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Abstract

In this paper, the occurrence of extreme events due to the four-wave resonance interaction in weakly nonlinear water

waves is investigated. The starting point is the Zakharov equation, which governs the dynamics of the spectral com-
ponents of the surface displacement. It is proven that the optimal spectral components giving an extreme crest are
solutions of a well-defined constrained optimization problem. A new analytical expression for the probability of

exceedance of the wave crest is then proposed. The analytical results agree well with measurements data at the
Draupner field and can be used for the prediction of freak wave events.
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1. Introduction

Single waves that are extremely unlikely as judged by
the Raleigh distribution are called freak waves. The
freak event that occurred on January 1, 1995 under the
Draupner platform in the North Sea [1] provides evi-

dence that such waves can occur in the open ocean.
During this freak event, an extreme crest with an
amplitude of 18.5 m occurred. A mechanism which can

be a cause of freak waves is related to the four-wave
interaction in weakly nonlinear water waves [2]. In this
context a new computational paradigm is proposed for

the statistics of extreme events in nonlinear random seas.

2. The Zakharov Equation

Let us consider weakly nonlinear water waves over a
finite depth d. The free-surface �(x,t) is given by

�ðx; tÞ ¼ 1

2�

X ffiffiffiffiffi
!n

2g

r
BnðtÞj j exp i kn � x�!ntþ ’nðtÞð Þ½ � þ c:c:

ð1Þ

where ’n (t) are arbitrary time-varying phase angles, the

spectral component Bn (t) is defined as

BnðtÞ ¼ BnðtÞj j exp i’nðtÞ½ � 8n ð2Þ

and x=(x,y) is the horizontal spatial vector. The line-
arized wave frequency !n is related to kn through the

linear dispersion relation !n
2/g= jknjtanh(jknjd). If

third-order nonlinear effects are considered, then the
spectral components Bn(t) of the wave envelope satisfy
the following discrete version of the Zakharov equation

[3]:

dBn

dt
¼ �i

X
pqr

Tnpqr�nþp�q�rB
	
pBqBr exp i�npqrt

	 

ð3Þ

Here, P* denotes the complex conjugate of P, the kernel
Tnpqr=T(kn,kp,kq,kr), �npqr=!n+!p�!q�!r and

the generalized Kronecker delta �n+p�q�r denotes that
summation is taken over those subscripts satisfying
kn+ kp� kq� kr=0.
Equation (3) admits, as motion integrals, the discrete

Hamiltonian

H ¼
X
n

!nB
	
nBn þ

1

2

X
npqr

Tnpqr�npqrB
	
nB
	
pBqBr exp i�npqrt

	 

ð4Þ

Equation (3) admits three motion integrals: the follow-
ing discrete Hamiltonian, the wave action, and wave
momentum, that is:

* Tel.: +1 (802) 656 8140; E-mail: ffedele@emba.uvm.edu

636

# 2005 Elsevier Science Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor) Paper no. 146-148



A ¼
X
n

!nB
	
nBn;M ¼

X
n

knB
	
nBn ð5Þ

3. Sufficient conditions for the occurrence of an extreme

crest

The wave surface in Eq. (1) is given by the super-
imposition of harmonic components nonlinearly

interacting among each other, according to the evolu-
tion equation (3). As time varies, a nonlinear energy
transfer among the harmonic components occurs and

the wave energy, action and momentum are conserved
(see Eqs. (4) and (5)).
At some initial time t=�t0, Bn (t) is set equal to some

initial conditions to be defined later, i.e.

Bnðt ¼ �t0Þ ¼ ~Bn exp i ~’nð Þ 8n: ð6Þ

In the nonlinear regime, if one imposes that at time t=0
all the harmonic components are in phase, i.e.

’nðt ¼ 0Þ ¼ 08n ð7Þ

then, using Eq. (3), one can easily prove that both the
spatial gradient H� and the time partial derivative @�/@t
of �(x,t) vanish at (x=0,t=0). This implies that

�(x,t) has a stationary point at (x=0,t=0). In the
following, sufficient conditions will be given such that at
the stationary point (x=0,t=0) the wave surface
�(x,t) attains its absolute maximum, which will also be

the highest crest. From Eq. (1), the wave surface
amplitude at any time t at x=0 is

�ð0; tÞ ¼ 1

�

X ffiffiffiffiffi
!n

2g

r
BnðtÞj j cos !ntþ ’nðtÞð Þ

Here, �(0,t) admits the following upper bound:

�ð0; tÞ � 1

�

X ffiffiffiffiffi
!n

2g

r
BnðtÞj j ð8Þ

If condition (7) is satisfied, at time t=0 the surface
amplitude is given by

Hmax ¼
1

�

X ffiffiffiffiffi
!n

2g

r
Bnð0Þj j ð9Þ

A sufficient condition for having an absolute maximum

at (x= 0,t=0) is that Hmax in Eq. (9) has to be greater
than the right-hand side of the inequality (8), i.e.

1

�

X ffiffiffiffiffi
!n

2g

r
Bnð0Þj j > 1

�

X ffiffiffiffiffi
!n

2g

r
BnðtÞj j; 8t ð10Þ

Define the dimensionless variables

Xn ¼
Bnð0Þj j
H

ffiffiffiffiffi
!d

2g

r
; ~Xn ¼

~Bn

H

ffiffiffiffiffi
!d

2g

r

where H is characteristic wave amplitude (hereafter the
linear highest crest amplitude) and !d a characteristic
frequency. Then, the inequality in Eq. (10) is satisfied if

one can determine a set of harmonic amplitudes jBn(0)j
or dimensionless variables Xn satisfying the following
optimization problem:

max
Xn2<n

1

�

X ffiffiffiffiffiffi
wn
p

XnXn X 
 0 ð11Þ

subject to the constraints (4) and (5), which in terms of
the Xn variables are given by

X
n

wnX
2
n þ

1

2
"p�
	 
2X

npqr

~TnpqrXnXpXqXr ¼
X
n

wn
~X2
nþ

1

2
"p�
	 
2X

npqr

~Tnpqr
~Xn

~Xp
~Xq

~Xr exp �i ~�npqrt0 þ i ~�npqr

	 

ð12Þ

andX
n

X2
n ¼

X
n

~X2
n;

X
n

knX
2
n ¼

X
n

kn ~X2
n ð13Þ

where

~�npqr ¼ ~’n þ ~’p � ~’q � ~’r; ~�npqr ¼ wn þ wp � wq � wr

Here, "p = jkdj� is a characteristic wave steepness, � =
H / � a dimensionless amplitude and � is the standard
deviation of the wave surface, wn=!n/!d and
~Tnpqr ¼ Tnpqr�nþp�q�r= kdj j3 with jkdj the wave number

corresponding to the characteristic frequency !d. For a
given choice of the initial time t0 and its relative initial
conditions {~Xn} and {~’n} one can solve the optimization

problem (11) and determine the optimal spectral com-
ponents {Xn}. There exists a particular initial time
t=�t0 starting from which, the initial wave – with
spectral components {~Xn} and phase angles {~’n} –

nonlinearly evolves in space-time and an energy focusing
occurs at (x= 0,t=0), giving the highest wave crest
amplitude

Hmax

H
¼ 1

�

X ffiffiffiffiffiffi
wn
p

Xn: ð14Þ

4. The nonlinear crest amplitude and its probability of

exceedance

In Gaussian seas, if an extreme crest (absolute max-
imum) of given elevation H occurs at (x= 0,t=0), with
probability approaching 1, the surface displacement

tends asymptotically to the deterministic form [4,5]
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�detðx; tÞ ¼
H

�2

X
n

a2n
2

exp i kn � x�!ntð Þ½ � þ c:c:
ð15Þ

as �= H / �!1. Here, the coefficients {an} are related

to the linear spectrum (JONSWAP spectrum in real
applications)

EðkÞdk ¼
X a2n

2
� k� knð Þdk

At time t=�t0 the initial conditions are set such that
nonlinear wave surface �(x,t) is equal to the linear wave
group (15) and consequently the initial spectral com-

ponents and phase angles are set equal to (see Eq. (6))

~Bn ¼ �
H

�2

ffiffiffiffiffi
2g

!n

r
a2n; ~’n ¼ 0

Thus, the linear wave group (15), which in absence of
nonlinearities gives the highest crest amplitude H at

(x= 0,t=0), nonlinearly evolves according to Eq. (3)
and produces a different crest amplitude Hmax at
(x= 0,t=0). Solving the optimization problem (11)

yields the relation between the highest nonlinear crest
amplitude Hmax and the linear crest amplitude H as

Hmax

�
¼ 1þ � �; t0ð Þ½ �� �!1 ð16Þ

where the dimensionless parameter �(�,t0) is defined as

� �; t0ð Þ ¼ 1

�

X ffiffiffiffiffiffi
wn
p

Xn � 1 ð17Þ

In the following, only narrow-band unidirectional

waves are considered. Then, for fixed values of crest
amplitude �, the parameter �(�,t0) reaches a maximum
�m(�):

�m �ð Þ ¼ max
t02<

� �; t0ð Þ ð18Þ

at approximately !dt0 / "�2d which is the time scale at
which the energy transfer occurs in unidirectional wave
fields due to the Benjamin-Feir instability [2].

In the limit of � = H / � ! 1 the statistics of the
wave crest height follows asymptotically the Rayleigh
distribution

Pr H > b½ � ¼ exp � b2

2�2

� �

and the probability of exceedance of the nonlinear
extreme wave crest Hmax is given by

Pr Hmax > h½ � ¼ exp � h2

2�2 1þ �mð�Þð Þ2

" #
ð19Þ

If second-order effects due to bound harmonics are also
taken into account, then Eq. (19) modifies as follows:

Pr Hmax > h½ � ¼ exp � 1þ �mð�Þð Þ2

8"2d�
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4"d�

1þ �mð�Þð Þ2

s
�

 !2
2
4

3
5

(20)

where one can assume �� 1/2 on deep water.

5. Applications and conclusions

Consider unidirectional waves in deep water. Assume
a narrow band spectrum of dimensionless bandwidth
�K. Janseen [2] defines the Benjamin-Feir index (BFI)

BFI ¼ 2
ffiffiffi
2
p

"d
�K

in order to characterize the nonlinear behavior of the

random field. The nonlinear energy exchange occurs in
time almost periodically and produces an effect of
intermittence to the surface displacement: high crests
occur recurrently in time. Extreme events become more

probable because of the Fermi-Pasta Ulam recurrence
and the kurtosis of the wave distribution increases.
Consider an initial wave spectrum with Gaussian shape

EðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2��2
p exp �ðk� 1Þ2

2�2

" #

Here, k= jkj/jkdj and the dimensionless bandwidth is
assumed to be equal to the relative width at the energy
level of one half of the spectrum maximum, i.e.
�K ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

.

The optimization problem (11) is solved by using the
MATLAB optimization toolbox. The function �m(�)

Fig. 1. The parameter �(�,t0) for fixed value of �=2

(BFI=1.15 and d = 0.05).
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(see Eq. (18)) is computed as follows: for fixed values of
�, the optimization problem (11) with the constraints

(12) and (13) is solved for different values of the time t0
and the corresponding parameter �(�,t0) is computed.
As an application, consider BFI=1.15 and d=0.05. In
Fig. 1 the parameter �(�,t0) is plotted as a function of t0
for �=2. As one can see from this plot, � reaches a
maximum �m(� = 2) ffi 0.189 at approximately !dt0 �
1.2-2d in agreement with the theory. The computed

function �m(�) increases monotonically with � and tends
to approach the asymptotic value �max = 0.195 for

�!1 (see Fig. 2). Monte-Carlo simulations of the
Zakharov equation are performed to validate the ana-
lytical results for the case of BFI=1.15 and d = 0.05.
The empirical crest distributions agree well with the

analytical distribution (19) as one can see from the plots
in Fig. 3. Finally, as a real application consider the data
of the wave elevation measured at the Draupner field in

the central North Sea [1]. Consider a JONSWAP spec-
trum with BFI=1.1 and d = 0.04. This choice gives the
best fit with the experimental data, as one can see from

Fig. 4, where the comparison between the Draupner
data, the third-order distribution in Eq. (20), and the
second-order distribution (Eq. (20) with �m(�) = 0) is
shown.
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Fig. 2. The parameter �m(�) computed for BFI= 1.15 and d =

0.05.

Fig. 3. Comparison between the analytical probability of

exceedance of the wave crest Eq. (19) (solid line) and the

empirical distribution computed from Monte-Carlo simulations

(dotted line). Here, BFI=1.15 and d = 0.05.

Fig. 4. Probabilities of exceedance.
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