
1

Detection of Spherical Inclusions
Using Active Surfaces

Daniel A. Cook, Francesco Fedele, and Anthony J. Yezzi

Abstract—This paper addresses the problem of detecting and
visualizing objects embedded within a surrounding medium.
A new approach is outlined in which the ultimate goal is to
directly reconstruct the shape of an inhomogeneity using active
surfaces, which are multidimensional geometric entities that can
be evolved iteratively until the minimum of a specified energy
functional is reached. The surface is developed from an energy
to be minimized, such that driving the active surface to match
the shape of the inclusion reduces a chosen energy functional
capturing the degree of mismatch between the true and estimated
surfaces. Applications for this technique range from imaging
objects in the ocean to visualizing tumors in the human body.

Index Terms—Active surfaces, adjoint methods, buried objects

I. INTRODUCTION

Traditional imaging techniques like synthetic aperture sonar
make often-accurate, but very restrictive, simplifications about
the scattered energy received by the sensor. Specifically, one
of the standard assumptions is that waves propagate in a
free space that is homogeneous, except for a distribution of
infinitesimally-small point scatterers that do not interact with
each other. This solution is otherwise known as the free-
space Green’s function: the ubiquitous exp {ikR} /R term that
serves as the basis for nearly all coherent sonar and radar
processing. Decades of technology development attest to the
fact that this model works well in many settings. Nevertheless,
its limitations become clear in situations involving complicated
effects such as multipath and sediment penetration.

This paper addresses the problem of detecting and visual-
izing buried objects. A new approach is outlined in which
the objective is to directly reconstruct the shape of an in-
homogeneity using active surfaces, as opposed to creating
a conventional image of the environment. Active surfaces
are multidimensional geometric entities that can be evolved
iteratively until the minimum of a specified energy functional
is reached [1]–[3]. The surface is related to an energy to be
minimized, such that driving the active surface to match the
shape of the inclusion reduces the chosen energy functional.

The energy minimized is the mismatch between the ob-
served acoustic energy scattered by the object and that pre-
dicted from its estimated shape and position, represented by
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Fig. 1. Source illuminating a spherical flaw embedded in a domain containing
several measurement locations. A single source is shown from clarity. The
technique presented is equally valid for an arbitrary number of sources.

the active surface. In order to evolve the surface from one
iteration to the next it is necessary to compute both the acoustic
field and its gradient on the active surface.

This work provides the theoretical foundation necessary
for the ambitious goal of reconstructing the boundary of
arbitrarily-shaped objects buried in the sea floor. The example
results presented are limited in scope to spherical objects
embedded in a homogeneous medium. A closed-form eigenex-
pansion in terms of spherical harmonics is used to compute the
required field values along the active surface without having
to resort to approximate methods.

II. DERIVATION OF SHAPE GRADIENT

Consider, as shown in Fig. 1, the domain Ω partitioned
as Ω = Ω0 ∪ Ωj , where the internal boundaries of the j
subdomains are denoted Γj and the outer boundary as Γ.
Thus, the outer domain (the one containing the subdomains,
or ‘inclusions’) is denoted as Ω0, its outer boundary is Γ,
and its complete boundary is Γ0 = Γ ∪ Γj . Within the outer
domain and the jth subdomain, the material properties are
homogeneous and characterized by the pairs (d0, µ0) and
(dj , µj) respectively.

The information of ultimate interest is an estimate of the
boundaries Γj , which in the present example represent objects
buried in the sea floor. We reach this objective by meeting a
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secondary goal of reconstructing a function u over the domain
Ω given a known excitation source S as well as a set of M
measurements ûm = u(xm) + ηm at different points xm ∈ Γ,
m = 1, . . . ,M , along the boundary, where ηm are random
samples from a zero-mean measurement noise process η. The
function u is governed by the following PDE and Robin
boundary value constraint

Lu = S, x ∈ Ω (1a)
∂u

∂N
+Bu = 0, x ∈ Γ. (1b)

The operator L depends upon the partitioning Ωj , j =
0, . . . , n of the domain Ω resulting from the unknown interior
surfaces Γj , i = 1, . . . , n and is defined as follows

(Lu)(x) = (Ljuj)(x), x ∈ Ωj (2a)

with
Lj .

= −dj4+ µj , (j = 0, . . . , n), (2b)

where uj denotes the restriction of u to Ωj with the following
matching boundary conditions

u0 = uj (2c)

and

d0 ∂u
0

∂N0
= −dj ∂u

j

∂N j
, (2d)

for x ∈ Γj , (j = 1, . . . , n) imposed across the internal con-
tours Γj . The operator (2) describes the propagation of single-
frequency waves, where µ = −k2/d, k is the wavenumber, and
d is a diffusion coefficient. In typical acoustic applications
where there is no diffusion (d = −1) and the wavenumber
equals 2π/λ, Equation (2) is the Helmholtz operator. If one
wishes to account for attenuation due to absorption of acoustic
energy, then the wavenumber is complex-valued, with the
imaginary part representing the absorption term. In the event
that the constant B in (1) equals zero, the Robin boundary
condition collapses to a Neumann condition. For underwater
acoustics this corresponds to a pressure-release surface such as
an air-water interface, when u is taken to represent the sound
pressure.

For the sake of convenience, we will let d = (d0, . . . , dn)
and µ = (µ0, . . . , µn) denote the full set of dj and µj

coefficients respectively. No similar notation will be used for
the set of interior boundaries Γj since we are already reserving
the symbol Γ for the exterior boundary of the complete domain
Ω. However, we can still denote the full set of Γj’s compactly
by noting that Γ1 ∪ . . .∪Γn = Γ0 \Γ. A condensed summary,
therefore, is that the operator L in our forward model (1) is
defined by (2) once d, µ, and Γ0 \ Γ are given.

A. Variational Formulation of Inverse Problem

We may now state the inverse problem as that of determin-
ing the unknown partition surfaces Γ0 \ Γ which produce an
operator L, via (2), that yields a function u whose values at
each xm match the known measurements ûm once the cor-
responding forward model (1) has been solved. It is assumed
that the coefficients d and µ are known.

B. Energy to Minimize

Since the measurements are subject to noise, we may frame
the desired matching problem in the least squares sense by
choosing the surface Γ0 \Γ to minimize the following energy
terms representing the summed squared error:

EM =
M∑

m=1

1

2

(
u(xm)− ûm

)2
. (3)

The energy EM may also be written in integral form as

EM =

∫
Γ

g
(
u(x), x

)
dΓ, (4)

where

g(u, x) =
M∑

m=1

1

2

(
u− ûm

)2
δ(‖x− xm‖). (5)

Furthermore, the operator (1) may be incorporated as a con-
straint by defining a new energy

ĒM =

∫
Γ

g dΓ +

∫
Ω

ū(Lu− S) dΩ, (6)

which is equivalent to the original mismatch energy EM for
any test function ū when the constraint Lu = S is satisfied.
Since direct computation of the minimizing boundary surfaces
is not possible, we will instead devise a gradient descent
procedure in which the change in ĒM is related to changes
in the surface Γ0 \ Γ. This is accomplished by introducing an
artificial time dependence ĒM (t) and carrying out a series of
computations to arrive at an expression for dĒM/dt in which
the sought-after ∂Γj/∂t is isolated and can be found in terms
of known quantities. In other words, the shape gradient ∂Γj/∂t
will be expressed in terms of u and ū. These may be computed
because each is the solution to a well-posed problem consisting
of a governing PDE and appropriate boundary conditions. In
general u and ū would be found numerically, but we present
the special case of a spherical inhomogeneity for which a
closed-form solution exists.

To carry out the relevant variational calculations, we rewrite
ĒM more directly in terms of the unknown parameters,
perform integration by parts, then separate the internal and
external boundary integrals as shown in Eq. (7). Note that

ĒM =

∫
Γ

g ds+
n∑

j=0

∫
Ωj

ūj(−dj4uj + µjuj − S) dx

=

∫
Γ

(g − d0Bū0u0) ds+
n∑

j=1

∫
Γj

dj(ū0 − ūj)∇uj ·N j ds+
n∑

j=0

∫
Ωj

(dj∇ūj · ∇uj + µj ūjuj − ūjS) dx (7)
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the boundary conditions (1b) for u are used to simplify the
exterior Γ-integral and the flux conditions (2b) for L are used
to simplify the interior Γj-integrals. We may then eliminate the
interior boundary integrals by imposing the same continuity
condition (2a) for the test function ū as well:

ū0 = ūj , x ∈ Γj , (8)

leaving us with

ĒM =

∫
Γ

(g + d0Būu) dΓ

+
n∑

j=0

∫
Ωj

(dj∇ū · ∇u+ µj ūu− ūS) dΩj .
(9)

C. Shape Sensitivity Analysis

Assuming knowledge of d and µ and an initial guess for
Γ0 \ Γ, we wish to determine the variation of ĒM given
a perturbation of the interior boundary Γj . We do so by
introducing an artificial time variable t and by letting Γj

be time dependent. As a result, the operator L will become
time dependent and therefore so will u since we continue to
impose the constraint (1). Maintaining this constraint allows
us to equate the time derivatives of EM and ĒM which we
relate to the perturbation Γj

t = ∂Γj/∂t of the surface Γj (non-
integer variables as subscripts will denote partial derivatives
with respect to the corresponding variable). Finally, we will
make the unknown test function ū time dependent as well,
while continuing to impose the continuity constraint (8). We
now proceed by computing the time derivative of our matching
energy, shown in (10).

After first applying integration by parts to the volume
integrals in (10), the result may be simplified by noting that

Ljuj = 0 and by imposing the following condition on ū:

Lj ūj = −dj4ūj + µj ūj = 0, x ∈ Ωj , (11)

thereby eliminating the volumetric integral terms. The surface
Γ0 is then expanded into its constituent terms, permitting
the elimination of the exterior boundary integral (along Γ)
by noting the Robin boundary conditions (1b) for u and by
choosing the following boundary conditions for ū,

d0
(
Bū+

∂ū

∂N

)
= −gu, x ∈ Γ. (12)

Imposing (12) and replacing u0 and ū0 with uj and ūj

respectively (as well as substituing N0 = −N j) yields (13).
To continue the calculation, we need the relationship be-

tween u0
t and ujt along the moving boundary Γj(t), which we

obtain by differentiating the continuity conditions (2b) for u
and (8) for ū, as shown in (14). Plugging these derivatives
into (13) gives an expression that can be further simplified
by utlizing the flux condition (2b) for u and by imposing the
same condition as our final constraint on ū,

d0 ∂ū
0

∂N0
= −dj ∂ū

j

∂N j
, x ∈ Γj , (15)

finally obtaining (16).

D. Adjoint to the Forward Model

Note that the constraints (8) and (15) on ū along the internal
contours Γj , j = 1, . . . , n are identical to the constraints
(2b) connected with our original operator L and that the local
operators Lj applied to ūj over each region Ωj in the PDE
constraint (11) are also identical to those (2a) used by our
original operator L. As a result, the overall composite operator
used on ū is the same composite operator L defined in (2)

dĒM

dt
=

∫
Γ

(
guut + d0B(ūtu+ ūut)

)
ds+

n∑
j=0

∫
Γj

(dj∇ūj · ∇uj + µj ūjuj − ūjS)(Γj
t ·N j) ds

+
n∑

j=0

∫
Ωj

(
(dj∇ūjt · ∇uj + µj ūjtu

j − ūjtS) + (dj∇ūj · ∇ujt + µj ūjujt )
)
dx

(10)

dĒM

dt
=

n∑
i=1

∫
Γj

(
(dj∇ūj · ∇uj − d0∇ū0 · ∇u0) + (µj − µ0)ūjuj

)
(Γj

t ·N j) ds

+
n∑

i=1

∫
Γj

(
d0
(
ū0
t

∂u0

∂N0
+
∂ū0

∂N0
u0
t

)
+ dj

(
ūjt
∂uj

∂N j
+
∂ūj

∂N j
ujt

))
ds (13)

d

dt

(
u0
(
Γj(t), t

)
= uj

(
Γj(t), t

))
−→ u0

t = ujt + (∇uj −∇u0) · Γj
t = ujt +

(
∂uj

∂N j
− ∂u0

∂N j

)
(Γj

t ·N j) (14)

dĒM

dt
=

n∑
j=1

∫
Γj

(
(dj∇ūj · ∇uj − d0∇ū0 · ∇u0) + (µj − µ0)ūjuj

)
(Γj

t ·N j) ds

+
n∑

j=1

∫
Γj

(
−
(
∂ūj

∂N j
+
∂ū0

∂N0

)
dj
∂uj

∂N j
+

(
∂uj

∂N j
+
∂u0

∂N0

)
d0 ∂ū

0

∂N0

)
(Γj

t ·N j) ds (16)
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for u. Thus, together with the boundary conditions (12), the
constraints (8), (11), and (15) constitute a well posed problem
for ū, allowing us to compute a unique solution. We may thus
state the model for ū, the adjoint of u, more compactly:

Lū = 0, x ∈ Ω

d0(
∂ū

∂N
+Bū) +

M∑
m=1

(u− ûm)δ
(
||x− xm||

)
= 0, x ∈ Γ.

(17)

E. Shape Gradient

We now complete our shape sensitivity calculation by
recognizing that (16) is in the form of a directional derivative:
It gives us the the rate of change of ĒM in terms of the rate of
change of the surface Γj . The quantity dĒM/dt is maximized
if Γj

t is set equal to the remaining terms on the right-hand side
of (16). Thus, the energy is minimized by moving Γj in the
opposite direction. The the shape gradient for an arbitrary 3D
surface boundary Γj is therefore given by (18).

III. EIGENEXPANSION OF SCATTERING FROM A
SPHERICAL INCLUSION

Since the inclusion is assumed to be spherical, the solution
to both the forward (2) and adjoint (17) models can be found
using spherical harmonics. For example, from Chapter 16 of
[4], we have the following eigenfunction expansion for the
solution of (2):

u0(r, φ, θ) = G0(R) +
∞∑

n=0

∞∑
m=0

Y m
n (φ, θ)

·
[
Amnh

(1)
n (µ0r) +Bmnh

(2)
n (µ0r)

]
uj(r, φ, θ) =

∞∑
n=0

∞∑
m=0

CmnY
m
n (φ, θ)jn(µjr), (19)

where k0 =
√
−µ0/d0, kj =

√
−µj/dj , and h

(1)
n (µ0r)

and h
(2)
n (µ0r) are the spherical Hankel functions given by

combining the Bessel functions of the first and second kinds
as shown in Table III. The pair of Hankel functions represents
outward (+) and inward (−) propagating waves in a way that
is directly analogous to the more familiar representation of free
space spherical waves, exp{±ikR}/R corresponding to har-
monic oscillations of temporal frequency ω, with wavenumber
k = ω/c. The terms Y m

n (φ, θ) are spherical harmonics given
by:

Y m
n (φ, θ) =

√
(2m+ 1)

4π

(n−m)!

(n+m)!
exp{imφ}Pm

n (θ) (20)

where Pm
n (θ) are the Legendre functions.

The free-space Green’s function G0(R) appearing in
Eq. (19) is a function of R, the distance between the source

TABLE I
SPHERICAL HANKEL FUNCTION DEFINED IN TERMS OF ORDINARY

BESSEL FUNCTIONS OF THE FIRST AND SECOND KINDS.

Bessel function of the first kind: Jn(x)

Bessel function of the second kind: Nn(x)

Sph. Bessel function of the first kind: jn(x) = 1√
x
Jn+ 1

2
(x)

Sph. Bessel function of the second kind: nn(x) = 1√
x
Nn+ 1

2
(x)

Hankel function of the first kind: h
(1)
n (x) = jn(x) + inn(x)

Hankel function of the second kind: h
(2)
n (x) = jn(x)− inn(x)

Fig. 2. Coordinates used for the spherical harmonic expansion of u and ū.
The distance from the source to a point on the surface of Γj is R, while ρ is
the distance from center of Γj to the source, and θ is the colatitude, or zenith
angle. The latitude, or azimuth angle, is not shown but is measured about the
axis labeled ρ.

and the point of observation. The remaining terms in (19) and
(19) depend on r, φ and θ, which are the spherical coordinates
representing radius from the origin, azimuth angle, and colat-
itude (or zenith angle). It is thus useful to expand G0(R) in
terms of these variables using the spherical Bessel functions
and Legendre polymonials (i.e., the Legendre functions Pm

n (θ)
for which m = 0),

G0(R) =
S

4πd0

eik0R

R

=
iSk0

4πd0

∞∑
n=0

(2n+ 1)jn(k0r)h
(1)
n (k0ρ)Pn(θ).

(21)

This expansion replaces the dependence on R with dependence
on r,ρ, and θ, thus matching quantities used in the other
terms in (19) and (19). The variable ρ is new, but known:
It represents the distance from the source S to the origin,
which is located at the center of the inclusion. The geometry
is illustrated in Fig. III.

The outer domain is assumed to be free space. Thus, Γ is
considered to be infinitely far away from the source S. In this
case, the solution u satisfies the radiation condition, also called
the Sommerfeld radiation condition. Quoting Sommerfeld [5]:

“...the sources must be sources, not sinks of energy.
The energy which is radiated from the sources must
scatter to infinity; no energy may be radiated from

∂Γj

∂t
=

∫
Γj

[(
∂ūj

∂N j
+
∂ū0

∂N0

)
dj
∂uj

∂N j
−
(
∂uj

∂N j
+
∂u0

∂N0

)
d0 ∂ū

0

∂N0
+ (d0∇ū0 · ∇u0 − dj∇ūj · ∇uj) + (µ0 − µj)ūjuj

]
N j ds

(18)

Institute of Acoustics Proceedings 46

Vol.32. Pt.4. 2010



5

infinity into... the field.”

According to the radiation condition, the unbounded outer
domain precludes the propagation of any inward-travelling
waves. Consequently, the coefficients Bmn are all equal to
zero since only the outward propagating solution is allowed.
Furthermore, the scalar field u and its normal derivative must
be continuous at the surface of the spherical inclusion:

u0 = uj , and d0 ∂u
0

∂n0
= −dj ∂u

j

∂nj
on Γ. (22)

Since Γj is a sphere, the outward normal derivative is simply
∂/∂nj = ∂/∂r.

Since the problem is simplified by restricting Ωj to be a
sphere, the resulting configuration is axisymmetric, causing
the dependence on the azimuth angle φ to vanish. The axis of
symmetry is the line of length ρ connecting the source to the
center of the spherical flaw as shown in Fig. III.

Simplifying the expansions above and substituting them into
the matching boundary conditions gives, for each term in the
expansion:

ik0S

d0

√
2n+ 1

4π
jn(k0r

j)h(1)
n (k0ρ) +Anh

(1)
n (k0r

j)

= Cnjn(kjr
j)

(23)

ik2
0S

√
2n+ 1

4π
j′n(k0r

j)h(1)
n (k0ρ) +And

0k0h
′(1)
n (k0r

j)

= Cnd
jkjj

′
n(kjr

j).
(24)

Due to axisymmetry, the only nonzero values of the expansion
coefficients correspond to the index m = 0, since the expo-
nential function and Legendre function within the spherical
harmonics (20) are constant for all azimuth angles only when
m = 0. For notational simplicity, the m index is suppressed
(i.e., A0n is written as An).

The pair of equations above can be arranged into a 2 × 2
system of linear equations, which can be easily solved for the
coefficients for a single term in the expansion:[

−h(1)
n (k0r

j) jn(kjr
j)

−k0d
0h

′(1)
n (k0r

j) djkjj
′
n(kjr

j)

] [
An

Cn

]
=
ik0S

d0

√
2n+ 1

4π
h(1)
n (k0ρ)

[
jn(k0r

j)
k0d

0j′n(k0r
j)

]
.

(25)

The derivative terms can be computed according to the recur-
sion [6],

f ′n(x) =
n

x
fn(x)− fn+1(x),

and the 2× 2 system can be solved explicitly for An and Cn.
Given the source strength and position, along with the

position and radius of the sphere Ωj , the scattered field is given
in closed form by summing over the terms in the harmonic
expansion.

Computing the value of Γj
t for a spherical flaw embedded in

free space requires knowledge of the fields u and ū both inside
and outside the sphere. Equation (25) is used to compute u0

and uj . It also serves as a prototype for computing the adjoint
field ū:[

−h(2)
n (k0r

j) jn(kjr
j)

−k0h
′(2)
n (k0r

j) −djkjj′n(kjr
j)

] [
Ān

C̄n

]
=
−ik0SM

d0

√
2n+ 1

4π
h(2)
n (k0ρ)

[
jn(k0r

j)
d0j′n(k0r

j)

] (26)

in which the measurement errors Sm = ûm(xm)− u(xm) act
as source terms replacing S in (25).

It is important to note that the forward and adjoint fields
generally have different axes of symmetry since the vectors
from the center of Ωj to the respective sources are different.
It is therefore necessary to transform from the natural ‘local’
spherical coordinates into a common frame of reference when
computing the required scalar fields and their gradients. This
is conveniently done using twist coordinates.

IV. GRADIENT DESCENT APPROACH

The position xsph and radius rsph of the spherical inclusion
embedded in free space are unknown. Its location can be
found iteratively via gradient descent. These parameters are
assumed at each step and are used to model the scattered
field, which is compared with the observed measurements.
This mismatch provides the source terms used in the adjoint
formulation that backpropagates the adjoint field to the
surface of the current guess Γj . The forward-modeled and
adjoint fields are used to find the change in the summed
squared error that would result from a given perturbation of
the flaw position and radius, as described in Section III. The
general algorithm is as follows:

Make an initial guess of the sphere’s position and radius.
while Stopping condition is not satisfied do

Compute Γj
t based on

current values of xsph, rsph, ū, and u.
Update xsph and rsph.
Compute updated ū and u.

end while

The stopping condition is reached when the norm of Γj
t falls

below some specified threshold.
The results from the two previous sections are used to

construct the solution for finding the position and radius of
a spherical flaw embedded in a homogeneous medium. The
general result (18) is used, and Γj is constrained to be a
sphere for which only the radius rsph and location xsph may
be altered by the gradient descent flow. Only a single sphere
is considered, so j = 1. The constraints are imposed by
integrating over the surface Γj the inner product of Γj

t with
appropriate vectors. The rate of radial expansion drsph/dt is
found by integrating the inner product of Γj

t and the unit vector
N j normal to Γj . The movement dxsph/dt of Γj in each of
the directions e1, e2, and e3 is given by simply integrating
Γj
t · ei over the surface Γj .
The field u and its adjoint can be computed easily by solving

(25) and (26) for all the terms one wishes to include in the
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expansion. The gradient terms appearing in (18) can be found
in closed form using properties of spherical harmonics.

V. RESULTS AND DISCUSSION

As stated previously, we are interested in using active
surfaces to determine the radius and position of an unknown
sphere, or inclusion, located within a medium. The material
properties of the medium and the inclusion are known. Mea-
surements of single-frequency (i.e., monochromatic) scattered
waves are made in a region surrounding the location of the
inclusion.

The example shown in Fig. 3 consists of a single source
and a ring of six measurement positions. The source is at the
same radius (10 units) as the measurements.

The material properties used for this example are d0 =
di = 1, µ0 = 0.1, and µi = 0.01. These values cause
Eq. (2) to describe a lossy medium since the wavenumbers are
purely imaginary. The spherical inclusion and the surrounding
medium are diffusive, as might be the case for the detection
of tumors within the body using fluorescence tomography [7].
Recall that the energy g is given by the summed-squared
difference between the true field and the computed field based
on the current guess of the sphere’s position and radius.
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For this example, the true sphere has unit radius and is
located at the origin. An energy landscape can be visualized
by marching the current guess of the sphere’s position over
a rectangular grid spanning the region of interest, as in
Fig. 3. The summed squared difference between the measured
and predicted scattered field is displayed for each point. As
expected, the minimum energy occurs at the origin. Although
it is not shown, performing this same computation using the
incorrect radius can cause the minimum to shift away from the
true position of the inclusion. Such effects must be considered
when devising the gradient descent scheme to be implemented.

Figure 4 shows a gradient descent for which the initial guess
position is (x, y) = (3, 4), and for which the radius is initially
supposed to be 10 times too small (r = 0.1). The solution
converges, making several pauses along the way as the radius
updates. This is an artifact of the gradient descent procedure
used. In this example the direction of the gradient descent step
is given by the closed-form computation, and the step size is
controlled by the user. Starting from a specified initial value,
the step size is increased at each iteration as long as the energy
decreases. If a step results in an increase in ĒM , then the
step size is cut dramatically, and the gradient descent changes
direction significantly. This scheme results in overshoot and is
responsible for the zig-zag pattern and the irregular step sizes
observed.

A. Extension to Acoustics and Buried Objects
The methodology presented above can be applied to un-

derwater acoustics and extended to the two-medium problem
of locating a spherical inclusion within one medium using
sources and observations in a second, as shown in Fig. 5. The
diffusive model (2) derived above can be transformed into the
familiar lossless Helmholtz equation by setting d0 = dj = −1.
Furthermore, we model the water and sediment as a pair of
fluid half spaces, which is a reasonable approximation under
certain conditions [8]. The sediment is represented by a fluid
so that the governing acoustic equation does not change,
and only boundary conditions need to be matched. In more
complicated sediments one would need to consider coupling
between the water and modes of propagation supported by
solids.

As before, we use spherical harmonics to represent the total
acoustic pressure field, noting that boundary conditions must
now be matched at the interface as well as on the surface of the
inclusion in Medium 2. The field in Medium 1 consists of the
source field, its reflection from the interface, and the scattered
contribution from the inclusion in Medium 2. The field in
Medium 2 consists of the transmitted source field, the field
scattered by the inclusion, and the reflection of the scattered
field from the interface. The reflected fields are modeled using
the method of images. The interior of the inclusion is not
modeled, on the grounds that it is assumed to be acoustically
soft or hard. These are limiting conditions implying either
Neumann or Dirichlet boundary conditions, respectively. Thus,
there are a total of six fields to be considered, compared to
two used in Section III.

A closed-form solution to the two-fluid problem should be
achievable, albeit far more challenging to accomplish due to

Fig. 5. Source illuminating a two-fluid configuration in which the inclusion
resides in one fluid and the source/measurements reside in the other. A single
source is shown from clarity. The technique presented is equally valid for an
arbitrary number of sources.

the added complexity that comes from having to consider four
additional fields. Furthermore, the problem is not axisymmet-
ric so the spherical harmonics Y m

n are no longer equal to
zero for m > 0. Because of this anticipated complexity, we
consider the alternative approach of numerically solving for
the total acoustic field. One suitable approach would be to
use the collocation method to discretize the interface using N
points. Applying the boundary conditions at these points leads
to a system of 2N linear equations which can be solved for
the N coefficients required to describe the acoustic field on
each side of the interface. This procedure would be repeated
for the adjoint field required by each of the M measurement
points.

This problem could be extended even further to consider
the effects of shallow water. In this case, the water column
would not be a half space. Rather, it would feature a pressure-
release (perfectly reflecting) boundary condition. As with the
water/sediment interface, the surface effects can be modeled
using the method of images. An interesting consequence of
including sea surface effects is that the multipath environment
might actually work to our advantage, as the image sources
could provide spatial diversity having the same net effect as
using additional sources.

VI. CONCLUSION

We have presented the foundational aspects of a new image
reconstruction approach for a broad range of problems where
the information sought is a representation of boundaries rather
than a pixel-by-pixel map of a region of interest. The method
derived in Section II is completely general, applying to any
set of simply-connected inhomogeneities. This result was con-
strained in Section III to the case of a single spherical inclusion
in order to demonstrate the gradient descent procedure used
to find the boundary surfaces of interest. More complicated
geometries and applications, such as searching for objects
buried in the sea floor, will require numerical solutions for
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the forward and adjoint fields necessary to compute the shape
derivative used to drive the active surface. These are the subject
of ongoing research.
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