave crest predicted in time at P underestimates the highest crest expected over the nearby area. Indeed, large waves travel on top of wave groups, and the probability that the group passes at its apex through P is practically null. The large crest height recorded in time at P is simply due to a group that focuses nearby that location forming a larger wave crest. Can we predict the largest wave expected over a given area?

In this paper, we address this question by proposing a novel variational Wave Acquisition Stereo System (VWASS) for the reconstruction of the water surface of oceanic sea states. The rich information content of the acquired threedimensional video data is exploited to obtain reliable estimates of the expected global maximum (largest crest height) over an area using the Euler Characteristic (EC) of random excursion sets (Adler 1981, Adler \& Taylor 2007). The paper is structured as follows. We first discuss the mathematical formulation of VWASS and introduce the EC of excursion sets (Adler 1981)

$$
\begin{equation*}
A_{\eta, h}=\{(x, y) \in S: \eta(x, y)>h\} \tag{1}
\end{equation*}
$$

of a two dimensional (2D) random field η defined over an area S. The EC of $A_{\eta, h}$ is then related to the expected number of maxima and h-upcrossings over S. We then analyze the EC of the excursion sets of the spatial snapshots η of oceanic sea states acquired via VWASS. We present new estimates from video data of both directional wave spectra and empirical exceedance probabilities of the global maximum of η over S. Both spectra and wave statistics of large waves over an area are of relevant significance in the offshore industry. In particular, the expectation of high waves over relatively small areas has important implications for a proper design of the air gap under the deck of fixed offshore structures. Localized damages have sometimes been observed on the lower decks of platforms after storms. This may be due to a design that is based on the expected largest crest height at a fixed location nearby the offshore tower that underestimates the expected global maximum, i.e. the largest crest height over the offshore area. The broader impact of these results to oceanic applications is finally discussed.

2 The Stereo Variational Geometric Method

The reconstruction of the wave surface from stereo pairs of ocean wave images is a classical problem in computer vision commonly known as the correspondence problem (Ma et al. 2004). Its solution is based on epipolar geometry techniques that find corresponding points in the two images, from which one obtains the estimate of the real point in the three dimensional terrestrial coordinate system. The Wave Acquisition Stereo System (WASS) developed by Benetazzo (2006) utilizes the "epipolar algorithm" for the space-time reconstruction of the sea surface. However, this approach may fail to provide a smooth surface reconstruction be cause of "holes" corresponding to unmatched image regions (Ma et al. 2004, Benetazzo 2006). For example, this can occur when, at a given point on the water surface, the same amount of light is received from all possible directions and reflected towards the observer causing a visual blurring of the specularities of the water. This is typical of cloudy days, and the water surface is said to support a Lambertian radiance function (Ma et al. 2004). We address this problem by proposing a novel formulation of WASS based on variational principles (VWASS). Under the assumptions of a Lambertian surface, following the seminal work by Faugeras \& Keriven (1998), the 3-D reconstruction of the water surface is obtained in the context of active surfaces by evolving an initial surface through a PDE derived from the gradient descent flow of a cost functional designed for the stereo reconstruction problem.

To be more specific, the energy being maximized is the normalized cross correlation between the image intensities obtained by projecting the same water surface patch onto both image planes of the cameras. It is clear that such energy depends on the shape of the water surface. Therefore, the active surface establishes an evolving correspondence between the pixels in both images. Hence, the correspondence will be obtained by evolving a surface in 3-D instead of just performing image-to-image intensity comparisons without an explicit 3-D model of the target surface being reconstructed.

To infer the shape of the water surface $\eta(x, y)$ at the location (x, y) over an area S, we set up a cost functional on the discrepancy between the projection of the model surface and the image measurements. As previously announced, such cost is based on a cross correlation measure between image intensities, which will be noted as $E_{\text {data }}(\eta)$. We conjecture that, to have a well-posed problem, a regularization term that imposes a geometric prior must also be included, $E_{\text {geom }}(\eta)$. We consider the cost functional to be the (weighted) sum:

$$
\begin{equation*}
E(\eta)=E_{\text {data }}(\eta)+E_{\text {geom }}(\eta) \tag{2}
\end{equation*}
$$

In particular, the geometric term favors surfaces of least area:

$$
\begin{equation*}
E_{\text {geom }}(\eta)=\int_{\eta} d A \tag{3}
\end{equation*}
$$

The data fidelity term may be expressed as

$$
\begin{equation*}
E_{\mathrm{data}}(\eta)=\int_{\eta}\left(1-\frac{\left\langle I_{1}, I_{2}\right\rangle}{\left|I_{1}\right|\left|I_{2}\right|}\right) d A \tag{4}
\end{equation*}
$$

where η is the wave surface region within the field of views of both cameras, and $\left\langle I_{1}, I_{2}\right\rangle$ is the cross-correlation between the image intensities I_{1} and I_{2}. To find the surface η that minimizes E, we start from an initial estimate of the surface at time $t=0, \eta_{0}$, and set up a gradient flow based on the first variation of E that will make the surface evolve towards a minimizer of E, hopefully converging to the desired water surface shape. Based on the theorem in Faugeras \& Keriven (1998) that says that for a function $\Phi: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}_{+}$and the energy

$$
\begin{equation*}
E=\int_{\eta} \Phi(\boldsymbol{X}, \boldsymbol{N}) d A \tag{5}
\end{equation*}
$$

where \boldsymbol{N} is the unit normal to η at \boldsymbol{X}, the flow that minimizes E is given by the evolution PDE

$$
\begin{equation*}
\eta_{t}=\beta \boldsymbol{N} \tag{6}
\end{equation*}
$$

where η_{t} is the derivative of η with respect to a fictitious time variable and the speed β in the normal direction to the surface that drives the evolution is

$$
\begin{equation*}
\beta=2 H\left(\Phi-\Phi_{\boldsymbol{N}} \cdot \boldsymbol{N}\right)-\Phi_{\boldsymbol{X}} \cdot \boldsymbol{N}-\operatorname{trace}\left(\left(\Phi_{\boldsymbol{X} \boldsymbol{N}}\right)_{T_{\eta}}+d \boldsymbol{N} \circ\left(\Phi_{\boldsymbol{N} \boldsymbol{N}}\right)_{T_{\eta}}\right) \tag{7}
\end{equation*}
$$

All quantities are evaluated at the point $\eta=\boldsymbol{X}$ with normal \boldsymbol{N} to the surface. H denotes the mean curvature. $\Phi_{\boldsymbol{X}}, \Phi_{\boldsymbol{N}}$ are the first-order derivatives of Φ, while $\Phi_{\boldsymbol{N X}}, \Phi_{\boldsymbol{N} \boldsymbol{N}}$ are the second-order derivatives. $d \boldsymbol{N}$ is the differential of the Gauss map of the surface and $(\cdot)_{T_{\eta}}$ means "restriction to the tangent plane T_{η} to the surface at $\eta=\boldsymbol{X}$ ". Note that our proposed energy (2) can be expressed in the form of (5) if $\Phi=\left(1-\left\langle I_{1}, I_{2}\right\rangle /\left(\left|I_{1}\right|\left|I_{2}\right|\right)\right)+\alpha$, where α is just a weight for the geometric prior. In practice, we use the flow based on the first-order derivatives of Φ because it provides similar results to those of the complete expression, but saves a significant amount of computations,

$$
\begin{equation*}
\eta_{t}=\left(2 H\left(\Phi-\Phi_{\boldsymbol{N}} \cdot \boldsymbol{N}\right)-\Phi_{\boldsymbol{X}} \cdot \boldsymbol{N}\right) \boldsymbol{N} \tag{8}
\end{equation*}
$$

Fig. 1. Input stereo pair images to the algorithm. The rectangular domain ($8 \mathrm{~m} \times 8.7$ m) of the reconstructed surface or elevation map (right column) has been superimposed. The height of the waves is in the range $\pm 0.2 \mathrm{~m}$.

Fig. 2. (left) Reconstructed normalized wave surface η via VWASS; (right) estimate directional wave spectrum of η.

The level set framework has been adopted to numerically implement (8). For the technical description of the variational stereo algorithm implementation we refer to Gallego et al. (2008). We have tested the variational reconstruction algorithm using a set of images, shown in Fig. 1, acquired by Benetazzo (2006) on a water depth of 8 meters. Fig. 2 shows the successful reconstructed surface and the associated directional wave spectrum. Hereafter, we introduce the concept of the Euler characteristic $(E C)$ that will be applied to predict the expected number of large maxima in oceanic sea states exploiting the high statistical content of the acquired video data via VWASS.

3 Euler Characteristic of Random Excursion Sets

In algebraic topology, the Euler characteristic $E C$ is classically defined for polyhedra according to the formula

$$
\begin{equation*}
E C=V-E+F \tag{9}
\end{equation*}
$$

where V, E, and F are respectively the numbers of vertices, edges and faces in the given polyhedron. The same definition given in (9) can be adapted to 2D surfaces which are the focus of this paper. In this case, the $E C$ is also equivalent to the difference between the number connected components (CC) and holes (H) of the given set, viz.

$$
\begin{equation*}
E C=\# C C-\# H \tag{10}
\end{equation*}
$$

For a generic 2 D set Σ with complicated regions, computing the $E C$ from the definition (10) presents some challenges. A computationally efficient approach can be devised based on (9). Following Adler (1981), we first define a Cartesian mesh grid Γ of size $(\Delta x, \Delta y)$ that approximates the complicated domain of the given set Σ. The $E C(\Gamma)$ is then computed as follows. Denote F as the number of squares (faces) composing $\Gamma, E_{h}\left(E_{v}\right)$ as the number of horizontal (vertical) segments between two neighboring mesh points and V the number of grid points. The $E C(\Gamma)$ then follows from (9) setting $E=E_{h}+E_{v}$. As the grid cell size $\Delta x \Delta y$ tends to zero, $E C(\Gamma) \rightarrow E C(\Sigma)$. For example, for a square $E C=4-4+1=1$ according to (9), which is in agreement with (10) since there is only 1 connected component and no holes.

As an example, consider the excursion set $A_{Z, z}$ of a normalized Gaussian field Z, i.e. the sub-region where Z exceeds the threshold z. The set $A_{Z, 1}$ is illustrated in Fig. 3. The mesh grid Γ approximating the set is also superimposed on $A_{Z, 1}$. In this case, $E C(\Gamma)=20$ since $A_{Z, 1}$ is mainly a collection of connected components in agreement with (10). In general, the $E C$ of an excursion set depends very strongly on the threshold. If this is low, then $E C$ counts the number of holes in the given set. If the threshold is high, then all the holes tend to disappear and the EC counts the number of connected components, or local maxima of the random field. For a stationary Gaussian field η, an exact formula for the expected value of $E C$, valid for any threshold, was discovered by Adler (1981). For 2D Gaussian fields defined over the region S

$$
\begin{equation*}
\overline{E C\left(A_{\eta, h}\right)}=A_{S}(2 \pi)^{-3 / 2} \sigma^{-2}|\Lambda|^{1 / 2} \xi e^{-\xi^{2} / 2} \tag{11}
\end{equation*}
$$

where $\overline{(\cdot)}$ means expectation, $\xi=h / \sigma$ is the normalized threshold amplitude, σ is the standard deviation of η, A_{S} is the area of region S, Λ is the covariance matrix of the gradient $\nabla \eta$, and $A_{\eta, h}$ is the excursion set defined in (1). If this set touches the boundary of the area S, correction terms need to be added (Worsley 1995), but hereafter these will be neglected without loosing accuracy in the final results. Why the EC of random excursion sets is relevant to oceanic applications?

Previous works (Adler 1981, Adler \& Taylor 2007) have shown that the probability that the global maximum of a random field η exceeds a threshold h is

Fig. 3. Excursion set at $z=1$ of a Gaussian field Z with mean zero and unit variance and superimposed mesh grid Γ which approximates $A_{Z, 1}$.
well approximated by the expected $E C$ of the excursion set $A_{\eta, h}$, provided the threshold is high. Indeed, as the threshold h increases, the holes in the excursion set disappear until each of its connected components includes just one local maximum, and the $E C$ counts the number of local maxima. For very large thresholds, the $E C$ equals 1 if the global maximum exceeds the threshold and 0 if it is below. Thus, the $E C\left(A_{\eta, h}\right)$ of large excursion sets is a binary random variable with states 0 and 1 . As $h \rightarrow \infty$,

$$
\begin{equation*}
\operatorname{Pr}\left(\max _{P \in S} \eta(P)>h\right)=\operatorname{Pr}\left(E C\left(A_{\eta, h}\right)=1\right)=\overline{E C\left(A_{\eta, h}\right)} . \tag{12}
\end{equation*}
$$

Piterbarg (1995) also derived (12) by studying large Gaussian maxima over an infinite area. If η represents realizations of oceanic sea states at fixed time (snapshots), then the global maximum of η is the largest wave crest expected over the area S. Thus, (12) provides the basis for accurate estimates of exceedance probabilities of large waves by means of the $E C$ of excursion sets of video images retrieved via VWASS (see Fig. 2). A consequence of (12) is that, for $h \gg 1$

$$
\begin{equation*}
E X_{\max }(h) \approx \overline{E C\left(A_{\eta, h}\right)} \tag{13}
\end{equation*}
$$

that is, the expected number $E X_{\text {max }}$ of large local maxima equals that of the $E C$ of large excursion sets.

3.1 Upcrossings and Maxima of Random Fields

Note that for one-dimensional (1D) random processes, the $E C$ of excursion sets counts the number of upcrossings. Thus, (13) simply states that the expected number of large maxima equals that of large h-upcrossings, implying the well known one-to-one correspondence between h-upcrossings and maxima at large thresholds. For 2D random fields this correspondence does not hold since upcrossings are contour levels. However, the definition of a 2 D upcrossing is somehow vague. Can we define an appropriate 2D h-upcrossing for random fields so that the correspondence with large maxima is also one-to-one?

The answer to this question follows from the seminal work of Adler (1976) on generalizing upcrossings to higher dimensions. Without loosing generality, consider the Gaussian field η on a Cartesian coordinate system (t, s) so that the covariance matrix Λ of $\nabla \eta$ is diagonal with spectral moments $m_{t t}$ and $m_{s s}$, $m_{t t}>m_{s s}$, and $|\Lambda|=m_{t t} m_{s s}$. Note that the t-axis is along the principal direction θ (with respect to the original x axis) where the second spectral moment along θ attains its maximum. The partial derivatives $\partial_{t} \eta$ and $\partial_{s} \eta$ of η are thus uncorrelated and stochastically independent. With this setting in mind, a 2D h-upcrossing occurs at a point $P \in S$ if i) a 1D h-upcrossing occurs along t $\left(\eta=h, \partial_{t} \eta>0\right.$ at $\left.P\right)$ and $\left.i i\right) \eta$ attains a 1D local maximum along s, i.e. η is convex along $s\left(\partial_{s} \eta=0, \partial_{s s} \eta<0\right.$ at $\left.P\right)$. Note that the extra condition (ii) is necessary to guaranty that, locally at P, η is a crescent function. Further, this definition does not depend on the particular choice of the coordinate axes, and for large thresholds each 2 D upcrossing corresponds uniquely to a large local maximum of η. Indeed, following Rice logic (Adler 1981), the expected number of 2D h-upcrossings is given by the following generalized Rice formula

$$
\begin{align*}
E X_{+}(h)= & A_{S} \int_{w_{2}=-\infty}^{0} \int_{w_{1}=0}^{\infty} w_{1}\left|w_{2}\right| \tag{14}\\
& \cdot p\left(\eta=h, \partial_{t} \eta=w_{1}, \partial_{s} \eta=0, \partial_{s s} \eta=w_{2}\right) d w_{1} d w_{2}
\end{align*}
$$

where $p(\cdot)$ is the joint probability density function (pdf) of $\eta, \partial_{t} \eta, \partial_{s} \eta, \partial_{s s} \eta$. For an exact solution of (14) we refer to Adler (1981). As $h \rightarrow \infty$, a simple asymptotic solution can be derived as follows. By Gaussianity, $\partial_{t} \eta$ and $\partial_{s} \eta$ are independent of each other and from $\partial_{s s} \eta$ and η. This implies that

$$
\begin{align*}
E X_{+}(h)= & A_{S} \int_{0}^{\infty} w_{1} p\left(\partial_{t} \eta=w_{1}\right) d w_{1} . \\
& \cdot p\left(\partial_{s} \eta=0\right) \int_{-\infty}^{0}\left|w_{2}\right| p\left(\eta=h, \partial_{s s} \eta=w_{2}\right) d w_{2} . \tag{15}
\end{align*}
$$

The first integral on the left is equal to $\sqrt{m_{t t} /\left(2 \pi \sigma^{2}\right)}$, and the term within square brackets equals the expected number, per unit length along s, of 1 D local maxima with amplitude h. This is given, for large h, by $\sqrt{m_{s s} /\left(2 \pi \sigma^{2}\right)} \xi e^{-\xi^{2} / 2}$, with $\xi=$ h / σ^{2} the dimensionless threshold. Noting that $|\Lambda|=m_{t t} m_{s s}$ is invariant by any
axes rotation, we conclude that in general $E X_{+}(h)$ of (15) equals $E C\left(A_{\eta, h}\right)$ of (11). Thus, as $h \rightarrow \infty$,

$$
\begin{equation*}
E X_{+}(h) \approx E X_{\max }(h) \approx \overline{E C\left(A_{\eta, h}\right)} \tag{16}
\end{equation*}
$$

This proves the existence of a one-to-one correspondence between 2D upcrossings and large maxima as in 1D processes. Adler's result (11) is thus relevant for applications because large upcrossings or maxima of random fields can be counted by simply estimating the Euler characteristic of their excursion sets.

4 Euler Characteristics of Oceanic Sea States

We extend (11) to deal with the expected $E C$ of excursion sets of spatial snapshots of oceanic sea states measured via VWASS (see Fig. 2). To properly model oceanic nonlinearities (Fedele 2008, Fedele \& Tayfun 2008), we follow Tayfun (1986) and define the wave surface $\eta_{n l}$ over S as

$$
\begin{equation*}
\eta_{n l}=\eta+\frac{\mu}{2}\left(\eta^{2}-\hat{\eta}^{2}\right) \tag{17}
\end{equation*}
$$

where $\mu=\lambda_{3} / 3$ is the wave steepness, which relates to the skewness λ_{3} of $\eta_{n l}$, and $\hat{\eta}$ is the Hilbert transform of a normalized Gaussian field η. For $\xi \gg 1$, the excursion regions where $\eta_{n l} \geq \xi$ include just isolated local maxima. So, the structure of the excursion set can be related to the surface field locally to a maximum of $\eta_{n l}$ with amplitude greater or equal to ξ. Assume that this occurs at $t=t_{0}$ and $s=s_{0}$. Then the wave surface locally around that maximum is described by the nonlinear conditional process

$$
\begin{equation*}
\eta_{n c}=\left\{\eta_{n l}(t, s) \mid \eta_{n l}\left(t_{0}, s_{0}\right) \geq \xi\right\} \tag{18}
\end{equation*}
$$

¿From (17) it is clear that the nonlinear quadratic component of $\eta_{n l}$ is phasecoupled to the extremes of the Gaussian η. So, a large maximum of $\eta_{n l}$ greater or equal to ξ occurs simultaneously when η itself is at a large maximum with an amplitude greater or equal to, say ξ_{1}. Thus, the conditional process (18) is equivalent to the simpler process (Tayfun \& Fedele 2007, Fedele \& Tayfun 2008)

$$
\begin{equation*}
\eta_{n c}=\left\{\eta_{n l}(t, s) \mid \eta_{n l}\left(t_{0}, s_{0}\right) \geq \xi_{1}\right\}=\xi_{1} \Psi+\frac{\mu}{2} \xi_{1}^{2}\left(\Psi^{2}-\hat{\Psi}^{2}\right) \text { for } \xi_{1} \gg 1 \tag{19}
\end{equation*}
$$

where $\Psi(t, s)$ is the normalized covariance of η. From (19), the large maximum of $\eta_{n l}$ occurs at $t=t_{0}$ and $s=s_{0}$, where $\Psi=1$ and $\hat{\Psi}=0$, with amplitude $\xi=\xi_{1}+\frac{\mu}{2} \xi_{1}^{2}$. Thus, the expected $E C$ of the excursion set $\left\{\eta_{n l} \geq \xi\right\}$ equal that of the $E C$ of the excursion set $\left\{\eta \geq \xi_{1}\right\}$ of η. By a variable transformation, from (11) it follows that

$$
\begin{equation*}
\overline{E C\left(A_{\eta_{n l}, h}\right)}=\frac{A_{S}|\Lambda|^{1 / 2}}{(2 \pi)^{3 / 2} \sigma^{2}} \frac{(-1+\sqrt{-1+2 \mu \xi})}{\mu} e^{-\frac{(-1+\sqrt{-1+2 \mu \xi})^{2}}{2 \mu^{2}}} \tag{20}
\end{equation*}
$$

Figure 4 plots the observed $E C$ and the expected $E C$ (Gaussian and nonGaussian) against the threshold h for the oceanic video data collected via VWASS. The data agree with the theoretical model (20).

Fig. 4. Observed $E C$ and the expected $E C$ against the threshold, as for the oceanic video data collected via VWASS shown in Fig. 2.

5 Conclusions

We have proposed a novel variational image sensor (VWASS) for the stereo reconstruction of wave surfaces. The rich information content of the acquired three-dimensional video data is then exploited to compute reliable estimates of both the directional wave spectrum and the expected global maximum (largest crest height) over an area. Both spectra and wave statistics of large wave crests over an area are of relevant significance in the offshore industry. In particular, the expectation of high waves over relatively small areas has important implications for a proper design of the air gap under the deck of fixed offshore structures (Forristall 2006). Localized damages have sometimes been observed on the lower decks of platforms after storms. This may be due to a design that is based on the expected largest crest height at a fixed location nearby the platform that underestimates the expected global maximum, i.e. the largest crest height, over the offshore area.

6 Acknowledgments

The authors would like to acknowledge Hailin Jin for providing source code that was partly used to obtain the results shown in this paper. We also thank both M. Aziz Tayfun \& Harald Krogstad for useful discussions and suggestions.

References

Adler, R.J. 1976 On generalising the notion of upcrossings to random fields. Adv. App. Prob. 27(4):789-805.

Adler, R.J. 1981 The Geometry of Random Fields, New York: John Wiley.
Adler, R.J., Taylor, J.E. 2007 Random fields and geometry. Springer Monographs in Mathematics Springer, New York.
Benetazzo, A. 2006 Measurements of short water waves using stereo matched image sequences. Coastal Engineering 53:1013-1032.
Faugeras O., Keriven R. 1998 Variational principles, surface evolution, pde's, level set methods and the stereo problem. IEEE Trans. on Image Processing 7(3):336-344.
Fedele, F., Tayfun, M.A. 2008 Nonlinear wave groups and crest statistics. J. Fluid Mech. (in press)
Fedele, F. 2008 Rogue Waves in Oceanic Turbulence. Phys. D 237(14-17):2127-2131 .
Forristall, G.Z. 2006 Maximum wave heights over an area and the air gap problem. OMAE2006-92022 paper, Proc. ASME 25th Inter. Conf. Off. Mech. Arc. Eng., Hamburg, Germany.
Gallego G, Benetazzo A., A. Yezzi, Fedele F. 2008 Wave spectra and statistics via a variational wave acquisition stereo system. OMAE2008-57160 paper, Proc. ASME 27th Inter. Conf. Off. Mech. Arc. Eng., Estoril, Portugal.
Ma, Y. Soatto, S., Kosecka, J., Shankar Sastry, S., 2004 An invitation to 3-D vision: from images to geometric models. Springer-Verlag New York.
Piterbarg V. 1995 Asymptotic Methods in the Theory of Gaussian Processes. American Mathematical Society, ser. Translations of Mathematical Monographs, 148, 205pp.
Tayfun, M.A. 1986 On narrow-band representation of ocean waves. Part I: Theory. J. Geophys. Res., 1(C6):7743-7752.
Tayfun, M.A., Fedele F. 2007 Wave height distributions and nonlinear effects. Ocean Eng. 34(11-12): 1631,1649.
Worsley, K.J. 1995 Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. App. Prob. 27:943-959.

