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Abstract

A bi-parametric family of non-linear stochastic processes is introduced, to investigate the properties of second-order random
processes with a narrow-band spectrum in the mechanics of the sea waves. In particular, the expressions of the probability
density function and of the probabilities of exceedance of the absolute maximum and absolute minimum are obtained for this
stochastic family. The analytical results are particularized for some processes of basic interest in the mechanics of the sea
waves: the free surface displacement, and the fluctuating wave pressure beneath the sea 208cEditions scientifiques
et médicales Elsevier SAS. All rights reserved.

Keywords:Mechanics of sea waves; Non-linear stochastic process; Narrow-band process; Probability density function; Probability of
exceedance of the absolute maximum; Probability of exceedance of the absolute minimum

1. Introduction

The effects of non-linearity for random (wind-generated) sea waves were firstly investigated by Longuet-Higgins [1]. He
achieved the first three terms of the Gram—Charlier series for the probability density function of the normalized free surface
displacement, which is correct for any shape of the energy spectrum.

Later Tayfun [2] obtained the probability density function and the probability of exceedance of the crest (absolute maximum)
for the free surface displacement in an undisturbed wave field. The probability of exceedance of the trough (absolute minimum)
was then derived by Tung and Huang [3].

The recent book of Boccotti [4] deeply develops the linear theory of random sea waves, and the effects of finite bandwidth.
As for the non-linearity effects, it is emphasized that the probability of exceedance of the absolute minimum of the fluctuating
wave pressure beneath the sea surface usually is markedly greater than the probability of exceedance of the absolute maximum,
especially if the waves are subject to reflection. These conclusions are based on two recent small-scale field experiments and
have some important consequences in the design of submerged floating tunnels and vertical breakwaters.

In this paper a new theoretical approach is proposed to investigate the effects of non-linearity for the mechanics of the sea
waves. In particular a bi-parametric family of non-linear stochastic processes is introduced, which includes the processes ‘free
surface displacement’ and ‘fluctuating wave pressure’, both for waves in an undisturbed field (progressive waves) and for waves
interacting with structures.

Some statistical properties of the stochastic family are derived. Firstly the characteristic function (by using the Laplace
transform) and the probability density function (by inverse-Fourier transforming the characteristic function) are obtained.
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Moreover both the distributions of the absolute maximum and of the absolute minimum are achieved. All these properties
depend upon two parameters andao of the family.

Finally, some applications are considered: the process ‘free surface displacement’ and the process ‘fluctuating wave
pressure’, both for progressive waves and for waves in front of a vertical wall. The expressions of the pamamatets
a2, which enable us to quickly predict the effects of non-linearity, are obtained for the above-mentioned processes.

The new approach is valid for most of the second-order processes in the mechanics of the sea waves, except for special cases
relating to the interaction of strongly non-linear waves with structures (as the fluctuating wave pressure in front of a vertical
wall near the seabed on deep water).

2. Statistical propertiesof a stochastic family with narrow-band spectrum

Let us define the family of stochastic processes, with, (v) parameters:

Y,y 1) = fx, y)acod x (0] + g, y)a? cof [ x ()] + h(x, y)a? sir?[x (1), @)
wherea is stochastic variable with Rayleigh distribution and where
x () = wot + 0, 2)

wherew is the angular frequency,the time and? a stochastic variable uniformly distributed (@, 27 ).
By defining the two stochastic processes:

acogx) asin(x)
Zy=—""00 Zp=—, @)
o g

wherec? is the variance of both the linear processe®q x) anda sin(x), Eqg. (1) may be rewritten as:

V(Z1,Z9) =0 [F(x, y)Z1+ G(x, ) Z5 + H(x, 1) Z5], 4)
where

F(x,y)=f(x,y),

G(x,y)=0g(x,y), ®)

Hx,y)=0h(x,y).

The processe$Zq, Z2) are both Gaussian (with zero mean value and unitary variance) and stochastically independent
(Borgman [5]). Therefore the joint probability density function is given by

1 10,2,.2
f21,2,(21,22) = Zef?(ZﬁZZ). (6)
From equation (4) we obtain the mean value and the variange which are respectively given by:
¥ =0(G+H), @)
252
2 o°F
oy = ; ®)
14 /32
where
1
= —F— ©)
1+ 2(01% + a%)
G H
o] = —, oy = —. 10
LT E 2= 1F] (10)
Finally, we may consider the following normalized stochastic family defined as
¢ = wa;w — B(Z1+ 122 + a273) — Bla + a2). (11)

in which a1, @ are deterministic parameters. The properties of the family (11) rely on these two parameters. As an example,
analytical expressions of the third and fourth moments of the fagnire given respectively by:

3= p3[6ag + 8o + a3, 12)
¢4 =361+ 2002 + 402 + 2007 + 8uZa3 + 2003). (13)
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2.1. The probability density function

Let us consider the normalized famify{Eq. (11)]. The characteristic function ofs equal to the mean value of¥:
+00 +00
gt = f f &% f7,.2,(z1. 22) de1 dz, (14)
—00 —00
and may be rewritten as:

ol — %exp{—ia)ﬁ(a1+a2)]l1lz, (15)

with the integralg/y and > respectively defined as:

Q

+00

I(w;a1,00) =2 / coSwphz1) exp[—%(l — Ziwﬁal)] dzq, (16)
0
+00

L(w; a1,0p) =2 / exp(ia)ﬂazz%) exp(—:—sz%) dzo. 17)
0

The integrals/; and I> are evaluated by using the Laplace transform method. In particular, deﬂ%iﬁg and z% =1, the
integrals (16) and (17) are respectively given by:

o 0P V) (wpyi)  1—2iup
t ) coswB/t coSwB/t —2iwfoy
I = ——(1-2 dr =L s = 18
1 fexp[ 5( lwﬂal)] 7 t ( N 3 ) (18)
0
o MiwBasr) Mivpaz) 1
1\ expliwBast exp(iwBoart
L= [ expl —z | ————dt=L| —————,s== ), 19
2fxp<2)ﬁ <ﬁ52> (19)
0
where
+00
L[g®).s]= f e Stg(r)dt (20)
0
defines the Laplace transform gfz).
The Laplace transforms in equations (18) and (19) become, respectively:
coS(AA/1) ) JT 2
L _— = —e 4, 21
( i )T e
eM 1 JT
L{ —=.,s)=L{—,s—2 )= , 22
(ﬁ ) (ﬁ * ) = (22)
and the characteristic function (15) is given by:
1 (p)? ; (@B)%en

V1-4wp)%araz - 2iwpla +az)
Finally, the probability density functiof; is obtained by applying the inverse Fourier transform to the characteristic function
g@¢ | thatis:
+00
fe@) =F (et ¢)= % f e W gt dyy, (24)

—00
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Fig. 1. The probability density functiofi; (Eq. (30)), for fixed values af. The f;tends to the Gaussian distributionas> 0.

in which F~1 is the inverse Fourier transform operator, defined as
—+00

1 .
Ff(w,x]= > f e £ (o) dw. (25)

From Egs. (23) and (24) we obtain the general expression of the probability density fuyiction

(wpB)? . (@B)%ay
fe@) = / —iwg F{ 2 l+4(w;30t1)2] eXp{_lw’B[(al o)+ l+4(w}30¢1)2]}
R V1 4wp)2a1az — 2iwplay +a)

do. (26)

In the Appendix we demonstrate that Eq. (26) is real for anygebdlumerical integration of (26) shows also thfathas positive
real values for arbitrary .

2.1.1. The zero-mean value processes
The stochastic family (1) has zero mean valué - H = 0. In this case expression (4) may be rewritten as:

v =0|FZ1+G(z%-Z3)]. @7)
and the dimensionless proces§l1) may be rewritten as
¢ = B[Z1+a(22 - Z3)]. (28)

wherea = G/|F| and 8 = 1/v/1+ 4a2 (let us note thaG + H = 0 impliesa; = —ap — cf. Eq. (10)). The family with
zero-mean value has then only one parameter.
The expressions (12) of the third moment and (13) of the fourth moment become as the following:

3=68%,  (4=3p%1+ 24> +48%). (29)
Finally, the probability density function (26) for zero-mean processes reduces itself to:
% oo 2
1+4(wpa) (wB)“a
fro=1 ofctpms) | (30)
‘ W 1+ 4(wpa)?

Fig. 1 shows the probablllty density function (30), for fixed values of the parametast us note that the probability density
function (30) tends to the Gaussian distribution when- 0 (see section 2.3).

2.2. The distributions of the absolute maximum and of the absolute minimum

To achieve the distribution of the absolute maximum (crest) and the distribution of the absolute minimum (trough) of the
family v, it is convenient to rewrite Eq. (1) in the following form:
a2 a2
Y(x,y) = fx,y)acosx) +[g(x, y) — h(x, y)]7 cos(2y) + [g(x, y) + h(x, y)];- (31)
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The first derivative of/is given by
d .
% = —asin(O{ f(x,y) +2[g(x. y) — h(x, »]acos )}, (32)
and vanishes if
sin(x) =0 (33)
or, for the general case gix, y) # h(x, y), if
fx,y)
2[g(x, y) = h(x, y)la’
Let us supposg¢ > 0 (see Note). The values gfwhich satisfy at least one of Egs. (33) and (34) are the stationary points of
the family (31). We have also that the stationary points obtained from Eq. (33) are the stationary points of the linear process

¥, = f(x, y)acosx).
If we verify that

cos() = — (34)

the unique stationary points @f are the stationary points of the linear procéss (35)

then the abscissa of the absolute maximum is givesHyh = 0 and the abscissa of the absolute minimum is givepiby = 7.
Therefore from Eq. (31) we obtain the amplitudes of the absolute maximum and of the absolute minimum (in absolute value),
which are given respectively by:

Yhigh= f(x, y)a + g(x, y)a?, (36)
Wiow = [ (x, y)a = g(x, y)a’. (37)
To achieve the probability of exceedance for the absolute maximum we define the dimensionless variable:

WPhigh
Ehigh= — — up + a1 Bu?, (38)
oy

whereB, a1 anday are defined by Egs. (9) and (10) and where the random variabées Rayleigh distribution; furthermore
we observe that solving equation

& =il +a1pi’ (39)
with respect to the variablg, one gets the two formal roots

. 1 1 4o . 1 1 41§
=—— - 14+ —= =—— 4+ = |14 —=, 40
uq 201 2a1 + B s u 21 + 2a1 + B ( )

Thus the inequalitghigh > &is verified if:

. u > IZZ for a1 > 0,
high>§ if { y ; . (41)
ip<u<ugp forag<0,iféE<B/(@ag])
and the probability of exceedance of the absolute maximum (crest) is:
P(u > iip) if 1 >0,
P(high>§) =\ Pluz <u <uq) ifag <Oands <péla)), (42)
0 if 1 <0 and¢ > B/(4la1)),
where
P(u > iip) exp[ 1 (1 14 Hoals )2] (43)
u>u = _— —_ - ,
2 82 B

2 2
P(iip <u <) =exp[—8%%<1— 1- 4"731'5 ) ] - exp[—%(l—k 11— 4|0:31|¥ ) ] (44)

Let us note thalP (énigh > &) is the probability that an absolute maximumir(gp) of the family s is greater tharg times the
standard deviation, (see Egs. (31), (36) and (38)).
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The probability of exceedance of the absolute minimum is obtained defining the dimensionless variable

g
Hlow = —2 = up — a1 pu?, (45)
Oy
and is given by
P(u > ii9) if a1 <0,
Plow >§) = Plig <u <) if ag>0and§ < B/@ay)), (46)
0 if g > 0 andé > B/(4|aql).

Let us note thafP (§ow > &) is the probability that an absolute minimum, in absolute valag,{), of the family ¢ is greater
than times the standard deviatiar, (see Egs. (31), (37) and (45)).

Finally, from Egs. (42) and (46) we conclude that:

if g > 0:

P(&nigh>§) = P(u > up),

[Plaz<u<iin) if &< B/@ai)), a7
Pliow>2) = { 0 if £ > B/ (A,
if @1 <O:
| [ Pliz<u<ii) if & < B/,
PAEnigh> £) = {o it £ > B/ (A, (48)

P(&low > &) = P(u > iip).

Fig. 2 shows the distributions of the absolute maximum and of the absolute minimum, for fixed values of parke{reaidrior
lao| = a1 (let us note that the processes widtp| = a1 include the zero-mean processes, for whigh= —a5). Observe that
for a1 approaching zero botR (éhigh > &) and P (§jow > &) tend to the Rayleigh distribution. Fafg # 0 the two distributions
are different: in particular, it > 0, for a fixed threshold of the probability of exceedance the absolute maximum is greater
than the absolute minimum; éf; < 0, for a fixed threshold of the probability of exceedance, the absolute maximum is lower
than the absolute minimum.

In other words, if f > 0, for «1 > 0 (which impliesg > 0) each realization of the process is a sequence of waves, which
have crest amplitude (absolute maximum) greater than the trough amplitude (absolute minimwm)<Fo(which implies
g < 0) wave has the trough amplitude greater than the crest amplitude. (For the gase(o$ee Note.)

Note. Let us observe that fof < 0 the abscissas of the absolute maximum and of the absolute minimum are, respectively
Xhigh = 7. Xlow = 0. Furthermorebpigh = — f (x, y)a + g (x, y)a? andWjoy = — f (x, y)a — g(x, y)a?; therefore ifg > 0, we
havea; > 0 and the crest (ixhigh = ) is greater than the trough (inow = 0); if g <0 we have thak, < 0 and the trough

is greater than the crest. Hence, for the cAseO0, the expressions (47) and (48) are still valid.

0.0001 e =t) / / 0.0001 P& > &) f / /
-1 -.05 0 05 a1 05 0" -0 -1
0.001 , / 0.001 / ////
0.01 / / // 0.01
/ // Rayleigh / // Rayleigh
0.1 0.1
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Fig. 2. The distributions of the absolute maximutiéhigh > &) and of the absolute minimurk (£, > £), for fixed values okvy and for
lag| = o.
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Fig. 3. The probability?; (equation (53)) as function af{ — «5|.

2.2.1. Condition (35)
Condition (35) is always satisfied #(x, y) = h(x, y): in this case the process (31) reduces itself to the sum of the linear
process/ and a random constant as the following

2
a
V(. y) = fx y)acosy) + 28 (x. y) - (49)
For the general case @fx, y) # h(x, y), the condition (35) is verified if Eg. (34) has no solution, that is if:

el
lgCx, y) = h(x, y)la/2 =~
In words, condition (35) is satisfied if the ratio between the amplitude of the linear component and the amplitude of the non-
linear component is greater than 4 (for the sea waves this inequality is verified in most of the applications).
As function ofay andas the inequality (50) becomes (compare to Eq. (5)):
1 a

_— 51
ot —asl o 1)

(50)

a being a random variable with Rayleigh distribution, we have that

1 2
P|:u> i:| =exp[——<ﬁ> ] (52)
o 2\o
and therefore the minimum probability that the condition (35) is satisfied has expression:
1
P =exp[_7]. (53)
8(a1 — a2)?

The probability”; may be interpreted as the fraction of the realizations of the non-linear prgcieswhich condition (35) is
not verified. Fig. 3 shows the probabili#§ as function ofd; — a»|. Let observe that foju — a2| < 0.135 the probabilityP
is close to 1/1000.

2.3. Weak non-linear effects
If the parameters 1, wp approach zero, the non-linear effects vanish, and each prodesdsnging to the stochastic family
(11), has to converge in probability to the Gaussian proZgs herefore we have that
Ve>0 lim Pr(j¢ —2Z1|<e)=1 (54)
0(1*)0
a—0
To verify the limit (54) we introduce the random variable

and obtain that the mean value and the variancgé afe given respectively by:

Y=o, o§=4[1—;]. (56)

,/1+2(a%+a§)
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Eq. (56) shows that the varianceXfiends to zero, i1 andas tend to zero. Therefore the probability that the random variable
Y has values equal to its mean, approaches 1:

im ¢2=0= lim [Py =0]=1, 57
a1—0 oy alﬁo[ ( )] ®7)
ax—0 ax—0

from which we obtain
lim [Pr¢=2p]=1 (58)
0[1*)0
0[2*)0

and thus; converges in probability t&1. The convergence in probability implies the convergence in distribution. In fact in that
limit we have thai3 — 1 and

+00
1 ; 2 2 1 1,2
li _ = —iw 47— /Zd —F e /2’ — —3¢ ’ 59
im o fe@ =5 fe 3 o (e £) 75° (59)
ap—0 —00

which is the Gaussian probability density function.

In other words, ifeq andas tend to zero, the stochastic family (11) is asymptotically Gaussian: all the processes belonging
to it, tend to be Gaussian. The convergence in probability enables us to study the behaviour of the stochastic family (11) for
weak non-linear effects.

By considering a small neighbourhood ofi(= 0, «» = 0) and by retaining only the terms of orde#;, «2), the expressions
of the third and fourth moment g@fare given by:

3 =601 + 0(a1, @2), (60)
{j'=3+0(011,012). (61)

Therefore for weak non-linear effects of ordefo®, «p) the process does not depend upon the value,ofin fact for aq
smaller, the skewness is of ordey, but the kurtosis is almost 3. The process is asymptotically Gaussian.

3. Applications

We consider the narrow-band processes ‘free surface displacement’ and ‘fluctuating wave pressure’, both for progressive
random waves (that is waves in an undisturbed field) and for reflection of random waves (that is waves in front of a vertical
wall). The reference framér, y) has thex-axis horizontal and the-axis vertical, with origin on the mean water level. The
bottom depth isi. The steepness (beinge = ko, k the wave number and the standard deviation of the linear process) of
the wind-generated surface waves, in an undisturbed field, is typically between 0.05 and 0.08 (a very characteristic value is
e =0.055).

3.1. The free surface displacement in an undisturbed field

The free surface displacement in an undisturbed field at any fixed poiatthe first-order solution in a Stokes expansion,
is a stochastic stationary Gaussian process. The second-order free surface displacement, for narrow-band spectrum, is given by:

n(x, 1) = acosy) + ka? fy, co2x), (62)
where
[2 + cosh(2kd)] coshkd)
kd) = . 63
I (k) 4sink?(kd) (63)

Assuming that the wave travels along thaxis, we also have

X =kx —wot + 91, (64)
where is a stochastic variable uniformly distributed(@ 27). At any fixed pointx Eq. (64) is rewritten as

X =wot + 0, (65)
where

9 = —kx — 1, (66)
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Fig. 4. The parametez (Eg. (69)) for the free surface displacement in an undisturbed wave field as functt@n(ibfe steepness has been
assumed equal to 0.055).

is a stochastic variable uniformly distributed(® 2r), like the®#,. Therefore, the zero mean value process (62) is rewritten as
the following:

n(x,t):chl—l—asfnl(Z%—Z%), (67)
the functionsZq andZ, being defined from Eq. (3). Finally, defining
F=1, G =¢efn, H=-G, (68)

we obtain that the process (67) belongs to the stochastic family (1), with parameters

a=a1=¢fy, o) = —oq. (69)
Therefore the parameteris always greater than zero. As a consequence, for a fixed threshold of probability of exceedance the
wave crest (absolute maximum) is higher than the wave trough (absolute minimum). Fig. 4 shows the pargoieténed
from Eq. (69) fore = 0.055), as function okd. On deep waterkd — oco) « tends tce/2.
3.2. The fluctuating wave pressure in an undisturbed field

The second-order fluctuating wave pressure, for narrow-band spectrum, is given by

Nap(. y.1) = afpn, COSx) +ka? fon, OS2x) — ka? foh,. (70)
where

foy (y, kd) = 7‘305(2’;%;)” ] (71)

oy k) = = (: d‘i)io;;rj("d) (72)

otk = LEZOL N2 73)

and wherey, assuming that the wave travels along thaxis, is given by equation (64). As for the free surface displacement
(see Section 3.1), at any fixed point, y) the fluctuating wave pressure (70) may be rewritten as:

Nap(x, y.1) =0 fory Z1 + 0(fon, — fohg) Z2 — 0&(fohy + fphy) Z5. (74)
Finally, by defining

szphl; G=5(fphz_fph3); H=—5(fphz+fph3); (75)
we obtain that the process (74) belongs to family (1), with parameters

oy = ¢ P~ Johy __ et Johs (76)

Jony fohy
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From Eq. (76) we obtain that parametey is negative forkd > 1.32. In this case the fluctuating wave pressure has inverse-
behaviour respect to the free surface displacement: for a fixed threshold of probability of exceedance the wave crest (absolute
maximum) is lower than the wave trough (absolute minimum).

The non-linear effects decrease by approaching the bottom (for akfi®ed decreases dsy decreases.

Fig. 5 shows the family parameters (obtained from equation (76)) as functipfipfor ¢ = 0.055.

3.3. The free surface displacement in front of a vertical wall

Let us consider the wave field in front of a vertical wall, located at the abseiss@. The free surface displacement to the
second-order, for an infinitely narrow spectrum, is given by

n(x, 1) = 2a cogkx) COS(x ) + 2ka? f,, COK2kx) CO(2x) + 2ka? f, COY2kx) (77
(whereyis given by Eq. (2)) and may be rewritten as:

n(x, 1) = 20 cOSkx) Z1 + 206 COS2kx) (fyy + fyp) Z2 + 206 CO2kx) (— fiyy + frn) Z3, (78)
where

Jup(kd) = W (79)
This process belongs to the stochastic family (4), by defining

F =2cogkx), G = 22 COS(2kx) (fy + fn2)s H =26 c082kx)(— fyy + fn2)s (80)
and therefore it has parameters as the following expressions

B coS(2kx) _ cos2kx)
al—e(fnl"'fnz)lcos(kx)ls ap =&( f"1+fn2)|cos(kx)|' (81)

Observe that fokx = 7 /2+nx (Withn =0, +£1, £2,...), the linear term is zero; therefore the process has only a second-order
term. In this case the process does not belong to the stochastic family (1) begawse> oco.

Fig. 6 shows the family parametears andwao (EQ. (81)) at the wall (where = 0), as function okd. The parametes is
positive. Furthermore the effects of non-linearity for surface waves on a vertical wall are greater than for surface waves in an
undisturbed wave field. As an example on deep water the parametends to zero, andq tends tae (which is twice as much
as the value o#& for progressive waves on deep water).

3.4. The fluctuating wave pressure in front of a vertical wall
The second-order fluctuating wave pressure in front of a vertical wall, for an infinitely narrow spectrum, is given by:

Nap (X, ¥, 1) = 20 fpn, COLkx) Z1 + 20 ¢[ foh, COX2kx) — fon, + fpn,

+ foh, COS(2kx)] 22 — 20&[ fph, COS2kx) + fph, + foh, — foh COS2kx)] Z3; (82)
a) kd=2 by kd=3

0 0
|yid [ 1 yld
] e

05 : -05 //7 @

: aq‘/

-1 -1 - - - - - -

-0.04 0 0.04 -0.04 0 0.04

Fig. 5. The parameterg; andwy (Eg. (76)) for the fluctuating wave pressure in an undisturbed wave field, as functigid ¢the steepness
¢ has been assumed equal to 0.055)k3= 2; (b) kd = 3.
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where
Hlk(y +d)] — 2kd
1
Jpng (k) = 2sinh(2kd) (84)
The process (82) formally belongs to the family (4) by defining
F =2 fph, cogkx); G= 2z:[fph2 COS(2kx) — fphy + fph, + fph cos(2kx)]; (85)

H = —2¢] fph, COS(2kx) + fph, + fph, — fphs coS(2kx)].

(As for the free surface displacement, the fluctuating wave pressure does not belong to the stochastic family (1), for
kx =m/24nx(Withn=0,+1,4+2,...).)
The parameters are given respectively by:

— (fphy + fohg) COS2kx)— fohs + fphy

- fph% [cogkx)| ’ (86)

e (fphy — fohg) COI2kx)+ fohs + fphy .

fony IcoSkx)]

As an example, Fig. 7 shows the behaviour of the parameters at the wall, wheée(obtained from Eq. (86)) as function

of y/d, for e = 0.055 and forkd = 1.5. Being«q hegative, for the fluctuating wave pressure each realization of the stochastic
process is a sequence of waves with trough amplitude greater than the crest amplitude. Moreover, for a fikéd ttieep

ap =

0.2

0.15 1 o

0.1 1

0.05
1 kd

0

-0.05 1

Fig. 6. The parameters; anday (Eq. (81)) for the free surface displacement at a vertical wall (whete), as function okd (the steepness
¢ has been assumed equal to 0.055).

kd=1.5

1yld

-1Vt .
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Fig. 7. The parameters; andao (Eq. (86)) for the fluctuating wave pressure at a vertical wall, as functign&fWe have assumed= 0.055
andkd = 1.5.
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non-linear effects increases by approaching the bottom. In fact at the bottom (wherel) for kd — oo the fluctuating wave
pressure has the limit expression as

”Z(,), = —20£C092x) (87)
in which the linear term vanishes and only the second-order term is not zero. The first linear term goes to zero faster than
the second-order term, fdtd — oo; this implies thate1, @y — oco. Therefore there exists a valugjjn, such that for

—kd < ky < kyim condition (35) is not satisfied. By numerical investigation we obfaify, = 1 for characteristic value

of the steepness= 0.055.

4. Conclusions

The properties of the family (1) of stochastic processes have been investigated. For this purpose the analytical expressions
of the probability density function and of both the distributions of the absolute maximum and of the absolute minimum have
been obtained. Itis proven that all these properties depend upon two deterministic parameteks;reamded. For zero mean
processes we havg = —ay, and the family has only one degree of freedom.

We have shown that if botki; andas approach zero, the non-linearity vanishes. As a consequence the probability density
function tends to be Gaussian (according to the theory of wind-generated waves of Longuet-Higgins [1] and Phillips [6]) and
both the probabilities of exceedance of the absolute maximum and of the absolute minimum tend to the Rayleigh distribution
(according to Longuet-Higgins [7]).

We have obtained also that fag > 0 each realization of a process belonging to the family is a sequence of waves which
have the crest amplitude (absolute maximum) greater than the trough amplitude (absolute minimum, in absolute value); for
a1 < 0 each wave has the trough amplitude greater than the crest amplitude.

Finally, in the applications we have obtained the expressions of the paramgtarsl v, for some sea wave processes,
as functions ot, ky andkd. In particular we have obtained that the surface waves have the crest greater than the trough, and
furthermore, for a fixedd, the effects of non-linearity at a vertical wall are greater than the non-linear effects in an undisturbed
field.

For the fluctuating wave pressure (at a point beneath the sea surfaisegenerally less than zero; in this case the trough
of the fluctuating wave pressure are greater than the crest. Furthermore, as for the surface waves, the effects of non-linearity for
the fluctuating wave pressure on a vertical wall are greater than in an undisturbed field.

These theoretical conclusions agree well with the results of two small-scale field experiments by Boccotti [4], as we can
see by comparing the data and the analytical predictions for the probabilities of exceedance of the wav&ggpst &)
and of the wave trougt? (&0 > £). Fig. 8 shows the comparison for both the free surface displacements (left panel) and the
fluctuating wave pressure at a fixed depth beneath the sea surface (right panel), in an undisturbed field on deep water (we have
re-examined the original source data of the small-scale field experiment described by Boccotti et al. [8]; see also Sections 10.9
and 10.10 of Boccotti [4]). Fig. 9 shows the comparison for the fluctuating wave pressure on a vertical wall (data by Boccotti [4];
see his Fig. 13.3).

Free surface displacement Fluctuating wave pressure
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Fig. 8. The probabilities of exceedance of the wave cR&high > &) and of the wave trougtP (&0, > &) in an undisturbed field on deep
water: comparison between the analytical predictionsqfer0.055) and the small-scale field experiment data (see Boccotti et al. [8]; Boccotti
[4]). Left panel: free surface displacements. Right panel: fluctuating wave pressure at thiydepto.3.
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Fluctuating wave pressure
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Fig. 9. The probabilities of exceedance of the wave crB¢fhigh>&) and of the wave troughP (§ow > §) on a vertical wall
(kd = 1.26; y/d = —0.5): comparison between the analytical predictions o 0.055) and the small-scale field experiment data (see
Boccaotti [4]).

Appendix

The probability density functiorf; (¢) defined by Eq. (26) is real for any real To show that we take the complex conjugate
of Eq. (24):

[fe@] =3 / ¢ ()" do (88)

—00

(being x* is the complex conjugate of); because the characteristic functigiv¢ satisfies the propertye"—wf)* =g iwf |
Eq. (88) may be rewritten as

O] = = / d e o do, (89)

—00

By making the change of variabte= —w, Eg. (89) gives
[ @] = o / &G i, (90)

from which it follows [ f; ()1* = f; (¢) (see Eq. (24)): this implies that (¢) is real.
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