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Abstract

A bi-parametric family of non-linear stochastic processes is introduced, to investigate the properties of second-order random
processes with a narrow-band spectrum in the mechanics of the sea waves. In particular, the expressions of the probability
density function and of the probabilities of exceedance of the absolute maximum and absolute minimum are obtained for this
stochastic family. The analytical results are particularized for some processes of basic interest in the mechanics of the sea
waves: the free surface displacement, and the fluctuating wave pressure beneath the sea surface. 2002 Éditions scientifiques
et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The effects of non-linearity for random (wind-generated) sea waves were firstly investigated by Longuet-Higgins [1]. He
achieved the first three terms of the Gram–Charlier series for the probability density function of the normalized free surface
displacement, which is correct for any shape of the energy spectrum.

Later Tayfun [2] obtained the probability density function and the probability of exceedance of the crest (absolute maximum)
for the free surface displacement in an undisturbed wave field. The probability of exceedance of the trough (absolute minimum)
was then derived by Tung and Huang [3].

The recent book of Boccotti [4] deeply develops the linear theory of random sea waves, and the effects of finite bandwidth.
As for the non-linearity effects, it is emphasized that the probability of exceedance of the absolute minimum of the fluctuating
wave pressure beneath the sea surface usually is markedly greater than the probability of exceedance of the absolute maximum,
especially if the waves are subject to reflection. These conclusions are based on two recent small-scale field experiments and
have some important consequences in the design of submerged floating tunnels and vertical breakwaters.

In this paper a new theoretical approach is proposed to investigate the effects of non-linearity for the mechanics of the sea
waves. In particular a bi-parametric family of non-linear stochastic processes is introduced, which includes the processes ‘free
surface displacement’ and ‘fluctuating wave pressure’, both for waves in an undisturbed field (progressive waves) and for waves
interacting with structures.

Some statistical properties of the stochastic family are derived. Firstly the characteristic function (by using the Laplace
transform) and the probability density function (by inverse-Fourier transforming the characteristic function) are obtained.
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Moreover both the distributions of the absolute maximum and of the absolute minimum are achieved. All these properties
depend upon two parametersα1 andα2 of the family.

Finally, some applications are considered: the process ‘free surface displacement’ and the process ‘fluctuating wave
pressure’, both for progressive waves and for waves in front of a vertical wall. The expressions of the parametersα1 and
α2, which enable us to quickly predict the effects of non-linearity, are obtained for the above-mentioned processes.

The new approach is valid for most of the second-order processes in the mechanics of the sea waves, except for special cases
relating to the interaction of strongly non-linear waves with structures (as the fluctuating wave pressure in front of a vertical
wall near the seabed on deep water).

2. Statistical properties of a stochastic family with narrow-band spectrum

Let us define the familyψof stochastic processes, with (x, y) parameters:

ψ(x,y, t)= f (x, y)a cos
[
χ(t)

] + g(x, y)a2 cos2
[
χ(t)

] + h(x, y)a2 sin2[
χ(t)

]
, (1)

wherea is stochastic variable with Rayleigh distribution and where

χ(t)= ω0t + ϑ, (2)

whereω0 is the angular frequency,t the time andϑ a stochastic variable uniformly distributed in(0,2π).
By defining the two stochastic processes:

Z1 = a cos(χ)

σ
, Z2 = a sin(χ)

σ
, (3)

whereσ2 is the variance of both the linear processesa cos(χ) anda sin(χ), Eq. (1) may be rewritten as:

ψ(Z1,Z2)= σ
[
F(x,y)Z1 +G(x,y)Z2

1 +H(x,y)Z2
2
]
, (4)

where

F(x,y)≡ f (x, y),

G(x, y)≡ σg(x, y), (5)

H(x,y)≡ σh(x, y).

The processes(Z1,Z2) are both Gaussian (with zero mean value and unitary variance) and stochastically independent
(Borgman [5]). Therefore the joint probability density function is given by

fZ1,Z2(z1, z2)=
1

2π
e− 1

2 (z
2
1+z2

2). (6)

From equation (4) we obtain the mean value and the variance ofψ , which are respectively given by:

ψ = σ(G+H), (7)

σ2
ψ = σ2F2

β2
, (8)

where

β = 1√
1+ 2(α2

1 + α2
2)
, (9)

α1 = G

|F | , α2 = H

|F | . (10)

Finally, we may consider the following normalized stochastic family defined as

ζ = ψ − ψ̄

σψ
= β

(
Z1 + α1Z

2
1 + α2Z

2
2
) − β(α1 + α2), (11)

in which α1, α2 are deterministic parameters. The properties of the family (11) rely on these two parameters. As an example,
analytical expressions of the third and fourth moments of the familyζ , are given respectively by:

ζ3 = β3[
6α1 + 8α3

1 + 8α3
2
]
, (12)

ζ4 = 3β4(
1+ 20α2

1 + 4α2
2 + 20α4

1 + 8α2
1α

2
2 + 20α4

2
)
. (13)
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2.1. The probability density function

Let us consider the normalized familyζ [Eq. (11)]. The characteristic function ofζ is equal to the mean value of eiωζ :

eiωζ =
+∞∫

−∞

+∞∫
−∞

eiωζ fZ1,Z2(z1, z2)dz1 dz2, (14)

and may be rewritten as:

eiωζ = 1

2π
exp

[−iωβ(α1 + α2)
]
I1I2, (15)

with the integralsI1 andI2 respectively defined as:

I1(ω;α1, α2)= 2

+∞∫
0

cos(ωβz1)exp

[
−z

2
1
2
(1− 2iωβα1)

]
dz1, (16)

I2(ω;α1, α2)= 2

+∞∫
0

exp
(
iωβα2z

2
2
)
exp

(
−1

2
z22

)
dz2. (17)

The integralsI1 and I2 are evaluated by using the Laplace transform method. In particular, definingz21 = t andz22 = t , the
integrals (16) and (17) are respectively given by:

I1 =
+∞∫
0

exp

[
− t

2
(1− 2iωβα1)

]
cos(ωβ

√
t)√

t
dt = L

(
cos(ωβ

√
t)√

t
, s = 1− 2iωβα1

2

)
, (18)

I2 =
+∞∫
0

exp

(
− t

2

)
exp(iωβα2t)√

t
dt = L

(
exp(iωβα2t)√

t
, s = 1

2

)
, (19)

where

L
[
g(t), s

] ≡
+∞∫
0

e−st g(t)dt (20)

defines the Laplace transform ofg(t).
The Laplace transforms in equations (18) and (19) become, respectively:

L
(

cos(λ
√
t)√

t
, s

)
=

√
π√
s

e− λ2
4s , (21)

L
(

eλt√
t
, s

)
= L

(
1√
t
, s − λ

)
=

√
π√

s − λ
, (22)

and the characteristic function (15) is given by:

eiωζ =
exp

[−1
2

(ωβ)2

1+4(ωβα1)
2

]
exp

{−iωβ[
(α1 + α2)+ (ωβ)2α1

1+4(ωβα1)
2

]}
√

1− 4(ωβ)2α1α2 − 2iωβ(α1 + α2)
. (23)

Finally, the probability density functionfζ is obtained by applying the inverse Fourier transform to the characteristic function

eiωζ , that is:

fζ (ζ )= F−1(
eiωζ , ζ

) = 1

2π

+∞∫
−∞

e−iωζ eiωζ dω, (24)
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Fig. 1. The probability density functionfζ (Eq. (30)), for fixed values ofα. Thefζ tends to the Gaussian distribution asα → 0.

in which F−1 is the inverse Fourier transform operator, defined as

F−1[f (ω), x] ≡ 1

2π

+∞∫
−∞

e−iωxf (ω)dω. (25)

From Eqs. (23) and (24) we obtain the general expression of the probability density functionfζ :

fζ (ζ )= 1

2π

+∞∫
−∞

e−iωζ exp
[−1

2
(ωβ)2

1+4(ωβα1)
2

]
exp

{−iωβ[
(α1 + α2)+ (ωβ)2α1

1+4(ωβα1)
2

]}
√

1− 4(ωβ)2α1α2 − 2iωβ(α1 + α2)
dω. (26)

In the Appendix we demonstrate that Eq. (26) is real for any realζ . Numerical integration of (26) shows also thatfζ has positive
real values for arbitraryζ .

2.1.1. The zero-mean value processes
The stochastic family (1) has zero mean value ifG+H = 0. In this case expression (4) may be rewritten as:

ψ = σ
⌊
FZ1 +G

(
Z2

1 −Z2
2
)⌋
, (27)

and the dimensionless processζ (11) may be rewritten as

ζ = β
[
Z1 + α

(
Z2

1 −Z2
2
)]
, (28)

whereα = G/|F | and β = 1/
√

1+ 4α2 (let us note thatG + H = 0 implies α1 = −α2 – cf. Eq. (10)). The family with
zero-mean value has then only one parameter.

The expressions (12) of the third moment and (13) of the fourth moment become as the following:

ζ3 = 6β3α, ζ4 = 3β4(
1+ 24α2 + 48α4)

. (29)

Finally, the probability density function (26) for zero-mean processes reduces itself to:

fζ (ζ )= 1

π

+∞∫
0

e
− 1

2
(ωβ)2

1+4(ωβα)2√
1+ 4(ωβα)2

cos

[
ω

(
ζ + β

(ωβ)2α

1+ 4(ωβα)2

)]
dω. (30)

Fig. 1 shows the probability density function (30), for fixed values of the parameterα. Let us note that the probability density
function (30) tends to the Gaussian distribution whenα→ 0 (see section 2.3).

2.2. The distributions of the absolute maximum and of the absolute minimum

To achieve the distribution of the absolute maximum (crest) and the distribution of the absolute minimum (trough) of the
family ψ , it is convenient to rewrite Eq. (1) in the following form:

ψ(x,y)= f (x, y)a cos(χ)+ [
g(x, y)− h(x, y)

]a2

2
cos(2χ)+ [

g(x, y)+ h(x, y)
]a2

2
. (31)
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The first derivative ofψ is given by

dψ

dχ
= −a sin(χ)

{
f (x, y)+ 2

[
g(x, y)− h(x, y)

]
a cos(χ)

}
, (32)

and vanishes if

sin(χ)= 0 (33)

or, for the general case ofg(x, y) 
= h(x, y), if

cos(χ)= − f (x, y)

2[g(x, y)− h(x, y)]a . (34)

Let us supposef > 0 (see Note). The values ofχwhich satisfy at least one of Eqs. (33) and (34) are the stationary points of
the family (31). We have also that the stationary points obtained from Eq. (33) are the stationary points of the linear process
ψL = f (x, y)a cos(χ).

If we verify that

the unique stationary points ofψ are the stationary points of the linear processψL (35)

then the abscissa of the absolute maximum is given byχhigh = 0 and the abscissa of the absolute minimum is given byχlow = π .
Therefore from Eq. (31) we obtain the amplitudes of the absolute maximum and of the absolute minimum (in absolute value),
which are given respectively by:

!high = f (x, y)a + g(x, y)a2, (36)

!low = f (x, y)a − g(x, y)a2. (37)

To achieve the probability of exceedance for the absolute maximum we define the dimensionless variable:

ξhigh= !high

σψ
= uβ + α1βu

2, (38)

whereβ,α1 andα2 are defined by Eqs. (9) and (10) and where the random variableu has Rayleigh distribution; furthermore
we observe that solving equation

ξ = ũβ + α1βũ
2 (39)

with respect to the variablẽu, one gets the two formal roots

ũ1 = − 1

2α1
− 1

2α1

√
1+ 4α1ξ

β
, ũ2 = − 1

2α1
+ 1

2α1

√
1+ 4α1ξ

β
. (40)

Thus the inequalityξhigh> ξ is verified if:

ξhigh> ξ if

{
u > ũ2 for α1> 0,

ũ2< u< ũ1 for α1< 0, if ξ � β/(4|α1|) (41)

and the probability of exceedance of the absolute maximum (crest) is:

P(ξhigh> ξ)=



P(u > ũ2) if α1> 0,

P(ũ2< u< ũ1) if α1< 0 andξ � β(4|α1|),
0 if α1< 0 andξ > β/(4|α1|),

(42)

where

P(u > ũ2)= exp
[
− 1

8α2
1

(
1−

√
1+ 4|α1|ξ

β

)2]
, (43)

P(ũ2< u< ũ1)= exp

[
− 1

8α2
1

(
1−

√
1− 4|α1|ξ

β

)2]
− exp

[
− 1

8α2
1

(
1+

√
1− 4|α1|ξ

β

)2]
. (44)

Let us note thatP(ξhigh> ξ) is the probability that an absolute maximum (!high) of the familyψ is greater thanξ times the
standard deviationσψ (see Eqs. (31), (36) and (38)).
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The probability of exceedance of the absolute minimum is obtained defining the dimensionless variable

ξlow = !low

σψ
= uβ − α1βu

2, (45)

and is given by

P(ξlow > ξ)=



P(u > ũ2) if α1< 0,

P(ũ2< u< ũ1) if α1> 0 andξ � β/(4|α1|),
0 if α1> 0 andξ > β/(4|α1|).

(46)

Let us note thatP(ξlow > ξ) is the probability that an absolute minimum, in absolute value (!low), of the familyψ is greater
thanξ times the standard deviationσψ (see Eqs. (31), (37) and (45)).

Finally, from Eqs. (42) and (46) we conclude that:
if α1> 0:

P(ξhigh> ξ)= P(u > ũ2),

P (ξlow > ξ)=
{
P(ũ2< u< ũ1) if ξ � β/(4|α1|),
0 if ξ > β/(4|α1|),

(47)

if α1< 0:

P(ξhigh> ξ)=
{
P(ũ2< u< ũ1) if ξ � β/(4|α1|),
0 if ξ > β/(4|α1|),

P(ξlow > ξ)= P(u > ũ2).

(48)

Fig. 2 shows the distributions of the absolute maximum and of the absolute minimum, for fixed values of parametersα1 and for
|α2| = α1 (let us note that the processes with|α2| = α1 include the zero-mean processes, for whichα1 = −α2). Observe that
for α1 approaching zero bothP(ξhigh> ξ) andP(ξlow > ξ) tend to the Rayleigh distribution. Forα1 
= 0 the two distributions
are different: in particular, ifα1 > 0, for a fixed threshold of the probability of exceedance the absolute maximum is greater
than the absolute minimum; ifα1 < 0, for a fixed threshold of the probability of exceedance, the absolute maximum is lower
than the absolute minimum.

In other words, iff > 0, for α1 > 0 (which impliesg > 0) each realization of the process is a sequence of waves, which
have crest amplitude (absolute maximum) greater than the trough amplitude (absolute minimum). Forα1 < 0 (which implies
g < 0) wave has the trough amplitude greater than the crest amplitude. (For the case off < 0 see Note.)

Note. Let us observe that forf < 0 the abscissas of the absolute maximum and of the absolute minimum are, respectively
χhigh = π,χlow = 0. Furthermore!high = −f (x, y)a+ g(x, y)a2 and!low = −f (x, y)a− g(x, y)a2; therefore ifg > 0, we
haveα1> 0 and the crest (inχhigh = π ) is greater than the trough (inχlow = 0); if g < 0 we have thatα1< 0 and the trough
is greater than the crest. Hence, for the casef < 0, the expressions (47) and (48) are still valid.

Fig. 2. The distributions of the absolute maximumP (ξhigh> ξ) and of the absolute minimumP (ξlow > ξ), for fixed values ofα1 and for
|α2| = α1.
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Fig. 3. The probabilityPl (equation (53)) as function of |α1 − α2|.

2.2.1. Condition (35)
Condition (35) is always satisfied ifg(x, y) = h(x, y): in this case the process (31) reduces itself to the sum of the linear

processψL and a random constant as the following

ψ(x,y)= f (x, y)a cos(χ)+ 2g(x, y)
a2

2
. (49)

For the general case ofg(x, y) 
= h(x, y), the condition (35) is verified if Eq. (34) has no solution, that is if:

|f (x, y)|
|g(x, y)− h(x, y)|a/2 > 4. (50)

In words, condition (35) is satisfied if the ratio between the amplitude of the linear component and the amplitude of the non-
linear component is greater than 4 (for the sea waves this inequality is verified in most of the applications).

As function ofα1 andα2 the inequality (50) becomes (compare to Eq. (5)):

1

2|α1 − α2| >
a

σ
. (51)

a being a random variable with Rayleigh distribution, we have that

P

[
u >

a

σ

]
= exp

[
−1

2

(
a

σ

)2]
(52)

and therefore the minimum probability that the condition (35) is satisfied has expression:

Pl = exp

[
− 1

8(α1 − α2)
2

]
. (53)

The probabilityPl may be interpreted as the fraction of the realizations of the non-linear processψ in which condition (35) is
not verified. Fig. 3 shows the probabilityPl as function of |α1 − α2|. Let observe that for|α1 − α2| � 0.135 the probabilityPl
is close to 1/1000.

2.3. Weak non-linear effects

If the parametersα1, α2 approach zero, the non-linear effects vanish, and each processζ belonging to the stochastic family
(11), has to converge in probability to the Gaussian processZ1. Therefore we have that

∀ε > 0 lim
α1→0
α2→0

Pr
(|ζ −Z1| � ε

) = 1. (54)

To verify the limit (54) we introduce the random variable

Y = ζ −Z1, (55)

and obtain that the mean value and the variance ofY are given respectively by:

Y = 0, σ2
Y = 4

[
1− 1√

1+ 2(α2
1 + α2

2)

]
. (56)
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Eq. (56) shows that the variance ofY tends to zero, ifα1 andα2 tend to zero. Therefore the probability that the random variable
Y has values equal to its mean, approaches 1:

lim
α1→0
α2→0

σ2
Y = 0 ⇒ lim

α1→0
α2→0

[
Pr(Y = 0)

] = 1, (57)

from which we obtain

lim
α1→0
α2→0

[
Pr(ζ = Z1)

] = 1, (58)

and thusζ converges in probability toZ1. The convergence in probability implies the convergence in distribution. In fact in that
limit we have thatβ → 1 and

lim
α1→0
α2→0

fζ (ζ )= 1

2π

+∞∫
−∞

e−iωζ e−ω2/2 dω= F−1(
e−ω2/2, ζ

) = 1√
2π

e− 1
2ζ

2
, (59)

which is the Gaussian probability density function.
In other words, ifα1 andα2 tend to zero, the stochastic family (11) is asymptotically Gaussian: all the processes belonging

to it, tend to be Gaussian. The convergence in probability enables us to study the behaviour of the stochastic family (11) for
weak non-linear effects.

By considering a small neighbourhood of (α1 = 0, α2 = 0) and by retaining only the terms of order(α1, α2), the expressions
of the third and fourth moment ofζare given by:

ζ3 = 6α1 + o(α1, α2), (60)

ζ4 = 3+ o(α1, α2). (61)

Therefore for weak non-linear effects of order O(α1, α2) the process does not depend upon the value ofα2. In fact for α1
smaller, the skewness is of orderα1, but the kurtosis is almost 3. The process is asymptotically Gaussian.

3. Applications

We consider the narrow-band processes ‘free surface displacement’ and ‘fluctuating wave pressure’, both for progressive
random waves (that is waves in an undisturbed field) and for reflection of random waves (that is waves in front of a vertical
wall). The reference frame(x, y) has thex-axis horizontal and they-axis vertical, with origin on the mean water level. The
bottom depth isd. The steepnessε (beingε = kσ, k the wave number andσ the standard deviation of the linear process) of
the wind-generated surface waves, in an undisturbed field, is typically between 0.05 and 0.08 (a very characteristic value is
ε = 0.055).

3.1. The free surface displacement in an undisturbed field

The free surface displacement in an undisturbed field at any fixed pointx, to the first-order solution in a Stokes expansion,
is a stochastic stationary Gaussian process. The second-order free surface displacement, for narrow-band spectrum, is given by:

η(x, t)= a cos(χ)+ ka2fη1 cos(2χ), (62)

where

fη1(kd)=
[2+ cosh(2kd)]cosh(kd)

4sinh3(kd)
. (63)

Assuming that the wave travels along thex-axis, we also have

χ = kx −ω0t + ϑ1, (64)

whereϑ1 is a stochastic variable uniformly distributed in(0,2π). At any fixed pointx Eq. (64) is rewritten as

χ = ω0t + ϑ, (65)

where

ϑ = −kx − ϑ1, (66)
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Fig. 4. The parameterα (Eq. (69)) for the free surface displacement in an undisturbed wave field as function ofkd (the steepnessε has been
assumed equal to 0.055).

is a stochastic variable uniformly distributed in(0,2π), like theϑ1. Therefore, the zero mean value process (62) is rewritten as
the following:

η(x, t)= σZ1 + σεfη1

(
Z2

1 −Z2
2
)
, (67)

the functionsZ1 andZ2 being defined from Eq. (3). Finally, defining

F = 1, G= εfη1, H = −G, (68)

we obtain that the process (67) belongs to the stochastic family (1), with parameters

α = α1 = εfη1, α2 = −α1. (69)

Therefore the parameterα is always greater than zero. As a consequence, for a fixed threshold of probability of exceedance the
wave crest (absolute maximum) is higher than the wave trough (absolute minimum). Fig. 4 shows the parameterα (obtained
from Eq. (69) forε= 0.055), as function ofkd. On deep water (kd → ∞) α tends toε/2.

3.2. The fluctuating wave pressure in an undisturbed field

The second-order fluctuating wave pressure, for narrow-band spectrum, is given by

η,p(x, y, t)= afph1
cos(χ)+ ka2fph2

cos(2χ)− ka2fph3
, (70)

where

fph1
(ky, kd)= cosh[k(y + d)]

cosh(kd)
, (71)

fph2
(ky, kd)= 3cosh[2k(y + d)] − sinh2(kd)

4sinh3(kd)cosh(kd)
, (72)

fph3
(ky, kd)= cosh[2k(y + d)] − 1

2sinh(2kd)
, (73)

and whereχ , assuming that the wave travels along thex-axis, is given by equation (64). As for the free surface displacement
(see Section 3.1), at any fixed point(x, y) the fluctuating wave pressure (70) may be rewritten as:

η,p(x, y, t)= σfph1
Z1 + σε(fph2

− fph3
)Z2

1 − σε(fph2
+ fph3

)Z2
2. (74)

Finally, by defining

F = fph1
; G= ε(fph2

− fph3
); H = −ε(fph2

+ fph3
); (75)

we obtain that the process (74) belongs to family (1), with parameters

α1 = ε
fph2

− fph3

fph1

, α2 = −ε fph2
+ fph3

fph1

. (76)
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From Eq. (76) we obtain that parameterα1 is negative forkd > 1.32. In this case the fluctuating wave pressure has inverse-
behaviour respect to the free surface displacement: for a fixed threshold of probability of exceedance the wave crest (absolute
maximum) is lower than the wave trough (absolute minimum).

The non-linear effects decrease by approaching the bottom (for a fixedkd): α1 decreases asky decreases.
Fig. 5 shows the family parameters (obtained from equation (76)) as function ofy/d, for ε = 0.055.

3.3. The free surface displacement in front of a vertical wall

Let us consider the wave field in front of a vertical wall, located at the abscissax = 0. The free surface displacement to the
second-order, for an infinitely narrow spectrum, is given by

η(x, t)= 2a cos(kx)cos(χ)+ 2ka2fη1 cos(2kx)cos(2χ)+ 2ka2fη2 cos(2kx) (77)

(whereχ is given by Eq. (2)) and may be rewritten as:

η(x, t)= 2σ cos(kx)Z1 + 2σε cos(2kx)(fη1 + fη2)Z
2
1 + 2σε cos(2kx)(−fη1 + fη2)Z

2
2, (78)

where

fη2(kd)=
1

2 tanh(2kd)
. (79)

This process belongs to the stochastic family (4), by defining

F = 2cos(kx), G= 2ε cos(2kx)(fη1 + fη2), H = 2ε cos(2kx)(−fη1 + fη2), (80)

and therefore it has parameters as the following expressions

α1 = ε(fη1 + fη2)
cos(2kx)

|cos(kx)| , α2 = ε(−fη1 + fη2)
cos(2kx)

|cos(kx)| . (81)

Observe that forkx = π/2+nπ (with n= 0,±1,±2, . . .), the linear term is zero; therefore the process has only a second-order
term. In this case the process does not belong to the stochastic family (1) becauseα1, α2 → ∞.

Fig. 6 shows the family parametersα1 andα2 (Eq. (81)) at the wall (wherex = 0), as function ofkd. The parameterα1 is
positive. Furthermore the effects of non-linearity for surface waves on a vertical wall are greater than for surface waves in an
undisturbed wave field. As an example on deep water the parameterα2 tends to zero, andα1 tends toε (which is twice as much
as the value ofα for progressive waves on deep water).

3.4. The fluctuating wave pressure in front of a vertical wall

The second-order fluctuating wave pressure in front of a vertical wall, for an infinitely narrow spectrum, is given by:

η,p(x, y, t) = 2σfph1
cos(kx)Z1 + 2σε

[
fph2

cos(2kx)− fph3
+ fph4

+ fph5
cos(2kx)

]
Z2

1 − 2σε
[
fph2

cos(2kx)+ fph3
+ fph4

− fph5
cos(2kx)

]
Z2

2; (82)

Fig. 5. The parametersα1 andα2 (Eq. (76)) for the fluctuating wave pressure in an undisturbed wave field, as function ofy/d (the steepness
ε has been assumed equal to 0.055): (a)kd = 2; (b) kd = 3.
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where

fph4
(ky, kd)= cosh2[k(y + d)] − cosh(2kd)

sinh(2kd)
, (83)

fph5
(kd)= 1

2sinh(2kd)
. (84)

The process (82) formally belongs to the family (4) by defining

F = 2fph1
cos(kx); G= 2ε

[
fph2

cos(2kx)− fph3
+ fph4

+ fph5
cos(2kx)

];
H = −2ε

[
fph2

cos(2kx)+ fph3
+ fph4

− fph5
cos(2kx)

]
.

(85)

(As for the free surface displacement, the fluctuating wave pressure does not belong to the stochastic family (1), for
kx = π/2+ nπ (with n= 0,±1,±2, . . .).)

The parameters are given respectively by:

α1 = ε
(fph2+fph5)cos(2kx)−fph3+fph4

fph1 |cos(kx)| ,

α2 = −ε (fph2−fph5)cos(2kx)+fph3+fph4
fph1|cos(kx)| .

(86)

As an example, Fig. 7 shows the behaviour of the parameters at the wall, wherex = 0 (obtained from Eq. (86)) as function
of y/d, for ε = 0.055 and forkd = 1.5. Beingα1 negative, for the fluctuating wave pressure each realization of the stochastic
process is a sequence of waves with trough amplitude greater than the crest amplitude. Moreover, for a fixed deepkd, the

Fig. 6. The parametersα1 andα2 (Eq. (81)) for the free surface displacement at a vertical wall (wherex = 0), as function ofkd (the steepness
ε has been assumed equal to 0.055).

Fig. 7. The parametersα1 andα2 (Eq. (86)) for the fluctuating wave pressure at a vertical wall, as function ofy/d . We have assumedε= 0.055
andkd = 1.5.
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non-linear effects increases by approaching the bottom. In fact at the bottom (wherey = −d) for kd → ∞ the fluctuating wave
pressure has the limit expression as

η∞
,p

= −2σε cos(2χ) (87)

in which the linear term vanishes and only the second-order term is not zero. The first linear term goes to zero faster than
the second-order term, forkd → ∞; this implies thatα1, α2 → ∞. Therefore there exists a valuekylim , such that for
−kd < ky < kylim condition (35) is not satisfied. By numerical investigation we obtainkylim ∼= 1 for characteristic value
of the steepnessε = 0.055.

4. Conclusions

The properties of the family (1) of stochastic processes have been investigated. For this purpose the analytical expressions
of the probability density function and of both the distributions of the absolute maximum and of the absolute minimum have
been obtained. It is proven that all these properties depend upon two deterministic parameters namedα1 andα2. For zero mean
processes we haveα1 = −α2, and the family has only one degree of freedom.

We have shown that if bothα1 andα2 approach zero, the non-linearity vanishes. As a consequence the probability density
function tends to be Gaussian (according to the theory of wind-generated waves of Longuet-Higgins [1] and Phillips [6]) and
both the probabilities of exceedance of the absolute maximum and of the absolute minimum tend to the Rayleigh distribution
(according to Longuet-Higgins [7]).

We have obtained also that forα1 > 0 each realization of a process belonging to the family is a sequence of waves which
have the crest amplitude (absolute maximum) greater than the trough amplitude (absolute minimum, in absolute value); for
α1< 0 each wave has the trough amplitude greater than the crest amplitude.

Finally, in the applications we have obtained the expressions of the parametersα1 andα2 for some sea wave processes,
as functions ofε, ky andkd. In particular we have obtained that the surface waves have the crest greater than the trough, and
furthermore, for a fixedkd, the effects of non-linearity at a vertical wall are greater than the non-linear effects in an undisturbed
field.

For the fluctuating wave pressure (at a point beneath the sea surface)α1 is generally less than zero; in this case the trough
of the fluctuating wave pressure are greater than the crest. Furthermore, as for the surface waves, the effects of non-linearity for
the fluctuating wave pressure on a vertical wall are greater than in an undisturbed field.

These theoretical conclusions agree well with the results of two small-scale field experiments by Boccotti [4], as we can
see by comparing the data and the analytical predictions for the probabilities of exceedance of the wave crestP(ξhigh> ξ)

and of the wave troughP(ξlow > ξ). Fig. 8 shows the comparison for both the free surface displacements (left panel) and the
fluctuating wave pressure at a fixed depth beneath the sea surface (right panel), in an undisturbed field on deep water (we have
re-examined the original source data of the small-scale field experiment described by Boccotti et al. [8]; see also Sections 10.9
and 10.10 of Boccotti [4]). Fig. 9 shows the comparison for the fluctuating wave pressure on a vertical wall (data by Boccotti [4];
see his Fig. 13.3).

Fig. 8. The probabilities of exceedance of the wave crestP (ξhigh> ξ) and of the wave troughP (ξlow > ξ) in an undisturbed field on deep
water: comparison between the analytical predictions (forε = 0.055) and the small-scale field experiment data (see Boccotti et al. [8]; Boccotti
[4]). Left panel: free surface displacements. Right panel: fluctuating wave pressure at the depthky = −0.3.
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Fig. 9. The probabilities of exceedance of the wave crestP (ξhigh> ξ) and of the wave troughP (ξlow > ξ) on a vertical wall
(kd = 1.26;y/d = −0.5): comparison between the analytical predictions (forε = 0.055) and the small-scale field experiment data (see
Boccotti [4]).

Appendix

The probability density functionfζ (ζ ) defined by Eq. (26) is real for any realζ . To show that we take the complex conjugate
of Eq. (24):

[
fζ (ζ )

]∗ = 1

2π

+∞∫
−∞

eiωζ
(
eiωζ

)∗ dω (88)

(beingx∗ is the complex conjugate ofx); because the characteristic functioneiωζ satisfies the property(eiωζ )∗ = e−iωζ ,
Eq. (88) may be rewritten as

[
fζ (ζ )

]∗ = 1

2π

+∞∫
−∞

eiωζ e−iωζ dω. (89)

By making the change of variableτ = −ω, Eq. (89) gives

[
fζ (ζ )

]∗ = 1

2π

+∞∫
−∞

e−iτ ζ eiτ ζ dτ, (90)

from which it follows[fζ (ζ )]∗ = fζ (ζ ) (see Eq. (24)): this implies thatfζ (ζ ) is real.
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